The Journal of Systems and Software 210 (2024) 111944

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

L)

Check for

A survey of energy concerns for software engineering™ | opnes’

Sung Une Lee ®*, Niroshinie Fernando?, Kevin Lee?, Jean-Guy Schneider ¢

a3 CSIRO’s Data61, Clayton, 3168, VIC, Australia
b School of Infomation Technology, Deakin University, Geelong, 3220, VIC, Australia
¢ Faculty of Information Technology, Monash University, Clayton, 3800, VIC, Australia

ARTICLE INFO ABSTRACT

Keywords: There is growing attention to energy efficiency in the software engineering field. This has been driven by
Software engineering modern technologies, for example, Internet of Things (IoT), Social Networking Services (SNS) and quantum
Energy computing. In addition to this, recent trends and concerns such as Environment, Social, and Governance (ESG)
sref? bility and human/societal/environmental well-being for responsible Artificial Intelligence (AI) have accelerated the
ustainabill

use of energy efficient software. Despite this, energy concerns in this field have been less explored and studied.
This limitation results in falling short to address and overcome greenability issues at the software level, and
leaving critical challenges to be solved in this space. This study aims to address this limitation and fill the
gap between previous studies. We survey green in software engineering framed by the ten knowledge areas of
software engineering to not only cover the entire development life-cycle but also widen the scope of discussion
to software process, method, and model management. Based on our comprehensive investigation, we discuss

open challenges, trade-offs and implications of this study for both researchers and practitioners.

1. Introduction

Ever increasing data and IoT devices require more computational
power and storage space, resulting in growing concerns about
green/energy-efficient IT in recent years. The energy consumption
of IT, for example, data centers, has been dramatically increasing
every year (Naumann et al., 2011). This has led to increased global
carbon emissions, set to jump by 1.5 billion tonnes in 2021 according
to the global energy review 2021 by International Energy Agency
(IEA) (International Energy Agency, 2021). In addition, mobile com-
puting platforms such as smartphones and tablets and IoT sensors are
everywhere in our lives. Unfortunately, they are all battery-driven,
and thus energy-constrained (Pinto and Castor, 2017). It draws more
attention to software energy efficiency which has become a primary
concern (Georgiou et al., 2019a).

The focus of researchers, however, has been mainly on integrated
systems or hardware. This results in limited attention to software (Mah-
moud and Ahmad, 2013; Pinto and Castor, 2017). Furthermore, previ-
ous studies on energy and software engineering have addressed specific
issues such as energy metrics, and tools and techniques for measuring
energy consumption of software. Researchers have proposed green soft-
ware processes and models, yet they still remain at the conceptual level.
Georgiou et al. (2019a) addressed open research questions for energy-
efficient programming, and introduced existing approaches, tools, and

* Editor: Patricia Lago.

* Corresponding author.
E-mail address: sunny.lee@data61.csiro.au (S.U. Lee).

https://doi.org/10.1016/j.jss.2023.111944

techniques. The authors focused on the particular software model (Wa-
terfall), and therefore limited the scope of their study. Energy concerns
should be considered for end-to-end management of best practices, this
limitation may fall short for the operationalization of green software
engineering in practice.

Existing studies on energy efficient software engineering provide
a good starting point. Yet, there is lack of information to provide a
wide spectrum of insights across the entire discipline areas of software
engineering and to guide researchers and practitioners in real-world
contexts.

In this study, we aim to address this gap, by a broad-spectrum
investigation of energy concerns in software engineering. As analysis
dimensions, ten areas of Software Engineering Body of Knowledge
(SWEBOK) are chosen: software requirements, software design, soft-
ware construction, software testing, software maintenance, software
configuration management, software deployment, software process,
software models and methods and software quality. The selected areas
are essential to cover the entire life-cycle of software development and
enable this study to articulate new insights and trade-offs of end-to-
end energy concerns in any software development methods including
Waterfall, Agile and DevOps.

This study significantly contributes to the field by providing a
comprehensive understanding of how energy concerns are addressed

Received 24 February 2023; Received in revised form 1 November 2023; Accepted 22 December 2023

Available online 2 January 2024
0164-1212/© 2024 Elsevier Inc. All rights reserved.

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:sunny.lee@data61.csiro.au
https://doi.org/10.1016/j.jss.2023.111944
https://doi.org/10.1016/j.jss.2023.111944
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111944&domain=pdf

S.U. Lee et al.

in software engineering. We offer a broad overview of energy consid-
erations, along with discussions on relevant tools and techniques for
software engineers. The identification of open challenges and trade-offs
across various key software engineering areas enhances our under-
standing of the current state of green software engineering. Addi-
tionally, we propose practical and concise approaches, including a
one-page green software engineering framework, a goal model for ad-
dressing challenges in green software engineering, and green elements
for incorporating energy efficiency into Al systems within the supply
chain.

The remainder of this paper is as follows. The next section provides
background information of green software engineering. Section 3 de-
scribes our approach for investigation. We then present the results of
our analysis in Sections 4, 5 and 6. Section 7 identifies key challenges,
limitations and gaps and trade-offs for the next steps. This section also
provides the practical implications of this study. We conclude this study
and discuss the future research directions in Section 8.

2. Green and software engineering

Energy concerns in software engineering have gained significant
attention due to the growing recognition of the environmental and
economic impact of software systems. The concept of sustainability
and greenability has been frequently discussed in relation to energy
concerns in software engineering (Calero et al., 2014). Sustainability, as
defined by Brundtland Commission (1987), involves meeting the needs
of the present without compromising the ability of future generations
to meet their own needs. It encompasses three essential dimensions:
social, economic, and environmental. Environmental sustainability fo-
cuses on protecting the environment and conserving resources, while
social sustainability aims to ensure fairness, inclusivity, and equal
access to resources and opportunities. Economic sustainability seeks to
achieve sustainable economic growth that balances environmental and
social well-being. By integrating these dimensions, a more equitable
and prosperous future can be created.

Software sustainability is often defined as “the ability of a socio-
technical system to persist over time” (Becker et al., 2015), and is
sometimes described in the literature as a non-functional requirement
or software quality (Penzenstadler et al., 2014a). However the term
sustainability as relevant to software is more nuanced, and there is no
unified understanding within the software engineering domain, with
different researchers providing different perspectives (Venters et al.,
2018, 2021, 2023). For example, Penzenstadler suggests that software
sustainability to be defined as preserving the function of a system over
a defined period of time, via considering three variables of system,
function, and time (Penzenstadler, 2013). Some researchers present the
concept of sustainable software as to minimize the negative impacts
on the society, the economy, and the environment throughout the
software development life-cycle (Dick et al., 2010; Calero et al., 2014).
This involves reducing resource consumption, such as power usage,
to mitigate environmental impact and promote social and economic
sustainability (Calero and Piattini, 2015). Hilty, Lohmann, and Huang
offer insights into the domains of ICT geared towards sustainabil-
ity, highlighting Environmental Informatics, Green IT, and Sustainable
Human-Computer Interaction (Hilty et al., 2011). They argue that mere
technological efficiency will not yield sustainability due to challenges
like Jevon’s paradox (Alcott, 2005). Instead, sustainable growth de-
mands a blend of efficiency and sufficiency, notably by separating
economic expansion from environmental repercussions and natural re-
source consumption. In addition to the three sustainability dimensions
of social, economic and environmental, some studies have addressed
additional aspects, such as human sustainability and technical sus-
tainability (Alharthi et al., 2019; Penzenstadler and Femmer, 2013).
Human sustainability focuses on ensuring the well-being and devel-
opment of individuals and communities, addressing social issues, and
promoting a high quality of life (Goodland et al., 2002). For example,

The Journal of Systems & Software 210 (2024) 111944

designing software that is inclusive and accessible ensures that diverse
populations can benefit equitably from technological advancements.
Technical sustainability, on the other hand, emphasizes the long-term
usage and adequate evolution of software systems, with a focus on de-
veloping and implementing technologies with minimal environmental
impact to support sustainable practices (Calero and Piattini, 2015). For
example, building software that is modular and maintainable ensures
its longevity and adaptability to future technological shifts. The effects
in one dimension can influence others, such as environmental impacts
affecting individual, societal, and economic aspects. For example, from
an environmental perspective, cloud computing can reduce the need
for physical hardware, leading to decreased energy consumption and
e-waste. Economically, businesses can achieve cost savings through
scalable cloud solutions, avoiding the overhead of maintaining and
updating on-premises hardware. Societally, cloud applications can de-
mocratize access to advanced software tools, as they are often available
on a wide range of devices and can be accessed from anywhere,
promoting digital inclusion. However, the technological dimension
presents challenges such as potential security vulnerabilities and the
need for reliable internet connectivity. Despite this interdependence,
these dimensions offer a valuable framework for examining pertinent
issues (Becker et al., 2015).

To assess and evaluate the sustainability and energy concerns in
software engineering, the concept of greenability has been introduced
(Calero et al., 2013). Greenability is a software quality characteristic
based on the ISO/IEC 25000 software product quality standard (Calero
et al., 2013; Calero and Piattini, 2015). It encompasses software prod-
uct characteristics including energy consumption, resource optimiza-
tion, capacity optimization, and perdurability. Greenability also consid-
ers quality in use characteristics such as efficiency optimization, user’s
environmental perception, and minimization of environmental effects.

Green software can be categorized into two concepts depending
on the type of contribution: green in software and green by soft-
ware (Erdelyi, 2013). Green in software refers to software itself reducing
energy consumption to become greener by running on environmentally
friendly way. Green in software engineering is regarded as part of
green in software, which seeks to integrate environmentally sustainable
practices into the software development process and other related
activities within the field of software engineering (Calero and Piattini,
2015).

Green by software, on the other hand, generally implies that software
supports green philosophy, aiming at producing as little waste as
possible by means of software (Erdelyi, 2013). This includes sufficient
process control, replacing environmental harm activities by green ones,
education and training, and information delivery.

This study primarily focuses on the former, green in software, to gain
an in-depth understanding of how energy concerns are addressed in
software engineering and facilitate the development of energy-efficient
software.

Berkhout and Hertin propose a three-tiered framework for assessing
the sustainability of Information and Communication Technology (ICT)
systems, called orders of effects (Berkhout and Hertin, 2001). The first
tier, known as first-order effects, deals with the direct environmental
consequences stemming from the ICT hardware’s lifecycle. These effects
encompass impacts such as (i) manufacturing impact which refers to
the environmental toll of producing the hardware, including resource
extraction, energy consumption, and waste generation, (ii) operational
energy use which refers to the energy consumed by the ICT hardware
during its operational phase, and (iii) electronic waste, which refers to
the waste generated at the end of the hardware’s lifecycle, including
disposal and recycling challenges. Software engineers can contribute
to mitigating these effects by developing software that is optimized
for energy efficiency, and designing software to extend the lifespan
of hardware through efficient resource utilization, reducing the fre-
quency of hardware replacements and, consequently, electronic waste.
The second tier, known as second-order effects refer to the indirect

S.U. Lee et al.

environmental impacts that ICT systems exert on other processes or
systems. Examples include the optimization of traffic management
systems, improvements in industrial processes, and the facilitation of
remote work. Software engineers can play a crucial role in minimizing
adverse second-order effects by considering these indirect impacts on
other systems, by understanding the context of use and how users
interact with the software system (Penzenstadler et al., 2014b). The
third tier, known as third-order effects refer to the long-term, indirect
consequences that arise from ICT usage. These can include economic
growth, lifestyle changes, and rebound effects where initial environ-
mental savings are offset by increased consumption. For example,
a software system that makes online shopping more efficient could
inadvertently lead to increased consumerism and, consequently, more
waste and emissions. Interdisciplinary collaborations amongst software
engineering, and other fields like economics, sociology and ethics are
required to gain insights into these effects (Penzenstadler et al., 2014b).
In this paper, we mainly consider the first-order effects of software
systems in terms of energy consumption only.

3. Methodology

3.1. Software engineering body of knowledge (SWEBOK)

Software sustainability should be considered throughout the entire
software development life-cycle and processes to facilitate continuous
“green in software” practices. This concept aligns with the principles
of SWEBOK, an international standard (ISO/IEC TR 19759:2005) that
provides a comprehensive guide to the generally accepted software en-
gineering body of knowledge (Bourque et al., 1999). SWEBOK is widely
utilized for research and education purposes, offering a broad range of
knowledge areas that serve as the foundation for holistic analysis in the
field of software engineering. SWEBOK provides 15 distinct software
engineering areas that collectively cover the knowledge and practices.
These areas provide a comprehensive framework for understanding and
addressing various aspects of software development and management.

As mentioned, we selected ten areas based on SWEBOK consid-
ering their direct relevance and impact on energy consumption and
sustainability within the software development process. The selected
areas directly address aspects of software engineering that have a
significant influence on energy consumption and environmental im-
pact. Additionally, they cover a wide range of activities and processes
involved in software engineering, ensuring that various dimensions
of energy concerns are addressed. By examining these specific areas,
we can identify potential energy optimization opportunities, highlight
existing challenges, and propose recommendations for energy-efficient
software engineering practices. While the excluded areas such as soft-
ware engineering management, professional practice, economics, and
the foundational aspects (computing, mathematical, and engineering
foundations) areas are also important in the broader context of soft-
ware engineering, their direct impact on energy consumption and
sustainability may not be as prominent as in the chosen areas.

The ten knowledge areas encompass the entire life-cycle of software
development and incorporate management areas such as software qual-
ity and process and models and methods, ensuring a comprehensive
examination of energy concerns in software engineering.

Software requirements. This knowledge area focuses on the identifica-
tion, analysis, specification, and validation of software requirements, as
well as providing guidelines for requirement management. It addresses
the process of identifying energy concerns as software requirements and
discusses how these requirements should be managed throughout the
software life-cycle.

Software design. This area encompasses software architecture, com-
ponents, and other system characteristics. It involves developing mod-
els and representations that align with the software requirements and
constraints. In the context of energy concerns, it examines how soft-
ware design addresses green requirements and discusses its impact on
software energy consumption.

The Journal of Systems & Software 210 (2024) 111944

Software construction. This area involves the detailed creation of
functional software through coding, verification, and testing activities.
It includes applying coding guidelines, verification techniques, and
testing methodologies. In the context of energy concerns, it explores
how energy efficiency is supported during these stages and examines
the energy impacts of different development environments, structures,
and strategies.

Software testing. This area involves the process of systematically
evaluating software to ensure its quality and functionality. It includes
various testing techniques, such as unit testing, integration testing,
and system testing. This study explores how energy consumption can
be measured and analyzed during testing activities. It also addresses
the inclusion of energy-related test cases and the evaluation of energy
efficiency in software through proper analysis of energy usage changes
and identifying potential solutions to optimize energy consumption
during testing.

Software deployment. This area deals with activities related to soft-
ware release, installation, and distribution. Although SWEBOK does not
have a separate “Software deployment” area, we have included it in
this study to investigate the activities and considerations related to
the release and distribution of software, specifically focusing on energy
efficiency during the deployment phase, which is an important aspect
of green software engineering.

Software configuration management. This area provides techniques
and tools for managing the functional and physical characteristics of
software. It includes version control, change management, and config-
uration management. In the context of energy concerns, it addresses
how different software versions and configurations influence energy
efficiency and how to manage software configurations to optimize
energy consumption.

Software process. This area focuses on defining, managing, and im-
proving software development processes. It comprises process mod-
els, methodologies, and best practices. In this study, it has a focus
on how previous studies have addressed energy concerns to support
energy-efficient software development processes.

Software models and methods. This area encompasses various models,
methods, and techniques used in software engineering. It includes soft-
ware development methodologies, modeling languages, and software
engineering tools. In the context of energy concerns, it examines how
energy-aware practices and techniques can be integrated into software
development models and methods.

Software quality. This area emphasizes the measurement and assur-
ance of software quality, reflecting desirable product characteristics.
It includes quality assurance processes, software testing, and quality
metrics. In the context of energy concerns, it highlights the inclusion of
energy concerns as software quality requirements and discusses energy
metrics and supporting approaches for measuring software quality.

3.2. Literature review

In this study, we conducted a literature review to identify theoreti-
cally and practically important aspects of energy concerns in software
engineering as discussed in academic literature. We followed the litera-
ture review technique from Webster and Watson (2002) to conduct the
review. While our approach draws inspiration from the methodology
proposed by Webster and Watson, it should be noted that it is not a
strictly rigorous process like a traditional systematic literature review.
However, we incorporated certain systematic elements in our approach
to ensure a comprehensive and organized review of the relevant liter-
ature. Drawing inspiration from Kitchenham’s approach (Kitchenham
et al.,, 2009), we have formulated well-defined research questions,
established a transparent and reproducible review process, and doc-
umented details such as the search strategy, inclusion and exclusion
criteria, and the protocol for study selection.

To explore a broad scope of the topic, we formulated three research
questions as follows:

S.U. Lee et al.

The Journal of Systems & Software 210 (2024) 111944

Table 1
The overview of a literature review.
Category Description
Technique The literature review technique from Webster and Watson (Webster and Watson, 2002).

Data collection
* conducted: 2021.04 — 2022.02
Search keyword

10 keywords used for literature search.

Literature data collection, data selection, and data evaluation.

(energy OR green OR sustainability) AND software AND (quality OR metric)

(energy OR green OR sustainability) AND software AND requirements)
(energy OR green OR sustainability) AND software AND (design OR architecture OR model)

(energy OR green OR sustainability) AND software AND (implementation OR development OR construction)
(energy OR green OR sustainability) AND software AND (test OR testing)
(energy OR green OR sustainability) AND software AND (deployment OR release OR installation)

(energy OR green OR sustainability) AND software AND (configuration OR version OR change)

(energy OR green OR sustainability) AND software AND (maintenance OR operation)

(energy OR green OR sustainability) AND software AND (process OR practice)
(energy OR green OR sustainability) AND software AND (model OR method)

Condition Metadata: in all
Time duration: 2010-2021
Database ACM DL, IEEE Xplore and Springer Link

Search result

Criteria (Selection)

Strong relevance to the ten dimensions

Peer-reviewed articles and books
Availability of full-text access
Articles written in English

(Exclusion)

6,620,775 (Total)- ACM DL (685,108), IEEE Xplore (88,316), Springer Link (5,847,351)

articles focused on hardware or high-level concepts

Non-peer-reviewed/non-academic papers

Pertained solely to specific business domains or technologies

Duplicated articles

Protocol

1. Divide the ten knowledge areas among the four authors.

2. Manual evaluation by each author, based on the inclusion and exclusion criteria.

3. Review and cross-check by all authors.

4. Agreement and final decision by all authors

Final result

Selected number: 131 — Final number: 101 (after removing duplicates)

+ RQ1. What energy concerns have been addressed within the ten
areas of Software Engineering Body of Knowledge (SWEBOK)
dimensions?

— RQ 1.1. What energy concerns have been addressed in
the Software Development Life Cycle (SDLC), including the
stages of Software requirements, Software design, Software
construction, Software testing, Software deployment, and
Software configuration management?

- RQ 1.2. What energy concerns have been addressed in
Software quality area?

— RQ 1.3. What energy concerns have been addressed in
Software Processes, models and methods?

* RQ2. What are the key challenges faced in incorporating green
into the software development process?

» RQ3. What are the practical implications of integrating energy
efficiency considerations into software engineering practices?

Table 1 shows the overview of the literature review conducted in
this study.

The initial step of the literature review involved selecting appro-
priate keywords (Fig. 1). We utilized ten dimensions from SWEBOK
and formulated search queries based on these keywords. During this
step, we surveyed the state-of-the-art research published between 2010
and 2021. Our choice of this time frame is driven by the growing
attention given to energy concerns in software, both within industry
and academia since 2010 (Georgiou et al., 2019a).

The queries were utilized to search for relevant works in digital
libraries: ACM DL, IEEE Xplore, and SpringerLink. Our initial search

yielded a significant number of records in these databases: 685,108,
88,316, and 5,847,351 records, respectively. However, due to time and
resource constraints, we were unable to include other databases such
as Scopus and ScienceDirect.

In addition to the venue-based search strategy, we employed Google
Scholar as a supplementary tool to identify additional relevant papers.
This approach was not aimed at traditional snowballing through for-
ward or backward searching but rather involved a targeted inclusion
of papers found in citations within the selected venues.

In the next step, we conducted a screening process by assessing the
titles and abstracts of the initial search results. Given the large number
of results, we focused on these 2000 articles to identify the most
relevant ones for further investigation We then performed a full-text
assessment of these articles, applying the selection criteria defined in
our research protocol. The selection criteria encompassed the following
aspects: (i) explicit mention of software and energy concerns with
strong relevance to the ten dimensions (relevance), (ii) articles pub-
lished in peer-reviewed journals and conferences, and book chapters
(quality), (iii) availability of full-text access, and (iv) articles written in
English (language). Conversely, we excluded articles that (i) primarily
focused on hardware or presented high-level concepts (e.g., overviews,
strategies), (ii) were non-peer-reviewed and non-academic papers, (iii)
pertained solely to specific business domains or technologies, and (iv)
were duplicates.

The ten knowledge areas from SWEBOK were distributed among the
four authors. Each author conducted a manual evaluation of papers rel-
evant to their assigned knowledge area, adhering to the inclusion and
exclusion criteria. For example, the first author evaluated Requirements,

S.U. Lee et al.

The Journal of Systems & Software 210 (2024) 111944

Initial search

. Time duration: 2010-2021
. Metadata: in all

. Database: ACM DL, IEEE Xplore, Springer Link

!

Screening

200 x 10 areas), sorting by relevance.
. Assessing title and abstract

. Search based on relevance (max number for each:

!

Full-text search

. Additional papers: 10

. Full-text assessing based on the selection criteria

!

Refining
. Merging search results
. Removing duplicated articles

4 Search number:
6,620,775
4 Screen number:
2,000

4 Search number:
131

Search number:
1 101

Fig. 1. The literature review flow to search articles and the results.

Design, Process and Models/Method, and the second author evaluated
Construction and Testing. The evaluation results were then reviewed and
cross-checked collaboratively by all authors to ensure consistency and
accuracy in the selection process. In case all authors do not agree, the
final decision was taken based on the majority voting mechanism. This
initial evaluation involved filtering papers based on titles and abstracts
to identify those most pertinent to the respective knowledge area. As
a result, we identified 131 articles' that met the inclusion criteria
(Table 2). Lastly, we removed any duplicated articles from the search
results, resulting in a final selection of 101 unique articles for analysis.

After selecting the final articles, each article underwent a thorough
review and coding process. We examined the selected articles and iden-
tified key information related to energy concerns for each dimension of
software engineering and discussed in the following sections. The cod-
ing process involved categorizing the articles based on their research
focus, findings, challenges and implications for energy efficiency. Any
discrepancies in coding were resolved through discussion and consen-
sus among the reviewers. This rigorous coding process ensured the
reliability and validity of the data extracted from the selected articles.
Table 2 presents the key considerations for each area and the papers
analyzed in this study.

Fig. 2 provides an overview of how the selected articles are dis-
tributed across different software engineering domains and highlights
the types of articles included in the study.

In Fig. 2(a), the bars are color-coded to differentiate between differ-
ent article types, such as conference papers, journal articles, and book
chapters. This color coding helps to visually distinguish the types of
articles included in the study. Among the selected articles, the area
of construction emerged as the most prominent, with a total of 31
articles selected for analysis. This indicates a substantial focus on en-
ergy concerns in construction-related topics in the software engineering
field. On the other hand, we have found the least articles related to
configuration and models and methods; with only 7 articles selected
for analysis. This may highlight potential research gaps or areas that
warrant further exploration.

Fig. 2(b) represents the distribution of article types without consid-
ering software engineering areas. It is important to note that the figure

1 https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHul
g2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&s
d=true

was generated after removing duplicated articles (30 articles), ensuring
that each selected article is unique and contributes distinct findings to
the study. The figure reveals that conference papers have the highest
representation, comprising 58 articles, followed by journal articles with
34 articles, while book chapters have the lowest representation with
9 articles. This distribution underscores the prominence of conference
papers as a prevalent source of research in the analyzed literature.
Furthermore, Fig. 3(a) illustrates the distribution of selected arti-
cles by year, primarily covering the period from 2010 to 2021, with
additional articles included through snowballing. The data reveals a
peak in the year 2013 (with a peak average in 2014). However, the
number of articles gradually decreased in subsequent years, indicating
a shift in research trends within the field. Fig. 3(b) highlights this trend
shift, with a significant decline in studies focusing on energy concerns
in software quality, construction, testing and construction since 2014,
while the area of software process has gained increased attention.

4. Energy metrics for software engineering

Software quality is a measure of how well software is designed
in the software engineering process. Quality is based on one of more
metrics that allow a judgment to be made of how software meets these
metrics. For example, in programming, quality can be measured by the
readability of the code, ease of maintenance, the memory usage or code
complexity. Standardized approaches exist to evaluate a software prod-
uct for quality metrics, such as analyzing the quality of code (Baggen
et al., 2012).

To ensure quality for energy in the software engineering life-cycle
means first defining metrics that can be used to measure energy and
then creating or adopting approaches to use the metrics to judge
quality. In this section, we address RQ 1.2 by first evaluating literature
in the areas of energy metrics for software engineering, then evaluating
literature that uses these metrics to make energy quality judgments.

Energy metrics are most often discussed as part of sustainability
metrics, which also include metrics such as carbon footprint, hardware
obsolescence, organization sustainability and others (Naumann et al.,
2011; Amsel et al.,, 2011). Most of these metrics do not apply to
energy for software engineering. In sustainability, the metric of energy
is normally simply for energy efficiency specified in energy per unit of
work (Kern et al., 2013).

For software engineering, energy metrics are mainly focused on
measuring the energy used for a particular operation. One such SDK

https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1suDxN8OgR7tzyHqwuDUNHulg2pCBZFgS/edit?usp=sharing&ouid=101621542835091534934&rtpof=true&sd=true

S.U. Lee et al.

Table 2

The key focus for surveying each area, and the relevant papers.

The Journal of Systems & Software 210 (2024) 111944

Category Key consideration Relevant paper
Requirements Green requirements for software development Calero and Piattini (2015), Bourque et al. (1999), Georgiou et al. (2019b), Taina (2011),
and tools and techniques to aid requirements Kern et al. (2013), Georgiou et al. (2019a), Mahmoud and Ahmad (2013), Saputri and Lee
acquisition and management. (2021), Roher and Richardson (2013), Condori-Fernandez et al. (2019), Manotas et al.
(2016), Meridji and Issa (2013), Shenoy and Eeratta (2011)
Design Previous studies on energy efficient activities at Bourque et al. (1999), Mahmoud and Ahmad (2013), Saputri and Lee (2021), Agarwal
design phase and approaches to predict energy et al. (2012), Chitchyan et al. (2016), Seo et al. (2008), Noureddine and Rajan (2015),
consumption. Manotas et al. (2016), Lago et al. (2013), Sahin et al. (2012), Bunse and Stiemer (2013),
Feitosa et al. (2017), Ampatzoglou et al. (2013), Fowler (1999), Chowdhury et al. (2019b)
Construction Implementation level of software factors and Abdulsalam et al. (2014), Pereira et al. (2017), Couto et al. (2017), Oliveira et al. (2017),
environments increasing or decreasing energy Corbalan et al. (2018), Abdulsalam et al. (2015), Yuki and Rajopadhye (2013), Pinto et al.
usage. (2014), Dukovic and Varga (2015), Raj et al. (2017), Sahin et al. (2016), Pinto et al.
(2016), Hasan et al. (2016), Oliveira et al. (2021), Jagroep et al. (2017), Kazman et al.
(2018), Manotas et al. (2016), Pang et al. (2015), Gottschalk et al. (2012), Park et al.
(2014), Ardito et al. (2015), Morales et al. (2017), Vetro et al. (2013), Cruz and Abreu
(2019), Siegmund et al. (2010), Pathak et al. (2012), Hao et al. (2013), Wilke et al.
(2013), Honig et al. (2014), Pereira et al. (2020), Manotas et al. (2014)
Testing Useful techniques and strategies to conduct Palit et al. (2011), Couto et al. (2014), Pereira et al. (2020), Banerjee et al. (2014),
energy efficient testing. Chowdhury et al. (2019a), Jabbarvand et al. (2016), Linares-Vasquez et al. (2015), Hsu and
Orso (2009)
Deployment Important considerations and possible options Johann et al. (2011), Naumann et al. (2011), Shenoy and Eeratta (2011), Hindle (2016),
for energy-saving deployment. Al-Qamash et al. (2018), Chen et al. (2012, 2015), Hasan et al. (2019), Kwon and Tilevich
(2013), Wu et al. (2017), Xing and Zhu (2009)
Maintenance Key activities which should be implemented Bourque et al. (1999), Calero and Piattini (2015), Pérez-Castillo and Piattini (2014), Sahin

Configuration Management

Process

Models/Methods

Quality

during maintenance for better green software
engineering.

Understanding of relationship between energy
efficiency and software changes over time.
Deep insights and understanding of green
practices for software development process, and
the application to different software methods.

A set of activities for green software
development when using different
methods/models.

Efficient and effective ways of managing and
measuring green quality of software.

et al. (2014), Mahmoud and Ahmad (2013), Penzenstadler (2012), Naumann et al. (2011),
Johann et al. (2011), Shenoy and Eeratta (2011)

Hindle (2016), Dick et al. (2013), Zhang and Hindle (2014), Bangash et al. (2017), Hindle
(2015), Sahar et al. (2019), Calero et al. (2021)

Bourque et al. (1999), Naumann et al. (2011), Dick and Naumann (2010), Lami and
Buglione (2012), Agarwal et al. (2012), Lami et al. (2012), Abdullah et al. (2015), Shenoy
and Eeratta (2011), Anthony and Majid (2016), Dick et al. (2013), Naumann et al. (2015),
Mahmoud and Ahmad (2013), Van Loon (2004), Kern et al. (2013), Saputri and Lee (2016)
Lami et al. (2012), Chitchyan et al. (2016), Mahmoud and Ahmad (2013), Shenoy and
Eeratta (2011), Dick et al. (2013), Naumann et al. (2015), Dick and Naumann (2010)

Baggen et al. (2012), Steigerwald et al. (2008), Chatzigeorgiou and Stephanides (2002),
Naumann et al. (2011), Amsel et al. (2011), Kipp et al. (2011), Kansal et al. (2010), Poess
et al. (2010), Kern et al. (2013), Hogan (2009), Lange (2009), Kounev et al. (2020), Chen
et al. (2012), Kiehne (2003), Broussely (2010), Ferreira et al. (2011)

31
10
Book m Conference mJornal
15 15 15
13
19 11 5
5 8 9
3 7 5 7
u 4 o H
5
2 2 4 g
y\.@ \é\“" ?905 le\o“ %v_oo% @q}(” <& %-\\0‘\ O@"L’ V\\O&) (b) Number by ar-
o \,}\\é‘ 9 Q,;\«‘) <& Q\o‘\ & ‘&;" < 3 & ticle type: after
N . .
Qgﬁ* @ K g o bw)" removing 30 dupli-

(a) Number by software engineering area and article type: the grand total is 131.

cated articles, there
are now 101 unique
articles.

Fig. 2. The distribution of the selected articles in this study by the ten software areas and three article types.

approach uses checkpoints in code to match program events to power
readings, to produce correlated energy data (Steigerwald et al., 2008).
Chatzigeorgiou and Stephanides (2002) defines processing power con-
sumption to be the sum of the base energy consumption which is the
energy consumption purely from the operating systems in question, and
overhead energy consumption which is the additional energy use which
bleeds from the system and from associated operations.

To provide useful energy metrics for the whole application life-
cycle, Kipp et al. (2011) define the energy impact metrics to include
(i) consumables generated, (ii) system power usage, (iii) supply chain
caused by transportation and logistics. The increasingly common use

of virtual machines for development, testing and deployment means
that metrics can be used that include not just the running program, but
the whole platform (Kansal et al., 2010). These approaches need to be
followed actively to result in useful metrics.

As well as active approaches, there are attempts to benchmark
systems as a whole to provide advice for businesses on their purchasing
decisions (Poess et al., 2010). The Transaction Processing Performance
Council (TPC) provides benchmarks of metrics for Online Transaction
Processing (OLTP) systems (Hogan, 2009). The Standard Performance
Evaluation Corporation (SPEC) provides benchmark approaches for
power and performance of enterprise equipment (Lange, 2009). There

S.U. Lee et al.

1999 2002 2003 2004 2008 2009 2010 2011 2012

The Journal of Systems & Software 210 (2024) 111944

2013 2014 2015 2016 2017 2018 2019 2020 2021

(a) Number by year; it shows the number of articles is decreasing since 2014.

7
0
8
o o
R < &
2 £

~
9 <

m> 2014

<=2014

(b) Number by year (comparison the number of articles before and after 2014).

Fig. 3. The distribution of the selected articles by year.

are also specific benchmark metrics for storage, including the SPC-1C
and SPC-2C benchmarks (Kounev et al., 2020).

Measuring cloud computing poses additional challenges due to the
user not having physical access to the resources. Chen et al. (2012)
defines an energy consumption model that includes the energy con-
sumption of storage, computation and communication for a particular
task. The total of these for a task defines its total energy consumption.

For non permanently powered devices, the battery is of major
concern. Generally the measures of importance are battery size, battery
characteristics such as the chemistry choice and battery life (Kiehne,
2003). The priority of each of these depends heavily on the application.
For electric and hybrid vehicles, the power-range (KW), energy-range
(kWh) and voltage (V) range of the vehicle requirements in their
respective units define the metrics for battery choice (Broussely, 2010).
For smart phones and tablets, battery life is a ongoing concern, with a
lot of effort being focused on improving this aspect, including analyzing
user patterns (Ferreira et al., 2011).

Energy metrics allow data to be collected about energy in the
software engineering life-cycle. To be useful, this data must be used to
form a judgment on the quality of software in respect to energy. This
judgment allows the product developer or software engineer to make
decisions about things like the battery size.

Energy consumption over time is the most used energy metric
for making judgments about the energy characteristics of hardware,
software, device or activity. Generally, the assumption is that the more
energy consumed over time, the higher the monetary cost, which is a
undesirable characteristic.

The fine-grained energy consumption of software can be measured
over time, such as for the interaction of CRM systems (Capra et al.,
2012). The energy consumption cost of activities can also be quantified,
such as the cost to reconfigure software (Ramachandran et al., 2015),
the energy cost of executing scientific workflows (Warade et al., 2021),
or the energy cost of calling web-services (Tanelli et al., 2008). For
devices such as smart phones, energy efficiency can also be measured
in energy consumption over time (Paul and Kundu, 2010).

5. Energy in the software engineering development life-cycle
(SDLC)

Over the past decades, researchers and practitioners alike have de-
vised a multitude of methods, techniques and tools to manage a variety
of functional, non-functional and domain concerns within the context
of the software development life-cycle (SDLC). These approaches have
significantly improved the way the community thinks about software,
how “expectations” are framed, how these expectations are translated
into functioning software systems, and how the systems are ultimately
modified in light of changing expectations. However, considerably less
work has been done over the years to consider energy needs, constraints
as well as energy footprints as primary considerations during the de-
velopment life-cycle. In this section, we focus on RQ 1.1, and provide
an overview of existing approaches that explicitly deal with energy
concerns in SDLC as a primary driver in the corresponding methods,
techniques or tools, respectively.

S.U. Lee et al.

Abstract-Level

Product RE

Quality-Level

Green REquirement

Abstract-Level

Process RE

Quality-Level

Implementation-Level

Implementation-Level

The Journal of Systems & Software 210 (2024) 111944

Software execution must save resources, energy
consumption.

Minimize /0 calls/memory access, use concurrent
models, reduce data size, use offloading, etc.

Runtime efficiency, CPU-intensity, memory usage,
idleness and numbers of methods, etc.

Software development processes, maintenance, and
disposal must save resources and reduce waste.

Increase energy awareness, analyze feasibility
(green risk/advantage), etc.

Feasibility and sustainability of green process,
traveling time and costs, carbon footprints.

Fig. 4. Classification of Green Requirements.

5.1. Energy in requirements

Software requirements refer to the needs and constraints of software
identified from various sources such as stakeholders, business rules,
organizational and operational environment and regulations. Energy
efficiency related software requirements (called as green software re-
quirements in this section) are specifically related to the environmental
impacts of systems (Calero and Piattini, 2015). This section introduces
different types of green software requirements along with the roles
and common examples. We also present supporting tools and tech-
niques for the elicitation, analysis, specification and validation of the
requirements.

5.1.1. Green software requirements

Software requirements are typically categorized into product and
process requirements (Bourque et al., 1999). A product requirement
represents a need or constraint on the software to be developed. Energy
efficiency of product is regarded as a non-functional requirement (Geor-
giou et al., 2019b). A process requirement refers to a constraint on the
development of the software (Bourque et al., 1999). The requirements
are not directly related to software but influence the choice of tech-
nique, process, model and other development environments to improve
energy efficiency.

Green software requirements are categorized into three types (ab-
stract, implementation and quality) based on their role and character-
istics of the requirements (Fig. 4). Abstract level requirements present
the directions and ultimate goals of green software engineering (Taina,
2011). Implementation level requirements include actionable require-
ments which should be considered during software development. Qual-
ity level requirements enable stakeholders to understand the project is
being managed and developed in energy-efficient ways.

A key abstract requirement for green software product is defined
that, for example, software execution must save resources and reduce
energy consumption and software must support sustainable develop-
ment (Taina, 2011). Implementation requirements of product generally
include technical considerations for green software: e.g., minimizing
I/0 calls, minimizing memory access, use of concurrent programming
models, efficient data structures (less energy-greedy data structures),
loop optimization (reduce control operations), reduction of data size
(data compression), use of offloading methods (e.g., Cloud), consider-
ation of approximate programming (reduce unnecessary precision of
computations). Quality level requirements can be elicited based on the
implementation level requirements. Accordingly, runtime efficiency,
CPU-intensity, memory usage, idleness and numbers of methods can
be considered as common quality aspects for software.

Process requirements at abstract level include that the software
development processes, maintenance, and disposal must save resources
and reduce waste (Taina, 2011). It is represented as the feasibil-
ity of the software project, and shows how resource efficient it is.

The implementation level requirements include, for example, increas-
ing energy consumption awareness, analyzing feasibility/risks of the
project for making decision about green/energy advantage, constrain-
ing the process model (e.g., time, infrastructure and compliance) (Geor-
giou et al., 2019a; Mahmoud and Ahmad, 2013; Calero and Piattini,
2015). To ensure the feasibility of green process, traveling time and
costs, carbon footprints, energy consumption and waste (resources
consumed) are generally measured and managed during the life-cycle
of the development (Calero and Piattini, 2015).

5.1.2. Tools and techniques

Compared to traditional software requirements, green software re-
quirements are still not general and common in most software devel-
opment projects (Saputri and Lee, 2021). Due to the lack of experience
and knowledge of green requirements, extra efforts and specific tools
and techniques for requirements elicitation and management may be
required (Roher and Richardson, 2013).

The concept of recommender systems can be adopted to advice
and provide common and standard requirements. Roher and Richard-
son (2013) proposed a context-aware approach to recommend green
requirements for better time-to-market. The recommender system is
specifically to support eliciting green software requirements. It provides
a list of requirement archetypes to be considered. A user can select and
tailor them for specific domains.

Another attempt to elicit, analyze and validate green requirements
was conducted by Georgiou et al. (2019a). The authors presented
green requirement suggestions identified by surveying practitioners and
empirical evaluation. Survey is useful to extract concerns, ideas and
requirements related to green software development from a group of
software engineers. The participating group comprises various stake-
holders having a consistent body of knowledge and understanding
the interaction of software and hardware. The authors noted that an
empirical evaluation can be used to identify the characteristics of
software, provide the energy efficient requirements, and evaluate the
requirements. A type of crowd-sourcing namely niche-sourcing is sug-
gested by Condori-Fernandez et al. (2019). This approach is specifically
useful to gather people that can contribute from multiple perspectives
and characterize green requirements and their dependencies.

How to elaborate green requirements is addressed by Calero and
Piattini (2015). A few steps are introduced to support green require-
ment engineering, which includes analyzing comprehensive context,
finding stakeholders and eliciting sustainability objectives, goals and
constraints, deriving sustainable system vision and usage model and
refining requirements.

S.U. Lee et al.
5.2. Energy in design

Software should be designed aiming to use less energy and re-
sources (Agarwal et al., 2012). To support this concern, we discuss
important design principles and design patterns for energy-efficient
software as follows.

Software decomposition and modularization can be considered as
the first design principle as it generally increases the re-usability of
software components. Separation of interface and implementation reduces
changes, and ultimately leads to less energy consumption. This is
critical when extracting and designing software features, especially, for
feature composition to minimize the coupling of features and increase
the portability and adaptability of software (Saputri and Lee, 2021).
Sufficiency and completeness enable stakeholders to be sure the software
design and other artifacts meet all the green requirements specified in
the previous phase. This is critical because green software design must
be driven or approved by the customer (Chitchyan et al., 2016).

A design pattern is known as a common solution to a common prob-
lem. Some patterns such as anti-patterns increase energy consumption;
also, others reduce energy usage (Manotas et al., 2016; Noureddine
and Rajan, 2015). Several studies demonstrate Flyweight, Mediator,
and Proxy patterns positively influence energy consumption (Sahin
et al., 2012); Flyweight is recognized as the most energy-efficient design
pattern, followed by Visitor, Proxy and Mediator patterns. Meanwhile,
Decorator, Prototype and Abstract patterns increase energy consumption
when running embedded systems or mobile applications. Specifically,
Decorator is known as the most energy-hungry design pattern (Sahin
et al., 2012; Bunse and Stiemer, 2013).

Predicting energy consumption of software at design-time would
benefit to save time and cost for changing software for energy efficiency
in the construction phase. However, this topic has been addressed by
only a few studies. Sahin et al. (2012) created a set of software diagrams
such as class diagrams, sequence diagrams and object diagrams to
measure the number of objects instantiated by a program and messages
between objects. The authors compared the number of objects and
messages measured before and after applying design patterns, which
shows how the selected design patterns influence potential energy
usage. They executed applications before and after applying each of the
selected design pattern and recorded the power consumption in each in-
stance. The absolute energy difference per iteration was small (0.0002
J to 0.8672 J). However, the experiments were run on a Spartan-
6 single board computer, which is inherently a low-power system.
In contrast, most applications would be run on computers desktops,
laptops or servers, which will consume more energy. Moreover, the
experiment used a minimal number of classes and actions to apply
the design patterns in the implementation, which would not be the
case in many real world applications. Furthermore, it is likely that
in a real-world setting, an implementation of a design pattern will be
executed millions of times. Hence, even a small energy difference per
iteration can cause significant aggregated energy impacts. The authors
made the interesting observation that, energy usage was not consistent
within design pattern categories (Creational, Structural, Behavioral).
There was an increase in energy consumption when there were more
objects, and when more messages were passed between the objects. For
example, applying the Abstract factory pattern increased the number of
objects from 11 to 13, the number of messages from 7 to 12, and the
energy usage by 22%.

Feitosa et al. (2017) provide a more fine-grained assessment of
the energy effects of 2 GoF design patterns (Template Method, and
State/Strategy) via their pattern-related methods. They conducted a
crossover study to compare the energy usage of pattern solutions
with alternative solutions (non-pattern). The experiment utilized two
open-source software systems JHotDraw” and Joda Time.®> The authors

2 http://www.jhotdraw.org/
3 http://www.joda.org/joda-time/

The Journal of Systems & Software 210 (2024) 111944

based the alternative solutions from literature (Ampatzoglou et al.,
2013; Fowler, 1999). The authors deliberately omitted from using
alternative solutions optimized for energy efficiency because the aim
was to investigate widely used alternatives, rather than energy opti-
mized non-patterns that are unlikely to be widely known by software
engineers. The study also investigated the effects of pattern-related
parameters, using 2 metrics, namely, SLOC (number of source code
lines of a method), MPC (number of calls, within the method, to other
methods). The results of their experiments showed that (1) for the
Template Method, pattern solutions consumed more energy than the
alternative solutions, further confirmed by method level analysis, (2)
for State/Strategy, pattern solutions consumed more energy than the
alternative solution, although method level measurements showed high
standard deviation and error and hence warrants further investigation,
and (3) both SLOC and MPC have effects on energy consumption.
However, it is worth noting that results also suggested that the GoF
patterns Template Method, and State/Strategy, may be more energy-
efficient when used to implement complex functionality with longer
methods and multiple method calls to external classes.

As well as GoF design patterns, architectural patterns can have an
energy impact. For example, in Chowdhury et al. (2019b) the authors
demonstrated that by replacing the Model-View-Controller architec-
tural pattern, with the Model-View-Presenter (MVP) pattern, energy
consumption can be reduced up to 30%. Unsurprisingly, it was found
that increased number of event producers and increased event pro-
duction rate is correlated with higher energy use. This also correlates
to the findings regarding message passing between objects in Sahin
et al. (2012). When using MVP, the authors (Chowdhury et al., 2019b)
recommend that dropping to be the most energy efficient strategy,
although, if dropping is not feasible, developers can use bundling,
which can still give a significant energy saving.

In general, studies have shown that design patterns can effect
energy. However, it is not recommended to predict energy consumption
based purely on the design/architectural pattern. There are a number
of variables that also need to be considered, including the number of
objects, runtime iterations and code complexity. Hence, it is advisable
to make decisions regarding energy consumption in the design stage,
prior to development (Chowdhury et al., 2019b).

5.3. Energy in construction

Software construction involves the realization of business require-
ments and design specifications into working software. This section
examines the implementation strategies & tools that can have an impact
on the runtime energy efficiency of the software.

5.3.1. Impact of programming language & compiler

The choice of programming language and/or the compiler used has
been experimentally shown to have a substantial impact on the energy
usage of a program. Multiple studies show that in general, C/C++
is the fastest and most energy efficient language (Abdulsalam et al.,
2014; Pereira et al., 2017; Couto et al., 2017), although there are a
few exceptions. For example, experiments in Abdulsalam et al. (2014)
show that although C/C++ was generally more energy efficient than
Java, Java was more energy efficient in instances of extensive dy-
namic memory allocation and deallocation. Experiments carried out by
Oliveira et al. (2017) using a testbed of 3 Android phones and 5 native
applications showed that Javascript was more energy efficient in 75%
of the benchmarks used, compared to Java and C++. Four of the native
applications were reengineered via a hybrid approach, where the most
CPU intensive parts (in Java) were replaced by a hybrid of Javascript
and C++. Results showed a significant energy saving in the hybrid
versions. In one case, the savings were as high as 100x. A similar study
by Corbalan et al. (2018) investigated energy consumption of mobile
applications developed using different development platforms such as
Andriod SDK, Native (NDK), Cordova, Titanium and Xamarin. Their

http://www.jhotdraw.org/
http://www.joda.org/joda-time/

S.U. Lee et al.

experiments showed significant variances of energy usage for the same
application, as much as 5 times more, across different development
platforms.

Whether the execution time of a program is proportional to its
energy use has been a much debated question (Pereira et al., 2017;
Abdulsalam et al., 2015; Yuki and Rajopadhye, 2013; Pinto et al.,
2014). However, there is no simple answer. The execution time of a
program is only one factor of its energy use, as can be seen by the
equation: Energy = Time x Power.

Pereira et al. (2017) investigate this question by studying the run-
time energy consumption of 27 programming languages, and observing
the performance for ten different programming problems as defined in
the Computer Language Benchmark Game (CLBG). Their findings show
that whilst the premise that faster programming languages consume
less energy holds for some cases, it is not always the case. The top
five energy efficient languages were also the fastest (C, Rust, C++, Ada,
Java). However, the results were mixed for the remaining 22 languages.
In fact, a similar study (Couto et al., 2017) shows that some languages
such as OCaml, Fortran and Lua are more energy efficient than perfor-
mance efficient. These findings are echoed in Pinto et al. (2014), where
the authors empirically demonstrate that faster does not always equate
with energy efficient, for concurrent programs. In general however,
compiled languages were the most energy efficient as well as the fastest,
except in a few edge cases such a string manipulations via regular
expressions.

5.3.2. Impact of code obfuscation

Although commonly done to prevent software piracy, code obfusca-
tion can incur increased energy usage in software (Dukovic and Varga,
2015). This concern is investigated in Dukovic and Varga (2015), where
the authors evaluate three commercial obfuscators on two benchmark
programs, for three obfuscation techniques, based on the resulting load
profile. The study found significant energy impacts due to code obfusca-
tion, and also demonstrated differences between energy use in different
code obfuscators. Similar results were obtained in another comparable
study (Raj et al., 2017), which revealed lexical obfuscation to be the
least energy effects. A more thorough study by Sahin et al. (2016)
investigated how different obfuscations can effect Android apps, by em-
pirically studying 198 obfuscated versions of 11 Android applications.
Similar to Dukovic and Varga (2015), their study also demonstrated
that obfuscation typically increases energy use of applications with
statistical significance.

5.3.3. Impact of data structures

The effect of data structures on energy efficiency has been empir-
ically investigated in several studies (Pinto et al., 2014, 2016; Hasan
et al., 2016; Oliveira et al., 2021). In Pinto et al. (2014) Pinto et al.
presented an empirical study on the energy consumption of the Java
threadsafe collections, where it was found that the choice of thread
management constructs can have impacts on energy consumption. Data
locality was also found to have a significant effect on energy use.
This work was further extended in Pinto et al. (2016), where the
authors empirically investigated the energy usage of 16 Java collec-
tion implementations, grouped under lists, sets and maps. They found
significant energy differences between some of the newer and older
implementations of the same collection (up to 17% in real world
benchmarks). The study also revealed that different functions of the
same collection can also have different energy footprints. For example,
in ConcurrentSkipListMap, the remove() function consumes x4 energy
than the insert() function. In another study (Hasan et al., 2016) the
authors created energy profiles of commonly used API methods for
variants of three Collections datatypes of List, Map, and Set. These
profiles were based on their experiments measuring energy consump-
tion of programs using Collections instances from the Java Collections

10

The Journal of Systems & Software 210 (2024) 111944

Framework (JCF),* Apache Commons Collections (ACC),> and Trove.®
Their findings show that for some operations, such as insertion, the
energy differences between the Collections can be significant. For
example, JCF’s LinkedList implementation was the most energy effi-
cient List when insertions were performed at the beginning. However,
Trove’s ArrayList was the most energy efficient List implementation
when insertions were performed at the middle and end. In general,
the study found the most energy efficient Collections to be, Trove’s
TIntArrayList for lists, JCF’s HashMap for Maps, and JCF’s HashSet
for Sets. However, these results concerning a few of the JCF collec-
tions are contradictory to findings in Oliveira et al. (2021) where the
authors state that ArrayList, HashMap, and Hashtable, are not energy
efficient and should be avoided. In their study, Oliveira et al. (2021)
built application-independent energy profiles of Java collections by
executing several micro-benchmarks. Next, they extracted information
about how the target software systems used the selected collections,
for example, regarding usage context and frequency, via static analysis.
Finally, they combined the constructed energy profiles and results
of the usage analysis, and provided recommendations about energy
efficiency, and alternatives. They found that overall, their method only
recommended the use of JCF collections in 10.4% of the cases. In all
other cases, alternative implementations of the collections (such as
ACC) were recommended. However, it must be noted that, for many
instances of JCF collections such as ArrayList, the reason that it was
rarely recommended was because in most cases where it would be the
best option, it was already being employed. Interestingly, recommen-
dations varied heavily across devices, even when executing the same
application.

5.3.4. Strategies to support energy-efficiency during implementation

Evidence from case studies show that efforts during the develop-
ment phase can positively impact the energy efficiency of the software
product. For example, Jagroep et al. carried out an exploratory case
study (Jagroep et al., 2017) on the effects of measuring energy usage
of the product, and providing feedback about the products energy
usage to the stakeholders throughout development iterations. Microsoft
Joulemeter (deprecated later) was used to measure energy consump-
tion, and surveys were used to measure the effects of feedback on
energy awareness of the stakeholders. To communicate the power usage
of the product, the authors created an energy dashboard, which visual-
izes key energy findings, such as the energy delta between two releases
of the software. Findings indicate that energy aware development needs
to be supported by organizational policy. The energy dashboard had
low acceptance amongst the stakeholders, but was found to be useful
in terms of quantifiably highlighting energy savings as a result of
development efforts. In another study, Kazman et al. (2018) reported
the experience on the design and development of an automated weather
station. Due to the nature of energy constraints in the hardware, sensing
and data transmission, energy efficiency was vital for this particular ap-
plication. Energy consumption was periodically calculated (using actual
measurements and mathematical formulae). The authors conclude that
energy efficiency should be treated as a quality attribute, and that its
possible to substantially improve an application’s energy use via small
efforts in experimentation and prototyping, and small design changes.

However, despite the potential to incorporate energy efficiency
during the development phase, researchers suggest that many software
developers lack the required skills for energy aware development (Man-
otas et al., 2016; Pang et al., 2015). It is therefore crucial to find ways
to support software developers decision-making during development,
with minimal reliance on additional hardware instrumentation for
measuring energy.

4 http://docs.oracle.com/ javase/8/docs/technotes/guides/collections/

5 http://commons.apache.org/proper/commons-collections/source-
repository.html

6 https://bitbucket.org/trove4j/trove

http://commons.apache.org/proper/commons-collections/source-repository.html
http://commons.apache.org/proper/commons-collections/source-repository.html
https://bitbucket.org/trove4j/trove

S.U. Lee et al.

Refactoring (code level guidelines) is proposed in a number of
papers (Gottschalk et al., 2012; Park et al., 2014; Ardito et al., 2015;
Morales et al., 2017) as a strategy to support energy efficiency. In the
refactoring phase, the ‘energy aware developer’ identifies code patterns
that lead to higher energy usage, i.e., ‘energy code smells’ (Gottschalk
et al., 2012; Vetro et al., 2013). Code level guidelines for identifying
and re-engineering energy code smells include, cleaning up dead code
(eg. unread variables), managing thread cycles (eg. when a service
restarts after explicitly killed by the user, i.e., immortals), loop mon-
itoring, method in-lining, removing redundant storage of data, timely
release of resources (eg. GPS) and reducing data transmission. Higher
level refactoring recommendations include understanding the hardware
energy requirements, focusing on common usage scenarios, starting the
refactoring process from higher level constructs rather than at lower
levels, However, it should be noted that some of the above refactoring
strategies have the potential to decrease code maintainability and
readability, such as when method in-lining is used (Gottschalk et al.,
2012).

The opposite of ‘energy code smells’ can be ’energy patterns’, which
are strategies commonly used by software engineers to increase the
energy efficiency in applications. Cruz et al. presents a catalog of 22
energy patterns (Cruz and Abreu, 2019) used in 1027 Android and 756
iOS apps, by mining sourcecode from GitHub repositories.

Ardito et al. (2015) further proposes ‘self-adaptation’ which focuses
on enabling the same application to have multiple configurations. In
this way, the application is able to ‘adapt’ to allow for the best tradeoff
between application features and energy consumption.

Another strategy proposed is providing energy related frameworks,
and libraries to aid software developers (Siegmund et al., 2010; Hasan
et al., 2016; Couto et al., 2017). For example, Siegmund et al. proposes
a set of energy optimization libraries, so that developers can use energy
saving code components without needing to know about the energy
optimization algorithms in-depth (Siegmund et al., 2010). Similarly,
in Hasan et al. (2016) the authors provide per-method energy profiles to
guide developers on the usage of Java Collections. Developers can use
the profiles to estimate the energy footprint of each Collection instance
and take decisions accordingly. Couto et al. (2017) proposes a green
ranking for programming languages, based on their energy efficiency.
The goal of the ranking is to provide a method to aid developers
building energy efficient software.

A number of tools to aid software development, have also been
proposed. The main goal of these tools is to model the energy consump-
tion of software via source code analysis. Eprof Pathak et al. (2012)
is one of the earliest tools that measure the energy consumption via
system-calls. In eLens (Hao et al., 2013), the tool provides line-by-
line code analysis. For a given source file, the tool ranks each source
line according to its energy cost via information such as bytecode, and
api calls from various hardware components. JouleUnit (Wilke et al.,
2013) is a generic framework to monitor the energy usage of source-
code focusing specifically on testing during development. It correlates
workload profiles with power measurements to derive energy profiles
at the method level. Although the framework was implemented in both
Android and NAO robots platforms, the authors did not provide data
on energy savings as a result of using JouleUnit during development.
Similar to Eprof (Pathak et al., 2012), the Green Advisor tool (Aggarwal
et al., 2015) also estimates energy hotspots via system calls in source
code. Green Advisor is based on the authors previous work Green
Miner (Aggarwal et al., 2014). Manotas et al. followed an autotuning
approach with the SEEDS tool (Manotas et al., 2014), which provides
energy profiling for Java Collections. Software developers must first
set the application-specific search space, such as setting optimization
parameters. SEEDS then searches through the source code to find where
energy saving alternative Collections can be used. Next, SEEDS trans-
forms the original code into multiple alternatives, and profiles each of
the alternatives to find the most energy saving transformation. Honig
et al. (2014) propose ‘proactive energy-aware programming’, in which

11

The Journal of Systems & Software 210 (2024) 111944

the authors developed a tool named PEEK (Proactive Energy-awarE
development Kit), which first automatically provides an energy analysis
at function-level of the source code. Next, the tool also provides energy
optimization hints to guide developers. In a somewhat similar feature
to SEEDS, PEEK allows the comparison of multiple versions of the same
code for energy efficiency, via ‘snapshot bundling’. However, unlike
SEEDS, in PEEK, the software developer needs to choose and submit the
multiple versions for profiling. SPELL (Pereira et al., 2020) is another
tool proposed by Pereira et al. which assists software developers by de-
tecting energy inefficient source code fragments, or ‘energy leaks’, both
on a project level, and on a method level. SPELL ranks the source code
fragments based on energy efficiency, via test case execution followed
by statistical analysis. Evaluation results showed that when a group
of 15 developers used SPELL to detect energy leaks, they were able
to achieve an average of 43% increase in energy efficiency. Similar to
SEEDS (Manotas et al., 2014), the CT+ tool (Oliveira et al., 2021) also
provides energy profiling for Java Collections. However, CT+ employs
static code analysis whilst SEEDS employs dynamic analysis, and does
not consider the impact of multi-threading, unlike CT+. Although they
use different techniques, the reported energy efficiency after using the
tool is somewhat similar. Table 3 provides a summary of the proposed
tools intended as aids for software engineers to develop energy-efficient
software.

5.4. Energy in testing

The testing phase of the SDLC focuses on evaluating the imple-
mented software components to investigate if the quality standards
as defined in the specification are met. This section discusses energy-
related testing methods found in related work.

5.4.1. Test cases for locating energy leaks

Palit et al. (2011) is one of the first to discuss energy test cases.
They provided a methodology to define user level test cases to evaluate
the energy cost of smartphone apps. The proposed method employs
‘user settable parameters’ such as brightness and modes of connectivity.
A ‘configuration’ consists of a particular combination of these user
settable parameters. A test case can then be a represented as a pair
<input; expected output>, where the input consists of a ‘configuration’
and an application specific setting, and the output is the energy cost.
Experimental results showed that the method can identify effects of the
user settable parameters on energy, at application level.

Couto et al. (2014) proposed a technique which categorizes the
energy use of Android source code at method level, via the execution of
test cases. Each test case is executed twice, where in the first execution,
the stack trace of each test is logged, and the energy values are then
logged for each test in the second execution. The energy classification
is done by correlating the stack trace with the energy values, and
using thresholds. Depending on the results, methods are then classified
as either red (most energy use), yellow, or green (least energy use).
The authors conducted experiments to test the energy performance
of an open-source Android app using the proposed method, and their
results showed that the execution time is highly correlated to the total
energy consumption of an application. However, the technique was not
verified with real energy measurements.

Data about its effectiveness in optimizing the energy efficiency of a
given software system was also not provided.

The SPELL toolkit (Pereira et al., 2020) proposed by Pereira et al.
provides energy consumption measurements via the execution of test
cases and a statistical method that is based on Spectrum-Based Fault
Localization (SBFL). SBFL is a testing technique used to assist on the
location of program bugs. SBFL represents the test case executions in
matrix form (A). Each row in (A) represents a test case, showing the
various code components (e.g., statements, classes, methods) involved
in each test case, accompanied by a vector (e) which shows if each test
case failed or succeeded. Analysis of (A) and (e) produces a ranking

S.U. Lee et al.

Table 3

Tools to aid software engineers develop energy-efficient software.

The Journal of Systems & Software 210 (2024) 111944

Name Measurement/ estimation External methods used Measured Target Reported energy
technique components platform efficiency
Eprof (2012) (Pathak Via system-call-driven Android’s Traceview CPU Android & 20%-65%.
et al., 2012) Finite State Machines (deprecated) Windows
Mobile
eLens (2013) (Hao Estimates energy use via LEAP power measurement CPU, RAM, Android -
et al., 2013) energy models framework (Singh et al., WiFi, GPS
2010), energy profiler
SEEP (Honig et al., 2012)
JouleUnit (2013) Test case execution Hardware-based profiler CPU, WiFi, Language -
(Wilke et al., 2013) followed by energy uses a Yokogawa WT210 Screen agnostic,
profiling power meter, & the brightness implemented
software-based profiler for Android
uses device dependent and NAO
power rate probes robots
PEEK (2014) (Honig Uses a modular Current mirror analog CPU Language 25%
et al., 2014) architecture with energy measurements, agnostic
sourcecode separated from energy profiler SEEP
the hardware specific (Honig et al., 2012)
backends performing
energy analysis.
SEEDS (2014) (Manotas Via a search-based LEAP power measurement CPU, RAM Java’s 2% to 17%
et al., 2014) approach to find and framework (Singh et al., Collections API
create alternative versions 2010)
to produce the most
energy saving collections
GreenAdvisor (2015) Via the comparison of The Rule of Thumb model Unclear Android -
(Aggarwal et al., 2015) system calls between and the GreenMiner
different versions of source testbed (Aggarwal et al.,
code 2014)
SPELL (2020) (Pereira Test case execution Intel’s RAPL framework CPU, DRAM Desktops: Tool 15%-74%,
et al., 2020) followed by statistical is implemented average 43%
analysis (spectrum-based in Java
fault localization)
CT+ (2021) (Oliveira Via inter-procedural static Recommendations of Unclear Java’s 4% to 16%

et al., 2021)

analysis, and
recommending the most
efficient Collections

Georges et al. (2007) for
Java performance
evaluation

Collections API

implementation

of the code components according to their probability of having faults.
SPELL extends SBFL by including triples in (A). Instead of just the code
component in SBFL, each element of the (A) matrix in SPELL holds E; ;,
N, ;, T, ; where E denotes energy consumption, N denotes the number
of executions and T denotes the execution time of element (i, j) in the
matrix. Unlike SBFL the (e) vector in SPELL is used to denote possible
excess of energy consumption. To use SPELL, test suites constructed
for usage scenarios are executed, which allows for the collection for
component based energy consumption data in the (A) matrix. These
form the input values for the excess energy calculation in (e), which
finally, provides a ranking of code components with highest probability
of energy leaks. The SPELL tool was empirically evaluated in a case
study where 15 developers were asked to optimize the energy efficiency
of a software system using the tool. The authors show that developers
using SPELL were able to improve the energy efficiency by 43%.

5.4.2. Automatic test generation for energy concerns

Although it is possible to manually build repeatable test cases
that correspond to energy measurements, this requires a lot of time
and expertise. In contrast, automatically generated test cases can be
comparatively efficient.

In Banerjee et al. (2014) present an automated test generation
framework that detects energy hotspots/bugs in Android applications.
For each test input, the framework captures a sequence of user inter-
actions, such as screen taps, that can cause increased energy usage.
The authors argue that defining an appropriate metric for system-
resource utilization is critical to detect energy inefficiencies. They
define system-resource utilization (U) as the weighted sum of the

12

utilization rates of all major power consuming hardware components
in a device (eg. screen, WiFi, Radio, GPS and CPU) in a given period.
Energy-consumption to Utilization (E/U) ratio is given as the mea-
sure of energy-inefficiency. Therefore, a high E/U ratio indicates an
energy-inefficiency. To detect energy inefficiencies in an application,
the framework first generates and stores event traces in a database,
based on event flow graphs which capture all possible user event
sequences. Next, it systematically executes the collected event traces,
and compares the E/U values pre and post execution, via statistical
methods. An energy hotspot/bug is detected if there is a significant
difference between the E/U values pre and post execution. Evalua-
tion using 30 Android apps uncovered energy bugs in 10 apps and
energy hotspots in 3 apps. However this technique only considers GUI-
based events, and therefore may not be able to uncover all energy
inefficiencies within an app.

Greenscaler (Chowdhury et al.,, 2019a) is an energy model for
Android apps, which uses automatically generated tests and test se-
lection heuristics to build and continuously update energy models.
Greenscaler uses heuristics to select test cases that exploit different
energy consuming hardware components. Although code coverage has
commonly been used as a heuristic for test case selection, the authors
have showed that it is not an efficient measure for detecting energy
consumption. Instead, similar to Banerjee et al. (2014), Greenscaler also
employs metrics based on resource utilization, namely, two resource
utilization heuristics CPU-utilization and estimated energy utilization. For
a given app, Greenscaler generates test cases consisting of different
randomly selected adb events. It then runs all the generated test cases,
and selects the one that maximizes a given heuristic. Next, the selected

S.U. Lee et al.

test case is run and GreenScaler collects energy consumption measure-
ments, system calls measurements, and other process counters. These
measurements are then added to the training corpus, which are finally
used to train the energy model. Evaluations results of these energy
models showed an upper error bound of 10% when compared with
the ground truths. When compared with manually written tests of 984
versions from 24 real world Android apps, the upper error bound of
GreenScaler was less than 10%.

5.4.3. Test suite minimization for detecting energy bugs

Jabbarvand et al. (2016) proposed a test suite minimization ap-
proach for Android apps, based on the list of energy greedy APIs
sugested by Linares-Vésquez et al. (2015). Test suite minimization is
commonly employed by testers to eliminate redundant test cases based
on a given criteria such as statement coverage (Hsu and Orso, 2009).
However, the authors argue that, although a commonly used metric,
structural coverage is not an adequate measure for test suite mini-
mization when it comes to energy bugs. Instead, the authors propose
a new coverage metric named ‘eCoverage’ that indicates how much
energy-hungry code are covered by a test. This technique can reduce
the search space of energy test cases, thus enabling energy bugs to be
fixed with less effort and time. Experimental results using real-world
apps showed that the proposed approach can reduce the size of test
suites (on average 84% in using integer programming and 81% using a
greedy algorithm), with only minimal negative effects (3%—-4%) on the
effectiveness of the test suite.

5.5. Energy in deployment

Software deployment refers to activities and processes regarding
to software release and installation of updates, patches and new ap-
plications. The size of deployment packages influences the costs of
network bandwidth and disk space for storage (Shenoy and Eeratta,
2011). The most important things, however, are the operational costs
and energy usage of software for deploying and using. The energy
consumption of software generally depends on the deployment context
which includes data centers, mobile, and wireless sensors (Hindle,
2016). Most companies owned their IT infrastructure in the past, but
now external data centers (e.g., cloud) have become good deployment
options for minimum financial and management burden (Al-Qamash
et al., 2018)

Cloud data centers, however, face challenges in energy from many
power-heavy units and software services dynamically provisioned on
virtual machines (Hindle, 2016). The energy consumption of cloud
systems may depend on both the hardware environments and runtime
tasks. Some researchers studied on what the energy consumption pat-
terns of each task in the cloud are, and how different workloads/system
configurations influence energy consumption. In Chen et al. (2012) the
authors proposed a Green Cloud Computing (GCC) model and analysis
tool. The model comprises two parts: (i) fixed energy consumption
during idle time, and (ii) variable energy consumption on storage,
computation and communication resources for cloud tasks. The authors
measured and analyzed the energy consumption of data-intensive tasks,
computation-intensive tasks and communication-intensive tasks. This
attempt provides in-depth insights and understanding of the relation-
ship between energy consumption and different types of tasks executing
in the cloud systems. This study was further developed by Chen et al.
(2015). They proposed an automatic performance and energy consump-
tion analysis tool for cloud applications. The tool supports finding the
best deployment configuration that maximizes energy efficiency while
guaranteeing system performance of cloud applications. The practical
implications of this study can be seen in the example usage. The per-
formance and energy consumption data of the systems are periodically
collected by the tool, and the data can be used for various analysis and
visualized for practitioners.

13

The Journal of Systems & Software 210 (2024) 111944

Fog computing allows bringing the processing units closer to the
end-devices to improve computation power and reduce task execution
and processing time (Al-Qamash et al., 2018). Multiple fog nodes play
a critical role in recognizing their processing needs to decide whether
it should be processed locally, or sent to the cloud. This mechanism im-
proves energy efficiency of the cloud, yet there can be drawbacks such
as limited performance (e.g., latency and bandwidth and dependency
on the cloud).

Edge has been regarded as a technology to improve low latency con-
nectivity in the terminal layer. It is often described as a more localized
version of fog and cloud computing as it is closer to the end user (Al-
Qamash et al., 2018). The edge devices can be both data consumers and
data producers by collecting data from the database in the cloud and
sending them to the user, and also caching, processing and storing data
at the edge. The mechanism reduces the overhead of communication
and processing and network latency in the cloud. Its utility, however,
is limited in terms of resources such as data storage, computing power,
and energy. This issue becomes more critical when the edge nodes are
placed on mobile devices. Mobile devices such as smartphones play
multiple roles: sensing data from human activities and behaviors, and
acting as a gateway to gather data from other sensors and devices and
transferring the data to the servers (Hasan et al., 2019). The availability
of mobile applications is affected by their battery power (Hindle, 2016).
In prior studies, cloud computing has been adopted as a mean to reduce
the energy usage of mobile applications. Kwon and Tilevich (2013)
proposed cloud offloading to optimize the energy consumption of mobile
applications. The solution is designed to automatically deploy parts of
the functionality of a mobile application to the cloud based on the
approximate amount of energy consumed by the CPU to execute the
functionality of the application components. The energy consumption
graph used in this study presents which components are the energy-
intensive functionality, and supports making a decision to execute the
components in the cloud. As for network communication, the graph
also includes a potential energy usage to transmit the necessary data of
the components to execute remotely. This is regarded as the key trade-
off to determine whether the functionality of the components will be
executed locally or remotely.

5.6. Energy in maintenance

Software keeps changing or evolving. Software engineers need to
ensure that the software continues to satisfy user requirements pre-
serving functionality and the greenability characteristic (Bourque et al.,
1999). Another key consideration in this phase is the concept of ecolog-
ical debt which refers to the cost of delivering green software (Calero
and Piattini, 2015). Ecological debt must be recognized and quantified
at the maintenance stage, and it should include the cost of refactoring
the software in the future for better maintability.

There are some possible techniques to improve software green-
ability without changing functionality and decreasing maintainabil-
ity. Refactoring is concerned with improving software quality includ-
ing greenability and preserving the functionality (Calero and Piattini,
2015). It is the best choice for dealing with source code to promise
better software quality, specifically, for existing software. However, a
proper level of granularity of refactoring should be considered to avoid
excessive communication traffic caused by too fine-grained modules.
Identifying of bad smells and anti-patterns is also critical as they can
cause quality problems. Refactoring code smells, however, can have
both positive and negative impacts on energy efficiency. For example,
refactoring Lazy class and Data class may positively influence energy
consumption improving the greenability of the software. In contrast,
refactoring large class and generating a number of small classes can
lead to more energy consumption due to increased message traffic.
Likewise, finding and solving anti-patterns (e.g., god class, spaghetti
code) improve software quality, but the impact of refactoring some

S.U. Lee et al.

anti-patterns may also influence software greenability (Pérez-Castillo
and Piattini, 2014).

Sahin et al. (2014) examined the impact of refactoring of Java
applications. The authors chose six commonly used refactoring tech-
niques (i.e., convert local variable to field, extract local variable, extract
method, introduce indirection, inline method, and introduce parameter
object). The experiments were conducted executing nine Java appli-
cations having different sizes and characteristics. The results showed
that the energy consumption of the applications always decreased after
applying the extract local variable technique. In Calero and Piattini
(2015) the authors emphasized the importance of the prediction of
the impact of refactoring the anti-patterns. The authors gave some
examples of the impact of refactoring; for example, the blob anti-pattern
(one class contains most responsibilities while the others hold only data
and small processing) may reduce software energy efficiency.

Software maintenance theoretically includes all activities of soft-
ware development. It also includes continuous monitoring of software
quality such as greenability and knowledge management until replace-
ment by a new system (Penzenstadler, 2012). At this phase, there
should be installation of software patches or updates, training of users
in regard to proper software usage, training of employees to carry out
their tasks faster. These entail lower power consumption and proper
configuration of the software to consume less power (Naumann et al.,
2011; Johann et al.,, 2011). More specifically, maintenance is given
to junior staff who might not have experience and knowledge of the
software and environments such as programming languages (Mah-
moud and Ahmad, 2013). Thus it is critical to give maintenance staff
tutorials and courses, which will speed the process of maintenance
reducing cost and increasing energy efficiency. System documentation
is also important to better manage software configuration and provide
understanding of the code for faster maintenance. Using electronic
documentation and not using reverse engineering are good practices as
it leads to time- and power-consuming activities (Shenoy and Eeratta,
2011).

5.7. Energy in configuration management

Software configuration refers to the functional and physical char-
acteristics of software (Bourque et al.,, 1999). It is important to test
different versions of software if there is a change in energy effi-
ciency (Hindle, 2016; Dick et al., 2013; Zhang and Hindle, 2014).
In Hindle (2016) the author emphasized that different versions of
software may provide the same functions but perform differently in
energy consumption. Other features, for example, use of brighter colors
can also influence energy efficiency. Configuration control board (CCB)
should decide whether to accept or reject proposed changes to the
software based on green performance. To this end, it is essential to
identify the cause of the decreased energy efficiency and solve it. For
example, in Dick et al. (2013) the authors identified the fact that a
new sorting algorithm increases energy consumption. The issue was
remedied by changing the algorithm back to quicksort.

This approach, however, is an expensive and naive solution as it
requires lots of time and resources (Bangash et al.,, 2017). Alterna-
tively, software metrics can be used to estimate the impact of software
change on energy consumption. In Hindle (2015) the author pro-
posed a methodology for measuring the energy consumption of a set
of software versions, and discussed the relationship between energy
consumption and software metrics. It comprises several steps such as
choosing a software product and a context, deciding on measurement
and instrumentation, choosing a set of versions, developing a test case,
configuring the testbed, running tests for each version, compiling and
analyzing the results. The multiple case studies revealed that the energy
consumption of a software is not constant over time for various reasons
such as performance optimization and new features.

Hindle (2015) used several types of software metrics such as Chi-
damber and Kemerer (CK) Java Metrics which can process the bytecode

14

The Journal of Systems & Software 210 (2024) 111944

of Java class files, Churn measures such as added lines, removed lines
and File Churn, and lines of code (LOC) to relate them to software
energy consumption. Yet, there is not clear evidence of correlation be-
tween the metrics and the actual energy usage of the selected software
due to some limitations, for example, insufficient variation in software
metrics.

Bangash et al. (2017) and Sahar et al. (2019) included more metrics
such as Fernando Brito-e-Abreu’s MOOD metric suite and Martin’s Pack-
age metric suite, in addition to the CK metrics used in Hindle (2015).
The authors also considered the fact that energy consumption depends
on test execution path and the entire program cannot be correlated
with energy consumption of a specific test execution trace. The results
show that all of CK and Martin metrics (except one, Lack of Cohesion
On Methods) correlate with energy. Especially, CK’s CBO(Coupling
between Objects) has a large negative correlation with energy and DIT
(Depth of Inheritance Tree) shows a large positive correlation with
energy. The study, however, needs improvements by evaluating more
applications of varying complexity.

In Calero et al. (2021) the relationship between software main-
tainability and energy consumption is examined. Several versions of
Redmine (a project management web application) were used to test the
actual energy usage and assess different measures such as the number
of lines of code or the complexity of the software. The maintainability
metrics include Total Lines of Code (TLOC), Cyclomatic Complexity
(CQC), the Percentage of Comments in the Code (PCC) and the Percent-
age of Duplicate Code lines (PDC). The authors selected four different
versions of Redmine which include the same functionalities and each
version is sufficiently separated. As a result, there is a significant
correlation between TLOC and the energy consumption of the system
(more specifically, the energy use of the processor and the total energy
use of the computer) in which the software is being run. However, the
other three metrics (CC, PCC and PDS), are not related to the energy
consumption of the system.

6. Processes, models and methods for energy in software engi-
neering

Software engineering process refers to a set of work activities for
software development and maintenance that incorporate criteria to
transform inputs into outputs (Bourque et al., 1999). There are in-
creasing concerns about resources and energy consumption during this
transformation (Naumann et al., 2011). In this section, we address
RQ 1.3, and provide a comprehensive discussion of approaches for
better greenability including relevant models, techniques and tools for
management and assessment of software engineering processes in the
way of energy efficiency.

6.1. Energy in process

In this section, we address a number of considerations such as which
software engineering processes and practices should be considered and
managed and what process measurement metrics, tools and techniques
can be considered in managing a green software project.

6.1.1. The green software processes and practices

Green software process is performed to introduce and integrate the
greenness culture in an organization developing software (Lami et al.,
2012). A conventional project considers more financial, operational and
technical aspects, but a green software project must assess the impact
on the environment (Agarwal et al., 2012).

Lami et al. (2012) and Lami and Buglione (2012) proposed three
core processes for green software: management process, engineering
process and qualification process. The proposed processes are described
with the purpose and outcomes (practices). The study, however, does
not address who and when involves in the life-cycle of the software.

S.U. Lee et al.

Mahmoud and Ahmad (2013) proposed a new process model includ-
ing green requirements, design and implementation, testing, green
analysis process, maintenance and disposal process. The authors also
proposed a new hybrid model between sequential, iterative, and agile
process, which enables practitioners to apply the model to various types
of projects. Similarly, Shenoy and Eeratta (2011) provided a set of
suggestions to refine software development phases such as requirement-
gathering, design, implementation, testing, deployment, maintenance
and retirement. It also includes “infrastructural concerns” such as
rooms, stationary and ‘“‘quality software”. In this study, the needs for
metrics to measure greenability is mentioned.

The Dick and Naumann’s model (Dick and Naumann, 2010) includes
software development phases such as requirements analysis, design,
implementation, operation and maintenance. Innovative enhancements
and elements such as Sustainability Reviews and Previews, Process
Assessment, Sustainability Journal, and Sustainability Retrospective
are introduced. The elements can be integrated with existing process
models and/or added as a separated task into them. However, there is
little considerations of who and how to implement the model. OpenUP
and Scrum are used to demonstrate how to apply the model in practice,
yet more detailed and concrete explanations are required to understand
the practices, stakeholders, and metrics and tools introduced in the
study. Another application of this model is combined with Scrum (Dick
et al., 2013). This presents the use of the practices for each iteration
and final stage. Process assessment is encouraged to start very early
for continuous quantifying and improvement of the software process.
This application demonstrates still at a high-level, and so falls short
of practical guidelines. It is necessary to clearly describe how sus-
tainability objectives are obtained and whose role it is to determine
them (Naumann et al., 2015). Lastly, this study focuses on the energy
efficiency of testing only, and therefore other potential metrics for
green software process are ignored.

6.1.2. The process measurement metrics, tools and techniques for green
software

Feasibility is introduced as one of the directly related metric to the
quality model proposed for green and sustainable software in Kern
et al. (2013). It includes travel, carbon footprint, energy consumption
and waste of resources during software development. Another common
metric is energy efficiency. It is for software product itself at its execution
time, but also used for measuring software process efficiency. Dick
et al. (2013) introduced the use of this metric for test driven devel-
opment (TDD) during the test execution of the continuous integration
environment in Agile process. Yet, the authors largely ignored other
potential metrics such as energy for heating, ventilation, and air con-
ditioning of the offices and energy consumption of workstations (Dick
and Naumann, 2010).

In terms of supporting tools for green software process, we have
found five categories: operating systems frameworks, fine-grained green
computing, performance monitoring counters and metrics, codes writ-
ten for energy allocation purposes, and virtualization (Mahmoud and
Ahmad, 2013). There is also a number of tools for analyzing the
priority of the requirements. Saputri and Lee (2016) presents how
to use the tool and the example of expected results for supporting
decision-making; yet, it does not address other tools or systems for
comprehensively supporting green software process.

To cover the aforementioned gaps, knowledgebase is introduced
by Dick and Naumann (2010). Knowledge is commonly regarded as
the main asset to succeed in green sustainable development including
checklists, guidelines and educational material (Abdullah et al., 2015).
Knowledge management is important as it facilitates simplifying the
process of capturing, creating, distributing and sharing knowledge.
Knowledge management by “pull” method enables people to search
for the knowledge they need by themselves, rather than “push” which
is delivering knowledge to people without prior interaction (Abdullah
et al., 2015).

15

The Journal of Systems & Software 210 (2024) 111944
6.2. Energy in models and methods

This section presents what and how software models and methods
have been considered and incorporated with green requirements.

6.2.1. Software engineering models

A software model is an abstraction of a software component, which
is simplified by modeling. Software modeling is a technique to under-
stand the software and communicate with each other. There are differ-
ent techniques including software modeling languages, notations and
supporting tools commonly used in practice. Entity-relationship (ER),
Unified Modeling Language (UML), Object-Role Modeling Language
(ORM) and Petri-net are widely used for information modeling.

In the implementation of modeling, the software development team
should follow the specified green requirements in the requirements
phase. It is necessary to ensure the constructed software models are
complete, consistent, and correct enough to serve their intended pur-
pose for the stakeholders. The completeness of a software model refers
to the degree to which the model fully meets all the requirements spec-
ified in the requirements phase. It must include green requirements.

Green requirements trade-offs and risks should be considered as the
requirements often compete with other requirements (Chitchyan et al.,
2016). Analyzing the consistency of green software models is essential
to identify when the models contain any conflicting requirements,
constraints, or component descriptions. Interaction analysis must be
included in green software engineering. It is to examine interactions
between the software components, systems, or users. Software mod-
eling environments can enable the software engineer to review the
interaction design and verify the different parts of the software work
together in a efficient way.

6.2.2. Software engineering methods

Software engineering methods provide a systematic approach to
developing software. Some methods are specific types used in only
some of the development phases such as analysis or design, for ex-
ample, software modeling or data modeling methods. Some methods
provide holistic approaches to support the whole life-cycle of software
development. Such methods include different types of development
approaches including sequential, iterative and agile methods.

Green software can be sequentially developed from one phase to an-
other (e.g., requirements — design — implementation — testing) (Mah-
moud and Ahmad, 2013; Shenoy and Eeratta, 2011). In a sequential
approach, it is critical to identify, understand, and agree with the green
requirements in a very early stage. Any changes or misunderstanding
of these requirements may significantly influence the cost and time
of the project. To reduce the risks of changes, model verification and
validation needs to be considered to ensure that the artifacts of each
phase meet the energy requirements.

The development of green software can also be implemented in
an iterative and agile way (Dick et al., 2013; Mahmoud and Ah-
mad, 2013; Naumann et al., 2015; Dick and Naumann, 2010). For
each iteration/increment, sustainability (greenability) review and pre-
view processes must be done. The results need to be documented and
presented to the stakeholders (e.g., the software development teams,
business, and users). After finishing all iterations, final report release
and presentations need to follow. A retrospective meeting is essential
for the software development team to learn lessons and improve the
degree of greenability of the software.

7. Discussion

In this section, we delve into the identified open challenges and
trade-offs, providing insights into the broader context of energy con-
cerns in software engineering. We analyze and interpret the findings
from our comprehensive investigation, highlighting the implications for
software engineers and researchers.

S.U. Lee et al.

7.1. Shifting trends in software engineering

Overall, green software engineering has been under-researched
compared to hardware engineering. However, as energy concerns for
software has increased, it has also received much attention from
researchers in recent years (Calero and Piattini, 2015). Specifically,
energy metrics for software have become one of the key research topics.
This leads to increases of studies on this topic such as introduction
of energy metrics, general approaches to benchmark systems, and
supporting tools and techniques. In addition, all software engineering
areas are considered as an important research topic for green software
even though some areas are still insufficiently investigated.

More importantly, Al-infused software is strongly required to be
ethical and responsible. Most globally known Al risk frameworks take
environmental impacts of Al into account, and in the center, energy
concerns exist. For example, the four frameworks among the five
frameworks (Assessment List for Trustworthy Artificial Intelligence
(EU),” Algorithmic Impact Assessment (Canada),® NSW Al Assurance
Framework (Australia),” Microsoft Responsible Al Impact Assessment'’
and NIST AI Risk Management Framework(US))!' we surveyed directly
address environmental harm such as energy issue as a key risk of
responsible Al systems. This reflects that energy-efficient software has
become an essential requirement in any type of software development.

As we highlighted, green software engineering is a promising re-
search area. Nevertheless, some open challenges and limitations def-
initely exist and they should be discussed importantly for future re-
search.

7.2. Open challenges in Green software engineering

While significant progress has been made in efforts towards Green
Software Engineering, numerous open challenges remain, demanding
attention and innovative solutions. This section aims to address RQ2,
and explores some of these challenges, highlighting the complexities
and opportunities that lie ahead in the pursuit of more sustainable and
eco-friendly software ecosystems.

7.2.1. Lack of tools and techniques in the green requirements phase

When identifying requirements, the stakeholders may be involved
without specific knowledge or with mismatched skills and knowledge
among the participating group. This can be a problem, specifically,
when a Delphi approach (e.g., niche-sourcing) is adopted for require-
ments elicitation (Condori-Fernandez et al., 2019). Green requirements
are often not detailed; for example, there is no specific goals for energy
usage and practitioners just expect that the developed software is not
excessively energy-draining (Manotas et al., 2016). It is important to
make green requirements specific and detail. In addition, qualitative
values are hard to measure (Calero and Piattini, 2015). There should
be clear definitions of green metrics and supporting tools. However, the
lack of tools or knowledge base for measuring energy for green software
has become a challenge in this area (Manotas et al., 2016; Nagappan
and Shihab, 2016; Condori-Fernandez et al., 2019).

7 https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-
ai
8 https://www.canada.ca/en/government/system/digital-government/
digital-government-innovations/responsible-use-ai/algorithmic-impact-
assessment.html
9 https://www.gtlaw.com.au/knowledge/nsw-government-artificial-
intelligence-assurance- framework-what-you-need-know
10 https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/
Microsoft-RAI-Impact- Assessment-Guide.pdf
11 https://www.nist.gov/itl/ai-risk-management-framework

The Journal of Systems & Software 210 (2024) 111944

7.2.2. Difficulties in measuring the impact of software design on energy

Design patterns are commonly used in practice for better produc-
tivity and maintainability (Noureddine and Rajan, 2015). In previous
studies some design patterns are examined to understand how the
patterns contribute to energy efficiency (Manotas et al., 2016; Shenoy
and Eeratta, 2011). The experiments of the studies, however, have not
been sufficiently conducted across platforms and applications (Bunse
and Stiemer, 2013). There are also many different configurations which
should be considered to predict or measure energy consumption of
software in the design phase. How to generalize the findings remains
an open question.

7.2.3. Test environment of multi-versions of software

There are some key considerations such as software building envi-
ronment when testing different versions of software to measure energy
usage. There can be some issues, for example, changing implicit de-
pendencies, evolving compilers and language specifications, and library
compatibility (Bangash et al., 2017). This could be remedied by rele-
vant patches and virtualization or building images of an appropriate
operating system (Hindle, 2015). Another possible issue is the environ-
ment of the testbed (e.g., temperature-heat and cooling). It may affect
the systems and software under test, and therefore it is necessary to run
tests of the software versions in the same environment.

7.2.4. Adoption of energy-aware development practices

Numerous methods and tools have been proposed for energy ef-
ficient software development. However, there is no ‘“silver bullet”
for avoiding energy bugs. Software developers need to be trained in
energy-awareness, before they can use the available tools and methods
correctly (Manotas et al., 2016; Pang et al., 2015). There is a strong
demand for organizational policy to support energy-aware development
and avoid adoption challenges amongst development teams (Jagroep
et al., 2017).

7.2.5. Need for large scale and rigorous verification of energy testing tools

Research has shown the viability of energy-specific test cases (Palit
et al., 2011; Couto et al., 2014; Pereira et al., 2020). Automatic energy
test generation (Banerjee et al., 2014; Chowdhury et al., 2019a) and test
suite minimization (Jabbarvand et al., 2016) offer efficient strategies
for reducing the testing time for energy leaks. However, only a few test-
ing methods are verified with actual energy measurements and many
rely on energy estimations. Testing frameworks such as SPELLL (Pereira
et al., 2020), although promising, have not yet been validated in large
scale studies. Moreover, how much energy the testing itself consumes
is not clear, and needs to be investigated.

7.2.6. Cost and time constraints in measuring energy consumption of mul-
tiple versions of software

For software organizations which deploy commercial software prod-
ucts, understanding the energy consumption of different releases is
important. It, however, requires significant efforts, resources and spe-
cialized knowledge. Many software organizations are unable to effec-
tively measure the energy consumption of software due to cost and
time constraints. In Jagroep et al. (2016) a software energy profiling
method is proposed to compare the software energy consumption of
different releases. This study attempts to identify energy consumption
differences across releases at a fine-grained process level. It may help
software organizations to explicitly address these dynamics and report
any improvement or deterioration in energy efficiency with a new
release. This experiment, however, is limited to a single application and
testbed. It should be further studied to be used in the real-world context
beyond the laboratory scale.

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/responsible-use-ai/algorithmic-impact-assessment.html
https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/responsible-use-ai/algorithmic-impact-assessment.html
https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/responsible-use-ai/algorithmic-impact-assessment.html
https://www.gtlaw.com.au/knowledge/nsw-government-artificial-intelligence-assurance-framework-what-you-need-know
https://www.gtlaw.com.au/knowledge/nsw-government-artificial-intelligence-assurance-framework-what-you-need-know
https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Guide.pdf
https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-RAI-Impact-Assessment-Guide.pdf
https://www.nist.gov/itl/ai-risk-management-framework

S.U. Lee et al.

7.2.7. Lack of support for green software process

There is a general lack of practical approaches in software engi-
neering process (Chitchyan et al., 2016). The lack of methodological
support makes it difficult for practitioners to develop green software as
the typical software development life-cycle contains limited concepts of
sustainability and greenability (Dick and Naumann, 2010). Moreover,
there is a need for change of mentality in a organization. Adopting
green practices such as convincing people and getting them to change
their way of thinking can be a key challenge. How to make people
truly agree on a shared vision of sustainability and work towards it
is also critical. To apply sustainable and green design in software
development, green requirements must be either driven or approved by
the stakeholders. The poor engagement of stakeholders in developing
software, therefore, leaves the organization with no choice but to avoid
greenability.

7.2.8. Managing trade-offs

We have found challenges in managing trade-offs where conflicting
green requirements clash with other competing demands, requiring
careful consideration to reach an acceptable compromise throughout
the software development life-cycle.

Green requirement conflicts. Sustainability requirements may com-
pete with other requirements. It is often necessary to sacrifice other
requirements for reduced energy usage (Manotas et al., 2016). More im-
portantly, trade-offs between green requirements and others (e.g., time
to market, performance) should be carefully considered, documented,
and managed across the whole life-cycle of the project (Chitchyan et al.,
2016; Calero and Piattini, 2015). To this end, resolving conflict by
negotiations is necessary (Meridji and Issa, 2013). It includes a series
of activities such as identifying the conflict and the stakeholders and
involving them to negotiate an acceptable compromise, tracing the
decision back to the customer, and implementing the decision.

Maintainability and greenability. Trade-offs exist between maintain-
ability (refactoring of bad smells/anti-patterns) and greenability. While
traditional maintenance improves the maintainability of software which
refers to the degree of effectiveness and efficiency of modification,
green maintenance considers greenability as the degree of environmen-
tal friendliness of software. Software greenability in maintenance phase
can be explained as feasibility which refers to how software main-
tenance follows green/sustainable development (Taina, 2011). A few
studies have discussed that the maintainability characteristics may have
a strong relationship with software greenability such as software energy
efficiency based on the power consumption (Calero and Piattini, 2015).
It is argued that more modules for fine-grained modular architecture
(modularity) imply excessive communication (message) traffic between
objects, which can increase energy consumption (Pérez-Castillo and
Piattini, 2014). Meanwhile, highly reusable assets (resuability) are
highly likely to be optimized leading to better energy efficiency and
high degree of software modification (modifiability) may keep its
greenability (Calero and Piattini, 2015).

Performance and energy consumption. Software performance and en-
ergy efficiency are not always positively correlated. There can be
contradicting goals which could require a trade-off to be made (Jagroep
et al., 2016). Specifically, mobile/embedded software is highly affected
by the battery power (Hindle, 2016). The software can be newly
developed or modified to provide better performance and functionality,
which might result in a much shorter battery lifetime and ultimately
limit the availability of the software. This pinpoints why multiple
versions of software should be tested to understand how the differ-
ences/changes influence the energy consumption of the software. It also
indicates a need for considerations of some modern techniques such
as computation offloading to reduce energy consumption but increase
performance (Kwon and Tilevich, 2013).

The Journal of Systems & Software 210 (2024) 111944
7.3. Practical implications

In this section, we address RQ3 by delving into the practical im-
plications of energy efficiency in Software Engineering, exploring tech-
niques, strategies, and tools that practitioners can employ to optimize
energy usage throughout the software life-cycle.

7.3.1. The one-page Green software engineering

Based on our extensive survey, we propose a one-page solution which
supports practitioners who want to adopt green software engineering.
We first show the holistic framework (Table 4), and then present three
use cases for different software development methods: Waterfall, Agile
and DevOps (Fig. 5).

This approach includes critical and fine-grained green tasks and
key considerations, which are discussed in the previous sections. It
consists of ten software engineering areas (requirements, design, con-
struction, testing, deployment, maintenance, configuration, process,
models/methods and quality) to support a broad range of software life-
cycle and development methods. In Fig. 5, we demonstrate that how
the green tasks/practices can be implemented with Waterfall, Scrum
and DevOps methods, respectively. The one-page approach, however,
does not limit to those methods presented in the figure. Any software
development methods can be considered, and also flexibly tailored as
per the development plan, strategies, and circumstance of the software
team.

The green tasks can be carried out to align with the software
development phases in each method. In the Waterfall method, the
tasks should be sequentially implemented, yet measuring green metrics
may be taken place in every phase (Fig. 5(a)). Meanwhile, in the
Agile method, the development team can repeat most of the green
tasks for every sprint (Fig. 5(b)). In this case, the team should take
concerns about the limitation of time, budget and the team’s capability
due to the short period of iterations, and may consider any trade-
offs between them. For the DevOps method, our approach can be
adopted by distributing the green tasks over both the development
and operation phases as shown in Fig. 5(c). The development team
and operation team should collaborate to continuously improve and
optimize the green process based on the lessons learned, issues and
risks, knowledge and feedback from the stakeholders.

7.3.2. Goals, questions, metrics (GQM) for addressing challenges in soft-
ware engineering

The challenges identified in this study (Section 7.2) warrant fur-
ther investigation in future research. Meanwhile, it is important to
develop mitigation strategies for the risks associated with these chal-
lenges that practitioners may encounter in real-world scenarios. GQM
is a comprehensive framework that enables researchers and practi-
tioners to systematically address challenges by setting clear goals,
formulating precise questions, and defining relevant metrics (Caldiera
and Rombach, 1994). In this section, we propose an example of the
GQM framework for green software engineering to tackle the identified
challenges.

» Goal 1: Improve green requirements elicitation and management
(addressing 7.2.1)

— Question: How can stakeholders with specific knowledge
and skills be involved in requirements elicitation for accu-
rate green requirements?

— Metric 1: Percentage of stakeholders with specialized knowl-
edge and skills involved in the requirements elicitation
process.

— Metric 2: Number of detailed and specific green require-
ments identified during the elicitation process.

— Metric 3: Stakeholder satisfaction with the clarity and com-
prehensiveness of green requirements.

S.U. Lee et al. The Journal of Systems & Software 210 (2024) 111944

Implementation Testing Deployment Maintenance

]] e o] o]] o 0]
- o 52 :
oEE EE - o B
s a -] oo e o]]
e W EEE

1]

Requirements

\ZI Requirements E] Design ElConstruction - Testing Deployment \El Maintenance Configuration nProcess -Models/Methods “Quality

(a) Green Software Engineering for Waterfall.

Review & Retro

Increment & Maintenance

Product Backlog -

Sprint Backlog
ooE B
i
o

g

Operate

on s

P4 P5

e

P4
a[]o

(c) Green Software Engineering for DevOps.

Fig. 5. Three use cases of the one-page green software engineering.

18

S.U. Lee et al.

Table 4
The one-page green software engineering.

The Journal of Systems & Software 210 (2024) 111944

Area Green task/practice and considerations

R R1. Identify product R2. Identify process R3. Use of tools and R4. Assess
requirements requirements (abstract, techniques (survey, requirements (by
(abstract, implementation, quality). requirement formal guidelines,
implementation, archetypes). energy metrics).
quality).

D D1. Apply green D2. Use energy-efficient D3. Estimate energy D4. Use D5. Estimate energy
design principles design patterns (e.g., consumption of the energy-efficient consumption of
(reusability, less Flyweight, Visitor). selected design architectural patterns selected architectural
redundancy, etc.). patterns. (e.g., MVP). patterns.

C Cl1. Set energy-saving C2. Consider impact of C3. Consider impact C4. Implement green
environment. code obfuscation on of data development

energy usage. structures/functions strategies (energy
on energy usage. dashboard, etc.).

T T1. Identify energy T2. Build automatic test T3. Minimize a test
test cases for locating generation (e.g., test suit (eliminate
energy leaks. selection heuristics). redundant test cases).

DE DEl. Reduce the size DE2. Reduce operational DE3. Choose proper
of deployment costs (analyze energy operating models
package using data patterns, best (cloud, fog, edge,
compression configuration). offloading, etc.).
techniques.

M M1. Consider M2. Find optimal M3. Give staff/user
refactoring to identify configuration to consume training, tutorials for
energy-hungry less power. faster maintenance.
patterns.

CM CM1. Measure and CM2. Analyze the energy CM3. Estimate energy
compare the energy efficiency of different consumption (use
efficiency of different versions software metrics:
versions. (causes-solutions- CBO, DIT, LOC, etc.).

decision:accept/reject).

P P1. Understand the P2. Define P3. Integrate the P4. Assess the green P5. Consider
key requirements of process/practices for the green process/product knowledge
green software entire development process/practices into (green capability, management for
process (sustainability life-cycle of software. existing software etc.) sustainable green
objectives, impacts on development process process for
environment). models (waterfall, improvement.

agile).

MM MM1. Consider MM2 Choose a proper MM3. Assess the
proper software modeling language for quality of a software
engineering methods software components model (meet green
and plan green (e.g., ER, UML). requirements, no
software process. conflicting

requirements).
Q Q1. Define metrics Q2. Adopt approaches to Q3. Measure metrics Q4. Consider different Q5. Collect energy

(product and process
metrics).

use the metrics.

(e.g., memory usage,
execution time, travel,
carbon footprints)

options (e.g.,
base/overhead energy
consumption,
benchmark metrics).

data and use for
judgment on the
quality of software.

Rirequirements, D:Design, C:Construction, T:Testing, DE:Deployment, M:Maintenance,
CM:Configuration Management, P:Development Process, MM:Models/Methods, Q:Quality

Goal 2: Enhance measurement of software design impact on en-
ergy (addressing 7.2.2)

— Question: How do different design patterns contribute to
energy efficiency across platforms and applications?

— Metric 1: Energy consumption reduction achieved through
the implementation of energy-efficient design patterns.

— Metric 2: Number of configurations considered to predict or
measure energy consumption during the design phase.

— Metric 3: Validity of design patterns’ energy efficiency find-
ings across diverse platforms and applications.

Goal 3: Optimize test environment for energy consumption mea-
surement (addressing 7.2.3)

— Question: What are the key considerations when testing
different versions of software to accurately measure energy
usage?

— Metric 1: Number of software building environment modi-
fications required for energy consumption measurement.

— Metric 2: Testbed stability and consistency achieved during
energy testing of different software versions.

— Metric 3: Successful replication of energy consumption mea-
surements across different versions of software in the same
test environment.

» Goal 4: Foster adoption of energy-aware development practices
(addressing 7.2.4)

Question: How can software developers be trained in energy-

awareness to effectively utilize energy-efficient develop-

ment tools and methods?

— Metric 1: Percentage of software developers trained in
energy-aware development practices.

— Metric 2: Adoption rate of energy-efficient development
tools and techniques by software development teams.

— Metric 3: Organizational feedback on the effectiveness of

energy-aware development training programs.

» Goal 5: Validate and improve energy testing tools (addressing
7.2.5)

19

S.U. Lee et al.

— Question: How can energy-specific test cases and test suite
minimization methods be validated and improved?

— Metric 1: Number of energy-specific test cases validated
with actual energy measurements.

— Metric 2: Efficiency improvement achieved through auto-
mated energy test generation and test suite minimization
techniques.

— Metric 3: Feedback from large-scale studies on the reliability
and effectiveness of energy testing frameworks.

» Goal 6: Overcome cost/time constraints in measuring energy
consumption (addressing 7.2.6)

— Question: What strategies can be implemented to measure
energy consumption of multiple software versions effec-
tively?

— Metric 1: Resource utilization (cost and time) for measuring
energy consumption across different software releases.

— Metric 2: Accuracy and reliability of energy consumption
measurements across multiple software versions.

— Metric 3: Improvement or deterioration in energy efficiency
reported with each new software release.

» Goal 7: Integrate sustainability into the software engineering
process (addressing 7.2.7)

— Question: How can sustainability and greenability be effec-
tively incorporated into the software engineering process?

— Metric 1: Number of practical approaches and methodolo-
gies developed for integrating sustainability into the soft-
ware engineering process.

— Metric 2: Organization-wide adoption of green software
development practices and policies.

— Metric 3: Level of alignment between the software engineer-
ing process and sustainability objectives.

+ Goal 8: Manage trade-offs in green software engineering (address-
ing 7.2.8)

. Goal 8-1: Manage trade-offs in green software engineering

— Question: How can conflicts between sustainability
requirements and other project requirements be re-
solved?

— Metric 1: Number of documented trade-offs between
green requirements and other project requirements.

— Metric 2: Stakeholder satisfaction with the negotiated
compromises and decisions.

— Metric 3: Effectiveness of implementing trade-off de-
cisions in the software development life-cycle.

. Goal 8-2: Balance maintainability and greenability

— Question: How can maintainability and greenability
be balanced in software maintenance activities?

— Metric 1: Number of refactored bad smells/anti-patt-
erns to improve maintainability.

— Metric 2: Greenability rating of software maintenance
activities based on environmental friendliness criteria.

— Metric 3: Relationship between maintainability char-
acteristics and software energy efficiency.

. Goal 8-3: Optimize performance-energy trade-offs

- Question: How can performance and energy consump-
tion trade-offs be optimized in software design and
development?

— Metric 1: Performance improvement achieved through
software modifications.

20

The Journal of Systems & Software 210 (2024) 111944

— Metric 2: Energy consumption reduction achieved
while maintaining acceptable performance levels.

— Metric 3: Battery lifetime impact of software modifi-
cations (e.g.,mobile/embedded systems).

7.3.3. Estimating the energy consumption of Al systems in the supply chain

The increasing concern for responsible AI has brought attention to
the need to consider the negative impacts on both humans and the
environment. Energy usage of AI models and systems has emerged
as a critical factor in promoting responsible Al practices. Recognizing
the significance of environmental impact and sustainability, prominent
industry frameworks such as NIST AI risk framework and the EU
Al risk framework emphasize the assessment and documentation of
the environmental implications associated with Al model training and
management activities.

Responsible Al extends its scope to encompass the responsible man-
agement of supply chains, with the objective of reducing the negative
impacts stemming from Al deployments. While Software Bill of Ma-
terials (SBOM) has proven valuable in enhancing security and risk
management in software supply chains, there remains limited explo-
ration of its application in managing the environmental impact of Al
systems (Xia et al., 2023). In parallel, the concept of Green Bill of Ma-
terials (GBOM) has primarily been proposed in the manufacturing field
to address energy-related issues (Ryu, 2011). There are a few studies on
GBOM for software engineering (Gong and Chen, 2009), however, its
potential within the software engineering domain, particularly in the
context of Al, remains largely unexplored.

Al models heavily rely on external models and dependencies, which
can obscure crucial information concerning energy consumption. This
lack of transparency makes it challenging to measure and manage the
environmental impact effectively. For instance, the utilization of foun-
dation models, such as large language models (LLMs), often conceals
energy consumption information. Addressing this opacity and gaining
a comprehensive understanding of the energy implications of Al models
and systems is crucial for effective energy management and responsible
Al practices.

Incorporating with SBOM, Data sheets for datasets (Gebru et al.,
2021) and AI model card (Mitchell et al., 2019) or independently,
the GBOM can play a critical role in managing and estimating energy
consumption within the Al supply chain. By providing a comprehensive
list of energy-consuming components and materials used in Al systems,
the GBOM enables organizations to assess and monitor the energy
efficiency and environmental impact of their AI deployments. It fosters
transparency, facilitates informed decision-making, and promotes the
adoption of environmentally friendly Al practices.

Utilizing the results of our investigation, the potential elements of
GBOM for Al can encompass not only the energy consumption of Al
models but also fine-grained information. Table 5 shows the potential
elements of GBOM but it is not limited to this.

While the adoption of the GBOM in the software engineering field,
specifically within Al, is an area with limited research, its incorporation
holds substantial potential for advancing responsible Al practices. By
actively exploring and integrating the GBOM into Al frameworks and
risk management strategies, organizations can foster sustainable and
ethically sound AI implementations.

7.4. Threats to validity

7.4.1. Internal validity

Selection Bias. There is a possibility of selection bias in this study due
to the selection of source databases and articles. To mitigate this bias,
we developed a research protocol with predefined search strategies
and selection criteria, and the process was shared internally among
the research team. However, we acknowledge that despite our efforts,
certain studies or perspectives may have been inadvertently overlooked
or underrepresented. For example, due to time and resource limitations,

S.U. Lee et al.

Table 5
Potential GBOM elements and considerations for Al systems.

The Journal of Systems & Software 210 (2024) 111944

Area Practice for GBOM Example of GBOM element
R — Identify green requirements for suppliers — AI model energy metrics/methods/results
— Assess if the GBOM meets the requirements — Risks of Al model training/management activities

— The energy footprint of the training data

D — Consider energy efficiency of the architecture — AI model architecture: lightweight and efficient

C — Consider the environment of Al systems - Source code, programming language and compiler
— Dependencies (e.g., foundation models)
— Data structure (e.g., federated learning)

T — Understand test environment and the impact — Al model testing information
— Model performance and energy consumption

DE — Energy-efficient deployment methods — Compression techniques (size of Al model/data)
— Operational options (e.g., API, local model)

M — Consider energy-efficient configuration — Al model configuration including the parameters, choices,
settings, and preferences

— Faster maintenance to save time and effort — Staff information for maintenance

— Training and education resources/links

CM — Track the energy consumption of diverse Al system releases — Al model/data changes, version number and energy
consumption of each version

P — Identify green process/practices for suppliers — AI model development, training process
— Impact analysis results of the process

MM — Understand Al systems/easy communication — Development models and methods and artifacts: AI model,
application, algorithm, data, and benchmark

Q — Optimize energy consumption of Al systems — Metrics/measurement for Al model/data/process

— Energy monitoring and reporting

R:requirements, D:Design, C:Construction, T:Testing, DE:Deployment, M:Maintenance,
CM:Configuration Management, P:Development Process, MM:Models/Methods, Q:Quality

we had to make some decisions regarding the inclusion of certain
databases. Although we included prominent databases such as IEEE
Xplore and ACM Digital Library, we excluded others such as ScienceDi-
rect and Scopus. Additionally, to manage the overwhelming volume of
search results, we limited the scope of screening to the first relevant
2,000 articles after the initial search. While these decisions were made
to ensure a manageable and focused review process, they may have
resulted in the omission of relevant studies from these excluded sources.

Time Constraints. The findings of this study are based on the avail-
able literature and information up until a specific point in time. Al-
though we aimed to include a broad range of studies, our primary focus
was on the period between 2010 and 2021, spanning 10 years. How-
ever, it is worth noting that the field of green software engineering is
dynamic and constantly evolving. Therefore, new studies, approaches,
and challenges may have emerged after our data collection period,
which are not captured in this analysis.

7.4.2. External validity

Generalizability to other software contexts. While we have considered
general green software practices and considerations, it is important to
acknowledge that our findings and recommendations may not be uni-
versally applicable to all software development projects. For example,
the effectiveness of our suggested solutions, such as the one-page solu-
tion, GBOM for AL, and the GQM for green software engineering, should
be further validated by practitioners in different types of software
development projects or industries to determine their generalizability.

Comprehensive coverage of emerging trends and technologies. This study
has made efforts to incorporate insights and considerations related
to Al and energy concerns, we acknowledge that the rapid pace of
technological advancements may result in new challenges and practices
that were not extensively covered in this analysis. To achieve a more
comprehensive understanding of the implications of green software
engineering in the context of Al and other emerging technologies,
it would be beneficial to complement the literature review with ad-
ditional research methods such as industry stakeholder engagement
through interviews, case studies, and surveys. These methods can pro-
vide valuable perspectives and real-world experiences, ensuring that
the study captures a broader range of challenges and practices in the
ever-evolving landscape of software development.

21

8. Conclusions and future research directions

We conducted a comprehensive survey on energy concerns in soft-
ware engineering, considering a broad scope of software development
areas, including the entire software life cycle, software development
management methods, and processes. This study revealed that energy
concerns are taken into account in all phases of software development,
including the operation of the software, with particular emphasis on
the early stages.

While previous studies have explored various green considerations
and practices in the selected areas, we also identified several open
challenges. For instance, in the area of requirements, we found two
types of green requirements: product and process requirements. Each
type consists of three levels of requirements, namely abstract, imple-
mentation, and quality. While some studies have focused on tools and
techniques for effectively managing green requirements, they noted
the lack of adequate tools, techniques, and knowledge base, which
poses challenges in green requirement management. Additionally, there
are trade-offs between requirements, such as performance and energy
consumption, as well as maintainability and greenability.

Although attempts have been made to predict and estimate en-
ergy consumption during the early stages of software development,
such as design time, we did not find a universal approach that can
be generalized (Chowdhury et al., 2019b). Addressing this challenge
requires further research to facilitate better decision-making processes.
Furthermore, using energy-efficient programming languages is another
viable approach for energy-saving development. C/C++ is generally
recognized as the most energy-efficient language. However, given the
unique characteristics, strategies, and environmental contexts of each
software project, various factors such as execution time (Pereira et al.,
2017; Abdulsalam et al.,, 2015; Yuki and Rajopadhye, 2013; Pinto
et al., 2014), development platforms (Oliveira et al., 2017), data struc-
tures (Pinto et al., 2014, 2016), and types of functions used in the
software (Dukovic and Varga, 2015) should be comprehensively consid-
ered. Additionally, adopting an energy-aware culture, including associ-
ated training, policies, and processes, can significantly support green
software development.

Several studies emphasized the importance of testing energy con-
sumption when software changes occur. This includes conducting
proper analyses of energy usage changes, identifying causes, proposing
solutions, and making informed decisions. However, it is worth noting

S.U. Lee et al.

that testing energy consumption is often associated with cost issues,
and many testing methods rely on energy estimations rather than actual
measurements.

The key findings of this study have practical implications. Firstly,
the green considerations and practices, including the use of tools and
techniques, can be utilized to establish a green software engineering
framework that facilitates the easy adoption of a green culture. In
Section 7.3.1, we propose the one-page solution, which plays a critical
role in initiating and promoting green software engineering practices.
Secondly, the identified open challenges point towards future research
directions that require further investigation and study. Addressing these
challenges will contribute to overcoming barriers beyond laboratory-
level scenarios and facilitate the practical implementation of green
software engineering. To support this, we propose the GQM for green
software engineering in Section 7.3.2, providing examples of goals,
questions, and metrics that can effectively manage and address the
identified challenges in practice. Lastly, regarding the application of
emerging trends and technologies, we discussed how to estimate the
energy consumption of Al systems in the supply chain, considering
the complex dependencies and often invisible energy consumption.
We proposed the use of the Green Building Object Model (GBOM) to
estimate, register, and track all energy-relevant artifacts, activities, and
processes, including Al models, data, and algorithms. In Section 7.3.3,
we suggested potential elements of the GBOM for Al based on the
results of our investigation.

This study provides valuable insights but it also has several limi-
tations that need to be considered and addressed in future research.
Firstly, the limited data sources may introduce research bias and limit
the generalization of our findings. To mitigate this, we plan to ex-
pand our search scope and include different types of data sources,
such as multiple case studies, practitioner surveys, and interviews.
Furthermore, although our investigation covered the entire software
development process, we did not extensively address the end-of-life
phase, which has received limited attention in prior studies. Therefore,
conducting case studies or evaluations to further consolidate energy
concerns in software engineering is necessary for a more comprehensive
understanding of the topic.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

References

Abdullah, Rusli, Abdullah, Salfarina, Din, Jamilah, Tee, Mcxin, et al., 2015. A system-
atic literature review of green software development in collaborative knowledge
management environment. Int. J. Adv. Comput. Technol. (IJACT) 9, 136.

Abdulsalam, Sarah, Lakomski, Donna, Gu, Qijun, Jin, Tongdan, Zong, Ziliang, 2014.
Program energy efficiency: The impact of language, compiler and implementation
choices. In: International Green Computing Conference. IEEE, pp. 1-6.

Abdulsalam, Sarah, Zong, Ziliang, Gu, Qijun, Qiu, Meikang, 2015. Using the greenup,
powerup, and speedup metrics to evaluate software energy efficiency. In: 2015
Sixth International Green and Sustainable Computing Conference. IGSC, IEEE, pp.
1-8.

Agarwal, Shalabh, Nath, Asoke, Chowdhury, Dipayan, 2012. Sustainable approaches
and good practices in green software engineering. Int. J. Res. Rev. Comput. Sci. 3
(1), 1425.

Aggarwal, Karan, Hindle, Abram, Stroulia, Eleni, 2015. Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption. In: 2015 IEEE
International Conference on Software Maintenance and Evolution. ICSME, IEEE, pp.
311-320.

Aggarwal, Karan, Zhang, Chenlei, Campbell, Joshua Charles, Hindle, Abram, Strou-
lia, Eleni, 2014. The power of system call traces: predicting the software energy
consumption impact of changes. In: CASCON, Vol. 14. pp. 219-233.

22

The Journal of Systems & Software 210 (2024) 111944

Al-Qamash, Amal, Soliman, Iten, Abulibdeh, Rawan, Saleh, Moutaz, 2018. Cloud, fog,
and edge computing: A software engineering perspective. In: 2018 International
Conference on Computer and Applications. ICCA, IEEE, pp. 276-284.

Alcott, Blake, 2005. Jevons’ paradox. Ecolog. Econ. 54 (1), 9-21.

Alharthi, Ahmed D., Spichkova, Maria, Hamilton, Margaret, 2019. Sustainability re-
quirements for elearning systems: a systematic literature review and analysis.
Requir. Eng. 24, 523-543.

Ampatzoglou, Apostolos, Charalampidou, Sofia, Stamelos, Ioannis, 2013. Design pattern
alternatives: What to do when a GoF pattern fails. In: Proceedings of the 17th
Panhellenic Conference on Informatics. pp. 122-127.

Amsel, Nadine, Ibrahim, Zaid, Malik, Amir, Tomlinson, Bill, 2011. Toward sustainable
software engineering: NIER track. In: 2011 33rd International Conference on
Software Engineering. ICSE, IEEE, pp. 976-979.

Anthony, Bokolo Jnr, Majid, Mazlina Abdul, 2016. Green IS for sustainable decision
making in software management. J. Soft Comput. Decis. Support Syst. 3 (3), 20-34.

Ardito, Luca, Procaccianti, Giuseppe, Torchiano, Marco, Vetro, Antonio, 2015. Under-
standing green software development: A conceptual framework. IT Prof. 17 (1),
44-50.

Baggen, Robert, Correia, José Pedro, Schill, Katrin, Visser, Joost, 2012. Standardized
code quality benchmarking for improving software maintainability. Softw. Qual. J.
20 (2), 287-307.

Banerjee, Abhijeet, Chong, Lee Kee, Chattopadhyay, Sudipta, Roychoudhury, Abhik,
2014. Detecting energy bugs and hotspots in mobile apps. In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 588-598.

Bangash, Abdul Ali, Sahar, Hareem, Beg, Mirza Omer, 2017. A methodology for relating
software structure with energy consumption. In: 2017 IEEE 17th International
Working Conference on Source Code Analysis and Manipulation. SCAM, IEEE, pp.
111-120.

Becker, Christoph, Chitchyan, Ruzanna, Duboc, Leticia, Easterbrook, Steve, Penzen-
stadler, Birgit, Seyff, Norbert, Venters, Colin C, 2015. Sustainability design and
software: The karlskrona manifesto. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, pp. 467-476.

Berkhout, Frans, Hertin, Julia, 2001. ImpActs of Information and Communication
Technologies on Environmental Sustainability: Speculations and Evidence. Report
to the OECD, Brighton, 21.

Bourque, Pierre, Dupuis, Robert, Abran, Alain, Moore, James W, Tripp, Leonard, 1999.
The guide to the software engineering body of knowledge. IEEE Softw. 16 (6),
35-44.

Broussely, Michel, 2010. Battery requirements for HEVs, PHEVs, and EVs: an
overview. In: Electric and Hybrid Vehicles: Power Sources, Models, Sustainability,
Infrastructure and the Market. Elsevier, pp. 305-347.

Brundtland Commission, 1987. Report of the world commission on environment
and development: Our common future. In: UN Conference on Environment and
Development.

Bunse, Christian, Stiemer, Sebastian, 2013. On the energy consumption of design
patterns. Softwaretechnik-Trends: Vol. 33, No. 2.

Caldiera, Victor R. Basilil Gianluigi, Rombach, H. Dieter, 1994. The goal question
metric approach. In: Encyclopedia of Software Engineering. pp. 528-532.

Calero, Coral, Bertoa, Manuel F., Moraga, Maria Angeles, 2013. Sustainability and
quality: Icing on the cake. In: RE4SuSy@ RE, Vol. 995.

Calero, Coral, Mancebo Pavén, Javier, Garcia, Félix, 2021. Does maintainability relate
to the energy consumption of software? Softw. Qual. J..

Calero, Coral, Moraga, Maria Angeles, Bertoa, Manuel F., Duboc, Leticia, 2014. Quality
in use and software greenability. In: RE4SuSy@ RE. Citeseer, pp. 28-36.

Calero, Coral, Piattini, Mario, 2015. Green in Software Engineering, Vol. 3. Springer.

Capra, Eugenio, Francalanci, Chiara, Slaughter, Sandra A., 2012. Measuring application
software energy efficiency. IT Prof. 14 (2), 54-61.

Chatzigeorgiou, Alexander, Stephanides, George, 2002. Energy metric for software
systems. Softw. Qual. J. 10 (4), 355-371.

Chen, Feifei, Grundy, John, Schneider, Jean-Guy, Yang, Yun, He, Qiang, 2015.
Stresscloud: A tool for analysing performance and energy consumption of cloud
applications. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 2. IEEE, pp. 721-724.

Chen, FeiFei, Schneider, Jean-Guy, Yang, Yun, Grundy, John, He, Qiang, 2012. An
energy consumption model and analysis tool for cloud computing environments. In:
2012 First International Workshop on Green and Sustainable Software. GREENS,
IEEE, pp. 45-50.

Chitchyan, Ruzanna, Becker, Christoph, Betz, Stefanie, Duboc, Leticia, Penzen-
stadler, Birgit, Seyff, Norbert, Venters, Colin C., 2016. Sustainability design
in requirements engineering: state of practice. In: Proceedings of the 38th
International Conference on Software Engineering Companion. pp. 533-542.

Chowdhury, Shaiful, Borle, Stephanie, Romansky, Stephen, Hindle, Abram, 2019a.
GreenScaler: training software energy models with automatic test generation.
Empir. Softw. Eng. 24 (4), 1649-1692.

Chowdhury, Shaiful Alam, Hindle, Abram, Kazman, Rick, Shuto, Takumi, Matsui, Ken,
Kamei, Yasutaka, 2019b. Greenbundle: An empirical study on the energy impact of
bundled processing. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering. ICSE, IEEE, pp. 1107-1118.

http://refhub.elsevier.com/S0164-1212(23)00339-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb34

S.U. Lee et al.

Condori-Fernandez, Nelly, Lago, Patricia, Luaces, Miguel, Catala, Alejandro, 2019. A
nichesourcing framework applied to software sustainability requirements. In: 2019
13th International Conference on Research Challenges in Information Science. RCIS,
IEEE, pp. 1-6.

Corbalan, Leonardo, Fernandez, Juan, Cuitifo, Alfonso, Delia, Lisandro, Céseres, Ger-
man, Thomas, Pablo, Pesado, Patricia, 2018. Development frameworks for mobile
devices: A comparative study about energy consumption. In: Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems. MOBILESoft
’18, Association for Computing Machinery, New York, NY, USA, pp. 191—201.

Couto, Marco, Carcdo, Tiago, Cunha, Jicome, Fernandes, Jodo Paulo, Saraiva, Jodo,
2014. Detecting anomalous energy consumption in android applications. In:
Brazilian Symposium on Programming Languages. Springer, pp. 77-91.

Couto, Marco, Pereira, Rui, Ribeiro, Francisco, Rua, Rui, Saraiva, Jodo, 2017. Towards
a green ranking for programming languages. In: Proceedings of the 21st Brazilian
Symposium on Programming Languages. pp. 1-8.

Cruz, Luis, Abreu, Rui, 2019. Catalog of energy patterns for mobile applications. Empir.
Softw. Eng. 24 (4), 2209-2235.

Dick, Markus, Drangmeister, Jakob, Kern, Eva, Naumann, Stefan, 2013. Green software
engineering with agile methods. In: 2013 2nd International Workshop on Green
and Sustainable Software. GREENS, IEEE, pp. 78-85.

Dick, Markus, Naumann, Stefan, 2010. Enhancing software engineering processes
towards sustainable software product design. In: Envirolnfo. Citeseer, pp. 706-715.

Dick, Markus, Naumann, Stefan, Kuhn, Norbert, 2010. A model and selected instances of
green and sustainable software. In: What Kind of Information Society? Governance,
Virtuality, Surveillance, Sustainability, Resilience: 9th IFIP TC 9 International Con-
ference, HCC9 2010 and 1st IFIP TC 11 International Conference, CIP 2010, Held
As Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings.
Springer, pp. 248-259.

Dukovic, Marko, Varga, Ervin, 2015. Load profile-based efficiency metrics for code
obfuscators. Acta Polytech. Hung. 12 (5).

Erdelyi, Krisztina, 2013. Special factors of development of green software supporting
eco sustainability. In: 2013 IEEE 11th International Symposium on Intelligent
Systems and Informatics. SISY, IEEE, pp. 337-340.

Feitosa, Daniel, Alders, Rutger, Ampatzoglou, Apostolos, Avgeriou, Paris, Naka-
gawa, Elisa Yumi, 2017. Investigating the effect of design patterns on energy
consumption. J. Softw. Evol. Process 29 (2), el1851.

Ferreira, Denzil, Dey, Anind K., Kostakos, Vassilis, 2011. Understanding human-
smartphone concerns: a study of battery life. In: International Conference on
Pervasive Computing. Springer, pp. 19-33.

Fowler, Martin, 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional.

Gebru, Timnit, Morgenstern, Jamie, Vecchione, Briana, Vaughan, Jennifer Wortman,
Wallach, Hanna, Iii, Hal Daumé, Crawford, Kate, 2021. Datasheets for datasets.
Commun. ACM 64 (12), 86-92.

Georges, Andy, Buytaert, Dries, Eeckhout, Lieven, 2007. Statistically rigorous java
performance evaluation. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications.
OOPSLA ’07, Association for Computing Machinery, New York, NY, USA, pp. 57-76.

Georgiou, Stefanos, Rizou, Stamatia, Spinellis, Diomidis, 2019a. Software development
lifecycle for energy efficiency: Techniques and tools. ACM Comput. Surv. 52 (4),
81.

Georgiou, Stefanos, Rizou, Stamatia, Spinellis, Diomidis, 2019b. Software development
lifecycle for energy efficiency: techniques and tools. ACM Comput. Surv. 52 (4),
1-33.

Gong, Dah-Chuan, Chen, Jia-Ling, 2009. Developing a software system to manage green
products. In: 2009 International Conference on New Trends in Information and
Service Science. IEEE, pp. 1076-1080.

Goodland, Robert, et al., 2002. Sustainability: human, social, economic and environ-
mental. In: Encyclopedia of Global Environmental Change, Vol. 5. Wiley and Sons,
pp. 481-491.

Gottschalk, Marion, Josefiok, Mirco, Jelschen, Jan, Winter, Andreas, 2012. Removing
energy code smells with reengineering services. In: Goltz, Ursula, Magnor, Marcus,
Appelrath, Hans-Jiirgen, Matthies, Herbert K., Balke, Wolf-Tilo, Wolf, Lars (Eds.),
INFORMATIK 2012. Gesellschaft fiir Informatik e.V., Bonn, pp. 441-455.

Hao, Shuai, Li, Ding, Halfond, William G.J., Govindan, Ramesh, 2013. Estimating
mobile application energy consumption using program analysis. In: 2013 35th
International Conference on Software Engineering. ICSE, IEEE, pp. 92-101.

Hasan, Khalid, Biswas, Kamanashis, Ahmed, Khandakar, Nafi, Nazmus S, Islam, Md Sai-
ful, 2019. A comprehensive review of wireless body area network. J. Netw. Comput.
Appl. 143, 178-198.

Hasan, Samir, King, Zachary, Hafiz, Munawar, Sayagh, Mohammed, Adams, Bram,
Hindle, Abram, 2016. Energy profiles of java collections classes. In: Proceedings of
the 38th International Conference on Software Engineering. ICSE ’16, Association
for Computing Machinery, New York, NY, USA, pp. 225-236.

Hilty, Lorenz, Lohmann, Wolfgang, Huang, Elaine M., 2011. Sustainability and ICT-an
overview of the field. Notizie di POLITEIA 27 (104), 13-28.

Hindle, Abram, 2015. Green mining: a methodology of relating software change and
configuration to power consumption. Empir. Softw. Eng. 20 (2), 374-409.

Hindle, Abram, 2016. Green software engineering: the curse of methodology. In:
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, Vol. 5. SANER, IEEE, pp. 46-55.

23

The Journal of Systems & Software 210 (2024) 111944

Hogan, Trish, 2009. Overview of TPC benchmark e: The next generation of OLTP bench-
marks. In: Technology Conference on Performance Evaluation and Benchmarking.
Springer, pp. 84-98.

Honig, Timo, Eibel, Christopher, Kapitza, Riidiger, Schroder-Preikschat, Wolfgang,
2012. SEEP: exploiting symbolic execution for energy-aware programming. Oper.
Syst. Rev. 45 (3), 58-62.

Honig, Timo, Janker, Heiko, Eibel, Christopher, Mihelic, Oliver, Kapitza, Riidiger, 2014.
Proactive energy-aware programming with PEEK. In: 2014 Conference on Timely
Results in Operating Systems. TRIOS 14, USENIX Association, Broomfield, CO.

Hsu, Hwa-You, Orso, Alessandro, 2009. MINTS: A general framework and tool for
supporting test-suite minimization. In: 2009 IEEE 31st International Conference
on Software Engineering. IEEE, pp. 419-429.

International Energy Agency, 2021. Global energy review 2021. https://www.iea.org/
news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-
history.

Jabbarvand, Reyhaneh, Sadeghi, Alireza, Bagheri, Hamid, Malek, Sam, 2016. Energy-
aware test-suite minimization for android apps. In: Proceedings of the 25th
International Symposium on Software Testing and Analysis. pp. 425-436.

Jagroep, E., Broekman, J., Werf, J. M. E. M. van der, Lago, P., Brinkkemper, S.,
Blom, L., Vliet, R. van, 2017. Awakening awareness on energy consumption
in software engineering. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Society Track. ICSE-SEIS, pp. 76-85.

Jagroep, Erik A., van der Werf, Jan Martijn, Brinkkemper, Sjaak, Procaccianti, Giuseppe,
Lago, Patricia, Blom, Leen, van Vliet, Rob, 2016. Software energy profiling:
Comparing releases of a software product. In: Proceedings of the 38th International
Conference on Software Engineering Companion. pp. 523-532.

Johann, Timo, Dick, Markus, Kern, Eva, Naumann, Stefan, 2011. Sustainable
development, sustainable software, and sustainable software engineering: an in-
tegrated approach. In: 2011 International Symposium on Humanities, Science and
Engineering Research. IEEE, pp. 34-39.

Kansal, Aman, Zhao, Feng, Liu, Jie, Kothari, Nupur, Bhattacharya, Arka A., 2010.
Virtual machine power metering and provisioning. In: Proceedings of the 1st ACM
Symposium on Cloud Computing. pp. 39-50.

Kazman, Rick, Haziyev, Serge, Yakuba, Andriy, Tamburri, Damian A, 2018. Managing
energy consumption as an architectural quality attribute. IEEE Softw. 35 (5),
102-107.

Kern, Eva, Dick, Markus, Naumann, Stefan, Guldner, Achim, Johann, Timo, 2013. Green
software and green software engineering—definitions, measurements, and quality
aspects. In: First International Conference on Information and Communication
Technologies for Sustainability. ICT4S2013, 2013b ETH Zurich, pp. 87-91.

Kiehne, Heinz Albert, 2003. Battery Technology Handbook, Vol. 118. CRC Press.

Kipp, Alexander, Jiang, Tao, Fugini, Mariagrazia, 2011. Green metrics for energy-aware
IT systems. In: 2011 International Conference on Complex, Intelligent, and Software
Intensive Systems. IEEE, pp. 241-248.

Kitchenham, Barbara, Brereton, O Pearl, Budgen, David, Turner, Mark, Bailey, John,
Linkman, Stephen, 2009. Systematic literature reviews in software engineering—a
systematic literature review. Inf. Softw. Technol. 51 (1), 7-15.

Kounev, Samuel, Lange, Klaus-Dieter, von Kistowski, Jéakim,
benchmarks. In: Systems Benchmarking. Springer, pp. 285-300.

Kwon, Young-Woo, Tilevich, Eli, 2013. Reducing the energy consumption of mobile
applications behind the scenes. In: 2013 IEEE International Conference on Software
Maintenance. IEEE, pp. 170-179.

Lago, Patricia, Kazman, Rick, Meyer, Niklaus, Morisio, Maurizio, Miiller, Hausi A,
Paulisch, Frances, 2013. Exploring initial challenges for green software engineering:
summary of the first GREENS workshop, at ICSE 2012. ACM SIGSOFT Softw. Eng.
Notes 38 (1), 31-33.

Lami, Giuseppe, Buglione, Luigi, 2012. Measuring software sustainability from a
process-centric perspective. In: 2012 Joint Conference of the 22nd Interna-
tional Workshop on Software Measurement and the 2012 Seventh International
Conference on Software Process and Product Measurement. IEEE, pp. 53-59.

Lami, Giuseppe, Fabbrini, Fabrizio, Fusani, Mario, 2012. Software sustainability
from a process-centric perspective. In: European Conference on Software Process
Improvement. Springer, pp. 97-108.

Lange, K., 2009. Identifying shades of green: The SPECpower benchmarks. IEEE Ann.
Hist. Comput. 42 (03), 95-97.

Linares-Vasquez, Mario, Bavota, Gabriele, Cardenas, Carlos Eduardo Bernal,
Oliveto, Rocco, Di Penta, Massimiliano, Poshyvanyk, Denys, 2015. Optimizing
energy consumption of guis in android apps: A multi-objective approach.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 143-154.

Mahmoud, Sara S., Ahmad, Imtiaz, 2013. A green model for sustainable software
engineering. Int. J. Softw. Eng. Appl. 7 (4), 55-74.

Manotas, Irene, Bird, Christian, Zhang, Rui, Shepherd, David, Jaspan, Ciera, Sad-
owski, Caitlin, Pollock, Lori, Clause, James, 2016. An empirical study of
practitioners’ perspectives on green software engineering. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering. ICSE, IEEE, pp. 237-248.

Manotas, Irene, Pollock, Lori, Clause, James, 2014. Seeds: A software engineer’s energy-
optimization decision support framework. In: Proceedings of the 36th International
Conference on Software Engineering. pp. 503-514.

2020. Storage

http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb41
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb41
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb41
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb46
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb46
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb46
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb46
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb46
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb47
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb47
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb47
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb48
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb48
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb48
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb48
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb48
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb49
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb50
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb50
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb50
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb50
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb50
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb51
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb51
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb51
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb51
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb51
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb52
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb52
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb52
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb52
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb52
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb54
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb55
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb55
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb55
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb55
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb55
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb56
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb56
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb56
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb56
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb56
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb57
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb58
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb58
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb58
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb59
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb59
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb59
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb60
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb60
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb60
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb60
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb60
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb61
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb61
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb61
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb61
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb61
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb62
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb62
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb62
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb62
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb62
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb63
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb63
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb63
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb63
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb63
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb64
https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history
https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history
https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history
https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history
https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb66
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb66
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb66
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb66
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb66
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb67
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb68
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb69
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb70
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb70
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb70
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb70
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb70
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb71
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb71
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb71
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb71
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb71
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb72
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb73
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb78
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb81
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb81
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb81
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb82
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb83
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb83
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb83
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb85
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb85
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb85
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb85
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb85

S.U. Lee et al.

Meridji, Kenza, Issa, Ghassan, 2013. A development approach of software requirements
for renewable energy applications using fundamental principles of software engi-
neering. In: 2013 1st International Conference & Exhibition on the Applications
of Information Technology To Renewable Energy Processes and Systems. IEEE, pp.
107-112.

Mitchell, Margaret, Wu, Simone, Zaldivar, Andrew, Barnes, Parker, Vasserman, Lucy,
Hutchinson, Ben, Spitzer, Elena, Raji, Inioluwa Deborah, Gebru, Timnit, 2019.
Model cards for model reporting. In: Proceedings of the Conference on Fairness,
Accountability, and Transparency. pp. 220-229.

Morales, Rodrigo, Saborido, Rubén, Khomh, Foutse, Chicano, Francisco, Antoniol, Giu-
liano, 2017. Earmo: an energy-aware refactoring approach for mobile apps. IEEE
Trans. Softw. Eng. 44 (12), 1176-1206.

Nagappan, Meiyappan, Shihab, Emad, 2016. Future trends in software engineering
research for mobile apps. In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, Vol. 5. SANER, IEEE, pp. 21-32.

Naumann, Stefan, Dick, Markus, Kern, Eva, Johann, Timo, 2011. The greensoft model:
A reference model for green and sustainable software and its engineering. Sustain.
Comput. Inf. Syst. 1 (4), 294-304.

Naumann, Stefan, Kern, Eva, Dick, Markus, Johann, Timo, 2015. Sustainable software
engineering: Process and quality models, life cycle, and social aspects. In: ICT
Innovations for Sustainability. Springer, pp. 191-205.

Noureddine, Adel, Rajan, Ajitha, 2015. Optimising energy consumption of design
patterns. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 2. IEEE, pp. 623-626.

Oliveira, Wellington, Oliveira, Renato, Castor, Fernando, 2017. A study on the energy
consumption of android app development approaches. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories. MSR, pp. 42-52.

Oliveira, Wellington, Oliveira, Renato, Castor, Fernando, Pinto, Gustavo, Fernan-
des, Joao Paulo, 2021. Improving energy-efficiency by recommending Java
collections. Empir. Softw. Eng. 26 (3), 1-45.

Palit, Rajesh, Arya, Renuka, Naik, Kshirasagar, Singh, Ajit, 2011. Selection and
execution of user level test cases for energy cost evaluation of smartphones. In:
Proceedings of the 6th International Workshop on Automation of Software Test.
pp. 84-90.

Pang, Candy, Hindle, Abram, Adams, Bram, Hassan, Ahmed E., 2015. What do
programmers know about software energy consumption? IEEE Softw. 33 (3), 83-89.

Park, Jae Jin, Hong, Jang-Eui, Lee, Sang-Ho, 2014. Investigation for software power
consumption of code refactoring techniques. In: SEKE. pp. 717-722.

Pathak, Abhinav, Hu, Y. Charlie, Zhang, Ming, 2012. Where is the energy spent
inside my app? Fine grained energy accounting on smartphones with eprof. In:
Proceedings of the 7th ACM European Conference on Computer Systems. pp. 29-42.

Paul, Kolin, Kundu, Tapas Kumar, 2010. Android on mobile devices: An energy perspec-
tive. In: 2010 10th IEEE International Conference on Computer and Information
Technology. pp. 2421-2426.

Penzenstadler, Birgit, 2012. Supporting sustainability aspects in software engineering.
In: 3rd International Conference on Computational Sustainability. CompSust.
Penzenstadler, Birgit, 2013. Towards a definition of sustainability in and for software
engineering. In: Proceedings of the 28th Annual ACM Symposium on Applied

Computing. pp. 1183-1185.

Penzenstadler, Birgit, Femmer, Henning, 2013. A generic model for sustainability with
process-and product-specific instances. In: Proceedings of the 2013 Workshop on
Green in/By Software Engineering. pp. 3-8.

Penzenstadler, Birgit, Raturi, Ankita, Richardson, Debra, Calero, Coral, Femmer, Hen-
ning, Franch, Xavier, 2014a. Systematic mapping study on software engineering
for sustainability (SE4s). In: Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering. pp. 1-14.

Penzenstadler, Birgit, Raturi, Ankita, Richardson, Debra, Tomlinson, Bill, 2014b. Safety,
security, now sustainability: The nonfunctional requirement for the 21st century.
IEEE Softw. 31 (3), 40-47.

Pereira, Rui, Carcdo, Tiago, Couto, Marco, Cunha, Jacome, Fernandes, Jodo Paulo,
Saraiva, Jodo, 2020. SPELLing out energy leaks: Aiding developers locate energy
inefficient code. J. Syst. Softw. 161, 110463.

Pereira, Rui, Couto, Marco, Ribeiro, Francisco, Rua, Rui, Cunha, Jicome, Fernan-
des, Jodo Paulo, Saraiva, Jodo, 2017. Energy efficiency across programming
languages: how do energy, time, and memory relate? In: Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering. pp.
256-267.

Pérez-Castillo, Ricardo, Piattini, Mario, 2014. Analyzing the harmful effect of god class
refactoring on power consumption. IEEE Softw. 31 (3), 48-54.

Pinto, Gustavo, Castor, Fernando, 2017. Energy efficiency: a new concern for
application software developers. Commun. ACM 60 (12), 68-75.

Pinto, Gustavo, Castor, Fernando, Liu, Yu David, 2014. Understanding energy behaviors
of thread management constructs. In: Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications.
OOPSLA ’14, Association for Computing Machinery, New York, NY, USA, pp.
345-360.

Pinto, G., Liu, K., Castor, F., Liu, Y.D., 2016. A comprehensive study on the energy
efficiency of java’s thread-safe collections. In: 2016 IEEE International Conference
on Software Maintenance and Evolution. ICSME, pp. 20-31.

24

The Journal of Systems & Software 210 (2024) 111944

Poess, Meikel, Nambiar, Raghunath Othayoth, Vaid, Kushagra, Stephens, Jr., John M,
Huppler, Karl, Haines, Evan, 2010. Energy benchmarks: a detailed analysis. In:
Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking. pp. 131-140.

Raj, Athul, Jithish, J., Sankaran, Sriram, 2017. Modelling the impact of code obfuscation
on energy usage. In: DIAS/EDUDM@ ISEC.

Ramachandran, Gowri Sankar, Daniels, Wilfried, Matthys, Nelson, Huygens, Christophe,
Michiels, Sam, Joosen, Wouter, Meneghello, James, Lee, Kevin, Cafiete, Eduardo,
Rodriguez, Manuel Diaz, Hughes, Danny, 2015. Measuring and modeling the energy
cost of reconfiguration in sensor networks. IEEE Sens. J. 15 (6), 3381-3389.

Roher, Kristin, Richardson, Debra, 2013. A proposed recommender system for eliciting
software sustainability requirements. In: 2013 2nd International Workshop on User
Evaluations for Software Engineering Researchers. USER, IEEE, pp. 16-19.

Ryu, K., 2011. Green product and production information management in the fractal
manufacturing system. In: Proc. ICPR21. Stuttgart, Germany, pp. 1-8.

Sahar, Hareem, Bangash, Abdul A., Beg, Mirza O., 2019. Towards energy aware
object-oriented development of android applications. Sustain. Comput. Inf. Syst.
21, 28-46.

Sahin, Cagri, Cayci, Furkan, Gutiérrez, Irene Lizeth Manotas, Clause, James, Ki-
amilev, Fouad, Pollock, Lori, Winbladh, Kristina, 2012. Initial explorations on
design pattern energy usage. In: 2012 First International Workshop on Green and
Sustainable Software. GREENS, IEEE, pp. 55-61.

Sahin, Cagri, Pollock, Lori, Clause, James, 2014. How do code refactorings affect energy
usage? In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. pp. 1-10.

Sahin, Cagri, Wan, Mian, Tornquist, Philip, McKenna, Ryan, Pearson, Zachary, Hal-
fond, William G.J., Clause, James, 2016. How does code obfuscation impact energy
usage? J. Softw. Evol. Process 28 (7), 565-588.

Saputri, Theresia Ratih Dewi, Lee, Seok-Won, 2016. Incorporating sustainability de-
sign in requirements engineering process: A preliminary study. In: Asia Pacific
Requirements Engineering Conference. Springer, pp. 53-67.

Saputri, Theresia Ratih Dewi, Lee, Seok-Won, 2021. Integrated framework for incorpo-
rating sustainability design in software engineering life-cycle: An empirical study.
Inf. Softw. Technol. 129, 106407.

Seo, Chiyoung, Malek, Sam, Medvidovic, Nenad, 2008. Estimating the energy consump-
tion in pervasive java-based systems. In: 2008 Sixth Annual IEEE International
Conference on Pervasive Computing and Communications. PerCom, IEEE, pp.
243-247.

Shenoy, Sanath S., Eeratta, Raghavendra, 2011. Green software development model: An
approach towards sustainable software development. In: 2011 Annual IEEE India
Conference. IEEE, pp. 1-6.

Siegmund, Norbert, Rosenmiiller, Marko, Apel, Sven, 2010. Automating energy op-
timization with features. In: Proceedings of the 2nd International Workshop on
Feature-Oriented Software Development. pp. 2-9.

Singh, Digvijay, Peterson, Peter AH, Reiher, Peter L, Kaiser, William J, 2010. The Atom
LEAP Platform for Energy-Efficient Embedded Computing: Architecture, Operation,
and System Implementation. UCLA Technical Report.

Steigerwald, Bob, Chabukswar, Rajshree, Krishnan, Karthik, Vega, J.D., 2008. Creating
Energy Efficient Software. Intel White Paper.

Taina, Juha, 2011. Good, bad, and beautiful software-in search of green software quality
factors. Cepis Upgrade 12 (4), 22-27.

Tanelli, Mara, Ardagna, Danilo, Lovera, Marco, Zhang, Li, 2008. Model identification
for energy-aware management of web service systems. In: International Conference
on Service-Oriented Computing. Springer, pp. 599-606.

Van Loon, Han, 2004. Process Assessment and ISO/IEC 15504: A Reference Book, Vol.
775. Springer Science & Business Media.

Venters, Colin C., Capilla, Rafael, Betz, Stefanie, Penzenstadler, Birgit, Crick, Tom,
Crouch, Steve, Nakagawa, Elisa Yumi, Becker, Christoph, Carrillo, Carlos, 2018.
Software sustainability: Research and practice from a software architecture
viewpoint. J. Syst. Softw. 138, 174-188.

Venters, Colin C., Capilla, Rafael, Nakagawa, Elisa Yumi, Betz, Stefanie, Penzen-
stadler, Birgit, Crick, Tom, Brooks, Ian, 2023. Sustainable software engineering:
Reflections on advances in research and practice. Inf. Softw. Technol. 107316.

Venters, Colin C., Kocak, Sedef Akinli, Betz, Stefanie, Brooks, Ian, Capilla, Rafael,
Chitchyan, Ruzanna, Duboc, Leticia, Heldal, Rogardt, Moreira, Ana, Oyedeji, Shola,
et al., 2021. Software sustainability: beyond the tower of babel. In: 2021 IEEE/ACM
International Workshop on Body of Knowledge for Software Sustainability. BoKSS,
IEEE, pp. 3-4.

Vetro, Antonio, Ardito, Luca, Procaccianti, Giuseppe, Morisio, Maurizio, et al., 2013.
Definition, implementation and validation of energy code smells: an exploratory
study on an embedded system. In: Proceedings of ENERGY 2013: The Third Inter-
national Conference on Smart Grids, Green Communications and IT Energy-Aware
Technologies. pp. 34-39.

Warade, Mehul, Schneider, Jean-Guy, Lee, Kevin, 2021. FEPAC: A framework for
evaluating parallel algorithms on cluster architectures. In: 2021 Australasian
Computer Science Week Multiconference. ACSW ’21, Association for Computing
Machinery, New York, NY, USA.

Webster, Jane, Watson, Richard T., 2002. Analyzing the past to prepare for the future:
Writing a literature review. MIS Q. xiii—xxiii.

http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb87
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb88
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb88
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb88
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb88
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb88
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb89
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb89
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb89
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb89
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb89
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb90
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb90
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb90
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb90
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb90
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb91
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb91
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb91
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb91
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb91
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb92
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb92
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb92
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb92
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb92
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb93
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb93
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb93
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb93
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb93
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb95
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb96
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb96
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb96
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb97
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb97
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb97
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb98
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb98
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb98
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb98
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb98
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb99
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb99
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb99
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb99
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb99
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb101
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb101
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb101
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb101
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb101
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb102
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb102
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb102
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb102
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb102
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb103
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb104
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb104
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb104
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb104
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb104
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb105
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb105
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb105
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb105
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb105
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb109
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb110
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb110
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb110
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb110
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb110
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb111
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb112
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb112
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb112
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb113
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb114
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb114
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb114
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb114
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb114
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb116
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb116
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb116
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb116
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb116
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb117
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb118
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb118
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb118
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb118
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb118
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb119
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb119
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb119
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb119
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb119
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb121
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb121
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb121
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb121
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb121
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb123
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb123
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb123
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb123
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb123
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb126
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb126
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb126
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb127
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb127
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb127
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb128
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb128
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb128
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb128
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb128
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb129
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb129
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb129
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb130
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb131
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb131
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb131
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb131
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb131
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb132
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb133
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb134
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb135
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb135
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb135

S.U. Lee et al.

Wilke, Claas, Gotz, Sebastian, Richly, Sebastian, 2013. Jouleunit: a generic framework
for software energy profiling and testing. In: Proceedings of the 2013 Workshop
on Green in/By Software Engineering. pp. 9-14.

Wu, Taiyang, Wu, Fan, Redoute, Jean-Michel, Yuce, Mehmet Rasit, 2017. An au-
tonomous wireless body area network implementation towards IoT connected
healthcare applications. IEEE Access 5, 11413-11422.

Xia, Boming, Bi, Tingting, Xing, Zhenchang, Lu, Qinghua, Zhu, Liming, 2023. An
empirical study on software bill of materials: Where we stand and the road ahead.
arXiv preprint arXiv:2301.05362.

Xing, Jiang, Zhu, Yunru, 2009. A survey on body area network. In: 2009 5th
International Conference on Wireless Communications, Networking and Mobile
Computing. IEEE, pp. 1-4.

Yuki, Tomofumi, Rajopadhye, Sanjay, 2013. Folklore confirmed: Compiling for
speed=compiling for energy. In: International Workshop on Languages and
Compilers for Parallel Computing. Springer, pp. 169-184.

Zhang, Chenlei, Hindle, Abram, 2014. A green miner’s dataset: mining the impact
of software change on energy consumption. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. pp. 400-403.

Sung Une Lee is a research scientist at CSIRO’s Data6l. She is currently working
on Software Engineering and Responsible AL She has over 10 years of industry

25

The Journal of Systems & Software 210 (2024) 111944

experience in Software Engineering and Project Management. Her research interests
include responsible Al, software engineering, data governance and project management.

Niroshinie Fernando is a senior lecturer in Software Engineering & Industry Practice
Lead, SwEng & IoT at Deakin University. She has previous industry experience, always
looking for interesting problems to solve. Her interest areas include IoT, mobile
computing, edge & cloud, smart cities, human-centered software, and ethical robots.

Kevin Lee is an associate professor at Deakin University. He is a computer science re-
searcher with over 80 International publications. He experiences lecturing in Computer
Science, reviewer, and chair of sessions at conferences. His specialties include Internet
of Things (IoT), robotics, applied distributed computing, and cloud computing.

Jean-Guy holds a Ph.D. degree in Computer Science and Applied Mathematics from
the University of Bern, Switzerland, and has more than 20 years’ experience in the
Higher Education Sector in Australia. He has held a variety of leadership positions and
is currently the Associate Dean (Education) of the Faculty of IT at Monash University.
His main research interests lie in the general area of reliable software technologies
with a special focus on component technologies and user-centered approaches.

http://refhub.elsevier.com/S0164-1212(23)00339-4/sb136
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb136
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb136
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb136
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb136
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb137
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb137
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb137
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb137
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb137
http://arxiv.org/abs/2301.05362
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb139
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb139
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb139
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb139
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb139
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb140
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb140
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb140
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb140
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb140
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb141
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb141
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb141
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb141
http://refhub.elsevier.com/S0164-1212(23)00339-4/sb141

	A survey of energy concerns for software engineering
	Introduction
	Green and Software Engineering
	Methodology
	 Software Engineering Body of Knowledge (SWEBOK)
	Literature Review

	Energy Metrics for Software Engineering
	Energy in the Software Engineering Development Life-cycle (SDLC)
	Energy in Requirements
	Green software requirements
	Tools and techniques

	Energy in Design
	Energy in Construction
	Impact of programming language & compiler
	Impact of code obfuscation
	Impact of data structures
	Strategies to support energy-efficiency during implementation

	Energy in Testing
	Test cases for locating energy leaks
	Automatic test generation for energy concerns
	Test suite minimization for detecting energy bugs

	Energy in Deployment
	Energy in Maintenance
	Energy in Configuration Management

	Processes, models and methods for energy in Software Engineering
	Energy in Process
	The green software processes and practices
	The process measurement metrics, tools and techniques for green software

	Energy in Models and Methods
	Software engineering models
	Software engineering methods

	Discussion
	Shifting Trends in Software Engineering
	Open Challenges in Green Software Engineering
	Lack of tools and techniques in the green requirements phase
	Difficulties in measuring the impact of software design on energy
	Test environment of multi-versions of software
	Adoption of energy-aware development practices
	Need for large scale and rigorous verification of energy testing tools
	Cost and time constraints in measuring energy consumption of multiple versions of software
	Lack of support for green software process
	Managing trade-offs

	Practical Implications
	The One-Page Green Software Engineering
	Goals, Questions, Metrics (GQM) for Addressing Challenges in Software Engineering
	Estimating the Energy Consumption of AI systems in the Supply Chain

	Threats to Validity
	Internal Validity
	External Validity

	Conclusions and Future Research Directions
	Declaration of competing interest
	Data availability
	References

