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ABSTRACT
Smart warehouses require software-based decision-making tools to manage the receiving, stor
ing, and picking of products. A major challenge in achieving efficient operations is deciding 
where to store products associated with incoming orders. The storage location assignment 
problem (SLAP) is more complex in large-size warehouses due to several functional objectives 
and numerous possible shelving solutions. This paper introduces an artificial intelligence algo
rithm that seeks to find an acceptable solution to SLAP with presented linear and nonlinear 
objective functions. The near-optimal technique exploits basin-hopping and simulated-annealing 
algorithms to find a solution when considering four functional objectives including worker safety, 
which has not been optimized using similar approaches. The algorithm is experimentally eval
uated, and results demonstrate that reasonablely achieved solutions are comparable to those 
obtained by well-known existing solvers. Furthermore, the problem could be solved with non- 
linear objectives which is beyond the commercial solvers’ like SCIP capability.
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1. Introduction

Material handling operations in a warehouse often 
require a costly decision-making process to manage the 
receiving, storing, picking, sorting, and shipping of pro
ducts. In general, retailers and wholesalers around the 
world receive palletized items of varying size, weight, and 
volume, keep them for a set period and then retrieve and 
ship them according to customer demands. The unique 
items in a pallet are also called Stock Keeping Units (SKUs) 
which are the smallest units that can be sold. The loca
tions of the received pallets or SKUs in the warehouse are 

determined by a warehouse management system. This is 
a complex problem involving several objectives, technical 
and safety constraints, and allocation criteria like item 
weight and product popularity [1–3]. One of the major 
aims of warehouse operations systems is to decide where 
to store the incoming orders to help facilitate the order- 
picking process for item retrieval. This is known as storage 
location assignment problem (SLAP) [1]. As the number of 
stored SKUs increases in the facility, the number of pos
sible shelving locations becomes very large. For example, 
a small incoming order that contains 20 pallets in 

CONTACT George K. Knopf gkknopf@uwo.ca Department of Mechanical and Materials Engineering, The University of Western Ontario, London, 
Ontario, Canada

JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING 
2024, VOL. 41, NO. 1, 40–59 
https://doi.org/10.1080/21681015.2023.2263009

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting 
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21681015.2023.2263009&domain=pdf&date_stamp=2024-01-05


a warehouse with 100 available storage locations would 
result in 1:3039� 1039 unique solutions if every location 
in the warehouse can accommodate one pallet with no 
allocation constraints.

These industrial warehouses are increasingly utiliz
ing Industry 4.0 technologies in their logistics systems 
[4] to improve speed of operation, decision-making 
transparency, and integrity control. Industry 4.0 aims 
to enhance the productivity of manufacturing man
agement and service systems through employing tech
nological advances in information technology (IT), 
such as artificial intelligence (AI) [5], to ensure that 
the right product is delivered at the desired “time, 
place, quantity, condition, and cost” [4].

A variety of mathematical programming algorithms 
have been utilized to tackle this challenge [1,6] and 
assist the warehouse operators in performing the task 
both effectively and efficiently. Unfortunately, the 
SLAP is a non-deterministic polynomial-time (NP)- 
hard problem where conventional optimization tech
niques require extensive computational time to find an 
optimal solution when the order size increases. Most 
optimization techniques applied to SLAP also derive 
a solution using a single utility function such as order- 
picking efficiency. These optimization techniques 
often neglect practical issues like rack stability [7] and 
human factor considerations such as worker safety [8].

The importance of incorporating human-centric solu
tions and safer working environments is a critical aspect 
of emerging strategy known as Industry 5.0 [9]. In the 
context of this industrial application, the allocation of 
storage spaces can significantly impact the safety of 
warehouse workers [10,11], particularly concerning 
hazards such as falling objects. According to the U.S. 
Bureau of Labor Statistics, the injury rate among full- 
time workers in the warehousing and storage sector was 
4.8% in 2020. Furthermore, the Occupational Safety and 
Health Administration (OSHA) of the United States 
reported that over 50,000 individuals sustain injuries 
from falling objects in warehouses every year [12]. 
While various preventive measures have been imple
mented to enhance worker safety, accidents predomi
nantly occur due to human errors. For instance, 
allocating a bulky or heavy item to an elevated rack 
increases the risk of injury. AI-based technologies repre
sent an opportunity to mitigate safety concerns in ware
house environments [13] by providing safety-oriented 
optimal solutions to the industrial SLAP.

In industrial warehouses, different storage strategies 
are used when assigning incoming products to locations 
in the shelving units. These include dedicated, flexible, and 
class-based placement. Dedicated placement occurs 
when the identified products are always stored in fixed 
locations whereas flexible placement refers to products 
whose locations on the shelving units can vary over the 
time. Alternatively, class-based placement involves 

allocating each item to a predetermined zone where its 
location in the identified zone can be flexible. Several 
policies have been introduced to allocate incoming items 
to available locations. These policies tend to rank items 
based on one or more criteria and prioritize the products 
to be placed near the pick-up/drop-off P=Dð Þ for efficient 
retrieval. In addition, the policies often attempt to locate 
similar types of items close to each other on the storage 
shelves. Other approaches incorporate a hybrid criterion 
for rack assignment, such as the cube per order index (COI) 
[14,15], which considers both product turnover and 
volume.

The objective of this research is to provide an efficient 
AI-based (i.e. meta-heuristics) approach to a real-world 
storage allocation problem. The problem is modeled 
using mixed integer nonlinear programming with four 
utility functions including worker safety. The inclusion of 
worker safety as a utility function is critical and a novel 
aspect of this work. To achieve a meaningful result in 
practical time, a hybrid optimizer is developed, combin
ing the benefits of basin-hopping and simulated annealing 
techniques. The hybrid optimizer is capable of handling 
both linear and nonlinear objective functions. The perfor
mance of the proposed technique is then compared with 
a well-established solver available to industry, i.e. SCIP, 
that can only utilize linear objective functions. The pro
posed approach provides warehouse managers with 
a flexible practical tool to store items based on their 
prioritized objectives. Section 2 summarizes the related 
published literature and discusses the need for optimized 
solutions to SLAP. The proposed methodology is 
explained in Section 3. The developed method is then 
applied to a real-world storage assignment problem 
found at an Australian furniture company and the out
comes are illustrated in Section 4. Section 5 discusses 
some key implications of the study, and section 6 pre
sents conclusions and future work.

2. Related work

Industrial storage facilities and warehouses have often 
lacked appropriate planning and, therefore, the process 
of deciding the storage location for incoming pallets and 
products is not optimal [16]. To improve operational 
efficiencies, numerous medium and large storage ware
houses have sought to optimize the process and reduce 
costs. Specifically, a great deal of interest has been direc
ted toward optimizing the SLAP. Unfortunately, SLAP is 
an NP-hard problem due to various reasons including 
computational complexity [3]. Different policies have 
been introduced to facilitate the assignment decisions 
and consequently order-picking operation. Table 1 sum
marizes the six most common assignment policies used 
to assign the pallets of incoming orders to available (free) 
locations in the flexible storage facility [2,17]. 
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Most SLAP studies have investigated order-picking 
efficiency by minimizing the travel distance or traveling 
time of the item picker. The problem has been 
addressed using mathematical programming (e.g. inte
ger programming, mixed integer linear, or non-linear 
programming), heuristic and meta-heuristic algorithms 
(e.g. greedy search and genetic algorithm (GA)), multi- 
criteria decision-making (e.g. ELECTRE and SMART), or 
a combination of these methods [1]. Discrete event 
simulation (DES) has also been used to evaluate the 
effects of storage assignment policies on warehouse 
performance [18]. DES has been utilized to simulate 
the performance of order-picking operations under 
various storage assignment policies, considering 
demand probability distributions [19], where the sys
tem was modeled using binary integer programming.

In some studies, an integrated approach that com
bined mathematical and heuristic optimization methods 
was employed. For instance, integer linear programming 
with a Lagrangian relax and fix approach was used to 
minimize warehouse costs [20]. The combination of Non- 
Dominated Sorting GA and Ant Colony Optimization was 
also developed for SLAP optimization problems, and 
results confirmed that this method outperforms common 
storage allocation policies such as random, closest open 
location, and ranked-based assignment [21]. In another 
study, integer and dynamic programming had been used 
for modeling SLAP, and the optimal solution was investi
gated by the tabu search algorithm [22]. The study 
showed that tabu search achieved better results than 
either a GA or a greedy strategy. Another method incor
porated mathematical linear formulation and a heuristic 
local search strategy to find an appropriate solution for 
the large-scaled SLAP with compatibility constraints such 
as complementarity or affinity [23]. This approach was an 
extension of heuristic algorithms for warehouse storage 
with operational constraints [24].

The combination of SLAP with order-picking opti
mization and routing policies has also been modeled 
as cubic mixed integer programming problem and 
solved using a General Variable Neighborhood Search 
metaheuristic algorithm [25]. The study showed that 
the optimal storage allocation can reduce the picker’s 
traveling time by 27% to 62%. In addition, an improved 
version of particle swarm optimization (PSO) had been 
proposed to solve joint SLAP, batching and picking 

routing problem optimization [26]. The proposed 
method could obtain a solution in a short amount of 
time while improving traveling distance. Integer pro
gramming was also used to allocate SKUs to storage 
racks in earthquake-prone locations while minimizing 
order-picking travel distance and preventing racks col
lapse in seismic events [27].

In addition to order-picking, some researchers incor
porated both picking comfort and picking cycle time in 
their model of the assignment problem [28]. In this 
work, the problem was modeled using integer program
ming and solved using a bi-objective optimization tech
nique. The study showed that minimizing discomfort 
leads to an increase in cycle time. However, the merits 
of improving picking comfort and its effects on cycle 
time need a long-term study. Warehouse size determi
nation has also been included in the assignment pro
blem for simultaneous optimization. Mixed integer linear 
programming (MILP) was used for modeling the process 
while a heuristic approach was incorporated for optimi
zation [29]. The proposed integration led to more effi
cient warehouse performance for severely constrained 
and large-scale problems [29]. A subsequent study 
focused on a new method of finding the optimum 
dimensions of a storage facility [30]. The researchers 
proved that a storage location policy did not affect 
warehouse shape optimization and could be studied 
independently. MILP was also utilized in a different 
SLAP study where the warehouse was served by milk- 
run logistics [31]. The objectives of the study were to 
minimize order cycle time and the pickers’ time simul
taneously. The technique had the ability to solve the 
problem using commercial optimization software, and 
achieved better results than a simple COI storage policy.

Few studies have proposed models with dynamic 
conditions which consider changeable demand patterns. 
These studies showed that optimization methods using 
meta-heuristic algorithms such as tabu search, simulated 
annealing, and greedy local search would lead to better 
warehouse performance under changing demand func
tions over time [2,32]. Affinity between items also adds 
complexity to the dynamic SLAP. A cluster-based assign
ment method had been developed to reduce retrieval 
time based on both turnover and affinity of items [33]. To 
address affinity considerations, quadratic assignment pro
blem (QAP) approaches have also been used to model 

Table 1. Common policies for assigning pallets to warehouse shelves [2,17].
Policy Description

Random based Each item is assigned to a free location across a warehouse with equal probability.
Closest available location An item (of incoming order) is assigned to closest free space to the P/D point.
Affinity based Items ordered mostly together by customers are located closer to each other.
Turnover or popularity based Items with higher demand or popularity are placed closer to the P/Dpoint.
Volume based Items with larger volume are located closer to the P/D point.
Rule based Items are stored based on rules extracted from human experience.
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dynamic SLAP with single objective, to minimize travel 
distance in a class-based storage scenario [2]. Due to 
computational complexity of the problem, the model 
solved by meta-heuristic algorithms (i.e. greedy GA) [34] 
where the affinity of items, called association index (AIX) 
[35,36], were extracted and the results showed significant 
improvement in order-picking travel distance and effi
ciency of the meta-heuristic algorithm in solving this 
complex problem.

Some warehouses incorporate zones of products 
which make optimization challenging using the pre
viously discussed approaches. For example, consider 
dividing a warehouse into two-class storage space with 
reserve and forward areas, where the forward area is 
smaller than the reserve section. Products are stored in 
the reserve section, and items are frequently picked from 
the forward area to be replenished by inventories kept in 
the reserve section, hence making it challenging to allo
cate SKUs in both zones. One approach to tackle this 
problem is modeling the warehouse as Knapsack problem 
with the objective of minimizing the replenishment and 
picking costs [37]. In another class-based storage optimi
zation approach, a new assignment policy used a cascade 
structure for allocating non-commodity items with recur
rent but uncertain demands [38]. The study relied on the 
probability of revisiting a mold in a same location 
obtained from historical data and used mathematical 
programming for optimization. Additionally, warehouses 
can be divided into different zones based on familiarity 
between products in class-based optimization. To classify 
products, three criteria have been used to measure famil
iarity: complementarity, compatibility, and popularity [23]. 
Complementarity considers that whether items are com
monly ordered together, such as a dining table and its 
chairs in a furniture warehouse. Compatible items pos
sess at least one common feature, warranting their place
ment in proximity to each other – consider refrigerated 
and non-refrigerated products. Popularity, on the other 
hand, evaluates how frequently products are retrieved 
from their respective locations. This criterion enables the 
assignment of fast-moving or slow-moving items to 
a designated zone.

Collecting input data for SLAP optimization espe
cially in large-size warehouses is time-consuming and 
must be performed precisely to be reliable. Radio 
frequency identification (RFID) as a means of data 
collection is proposed to facilitate capturing of real- 
time information in a warehouse [39]. An integrated 
system of gathering real-time data using RFID tech
nology and PSO for SLAP shows the positive effects 
of real-time data gathering on the optimization of 
the problem with the objectives of cargo adjacency, 
item priority, and rack stability [40]. Some recent 
studies proposed novel approaches such as employ
ing machine-learning techniques [41] and finite- 

element-based method [42] for solving dynamic 
SLAP; however, their efficiency has not yet been 
tested on a real-world problem.

Potential health and injury risks are increasing due to 
the rapid growth and labor-intensive nature of warehous
ing operations; however, existing research on warehouse 
safety is scarce [13]. There is a significant negative relation 
between the presence of safe work procedures (as one of 
the safety management practices) and safety performance 
outcomes, such as accident rates [43]. In addition to cost
ing the company more time and money, the appropriate 
safety measures will likely reduce the performance of the 
warehouse operations [44]. A framework for improving 
warehouse safety was introduced based on the risks gen
erated in warehouse operations [45]. Monitoring the tech
nical parameters of racks integrated with analytical 
simulation was proposed as a method of securing safety 
in high-level warehouses [46]. Notably, a study demon
strated that the number of accidents in warehouses was 
reduced by analyzing images captured by 360-degree 
cameras mounted on forklifts using a deep-learning algo
rithm [47]. To further enhance worker safety in cold- 
storage environments, deep neural network technology 
was combined with digital twin technology using data 
received from Internet of Things sensors [11].

Rarely did these studies tackle the challenge of 
including the human and safety in the warehousing 
optimization process. Worker safety is an inevitable 
consideration that must be more respected in ware
houses with manual storing/retrieval processes; how
ever, safety has not been considered in existing SLAP 
optimization approaches. The key contributions of this 
paper are as follows: introducing four utility functions 
for measuring and improving the defined objectives in 
SLAPs; developing an AI-based algorithm for discrete 
optimization of high-dimensional SLAPs with non
linear functions; and incorporating worker safety (as 
a systematic consideration) to the SLAP of a warehouse 
with a manual picker-to-part order-picking method.

3. Methodology

The proposed methodology aims to solve the SLAP 
for large orders in a multi-level manual picker-to-part 
warehouse in reasonable time. Each order contains 
several palletized products which must be placed at 
different rack levels with the objective of maximizing 
order-picking efficiency while considering affinity and 
safety constraints. The proposed methodology 
includes both problem modeling and optimization 
steps. The SLAP optimization model is divided into 
three categories based on the availability of informa
tion prior to receiving orders [48]. These categories 
include (i) SLAP based on Product Information (SLAP/ 
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PI), when information at product level such as average 
number of picks or average duration of stay, is avail
able; (ii) SLAP based on Item Information (SLAP/II), 
when item information such as time of arrival and 
shipping are known; and (iii) SLAP based on NO 
Information (SLAP/NI), when there is no information 
available for product allocation. Since product infor
mation is mostly available prior to receiving orders, 
the problem is modeled as SLAP/PI where three major 
components of the decision-making process are illu
strated in Figure 1 [48]. 

Four objectives with respective constraints are 
extracted and modeled using a mixed-integer pro
gramming approach to achieve the appropriate alloca
tion of pallets to empty rack locations. The objectives 
of picking efficiency and affinity facilitate the order- 

picking operation by reducing the traveling distance 
and worker confusion about where to place the pallet. 
The objectives of rack stability and worker safety are 
also introduced in the proposed decision model to 
help ensure a safer work environment and, thereby, 
aligning the allocation decisions with the principles of 
Industry 5.0 [9]. The 27 notations used in describing 
the optimization process developed in this research 
are listed in Table 2.

3.1. SLAP optimization model

To develop the optimization model, the variables are 
normalized due to their different operating ranges. 
Linear (max) method is used for normalization where 

Input

•Storage area Information like physical configuration and 
layout

•Storage location information containing physical dimensions, 
location, availability

•Product (SKU) information including demand, quantity, 
physical dimensions, affinity 

Decision 
objectives/ 
constraints

•Storage location capacity such as weight and space
•Safety regulations
•Picking efficiency measures

Output

• Allocated locations to SKUs of received orders

Figure 1. SLAP/PI decision model based on work by Gu et al. [48].

Table 2. Notations used in this paper (Iv: integer variable, BI: binary integer variable, Rv: real variable, Sv: set or an array of 
variable).

Notation Type Description

SLj Sv Storage location includes xj; yj; zj; Avj;MWj; dj
� �

xj; yj Rv Horizontal coordinates of location j in a warehouse
zj Rv Vertical coordinate of location j in a warehouse
Avj BI Status of location j that shows either the location is empty or occupied
CWj Rv Maximum load capacity of location j
dj Rv Distance between location j and P/D point
PLi Sv Pallet containing product (SKU) i which includes wi;Di; ri; qif g
wi Rv The weight of PLi
Di Rv Annual demand of SKU (product) i
ri Iv Falling risk of SKU (product) in PLi
qi Iv Quantity of SKU in PLi
ki;j BI Occupancy variable that shows if PLi is assigned to location j or not
SOi Sv Solution in ith iteration of optimization or a set of occupancy variables ki;j

� �
that meets problem constraints

Qi Rv Relative fluctuation of utility values in b consecutive solutions before ith iteration
E Sv Set of empty locations in the warehouse
Em Sv Set of empty locations in mth the warehouse
I Sv Set of available PLs in a received order
Is Sv Set of available SKUs with affinity in a received order
fi;r Rv Penalty (cost) of not placing SKUs i and r in a same rack
N Iv Number of pallets in the incoming order
Ti Rv Optimizer temperature in ith iteration of optimization
α Rv Geometric cooling rate
β Rv Vertical distance adjustment factor
p̂ Rv Relocation probability
δ Iv Temperature update factor (after perturbations)
n Iv Maximum number of perturbations in a run of optimization
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v0 shows the normalized value of variable v. To include 
rack stability and safety optimization in the proposed 
SLAP model, two utility functions (in Cobb-Douglas 
format) are defined incorporating warehouse safety 
regulations [49,50] and the objective function is 
defined by Eqn. (1). The constraints are given by 
Eqns. (2) to (5). 

In this approach, maximizing rack stability is achieved 
by minimizing the rack instability utility function Wð Þ. 
The function prioritizes the assignment of heavier pal
lets to lower rack locations, which also reduces the rack 
center of gravity. Furthermore, high rack stability 
reduces the probability of rack collapsing in an acci
dent or during the occurrence of natural disasters.

Note that the utility function for measuring instability 
Wð Þ is inspired from a formula for calculating gravitational 

energy. The constraint given by Eqn. (5) defines the 
bounds and limits the occupancy variable so that the 
result is restricted to only binary values, while the con
straints associated with Eqns. (2) and (3) ensure that only 
one unit load is assigned to each free location and all 
incoming pallets find a location in the warehouse. An 
allocated pallet must not weigh more than the rack loca
tion weight capacity which is represented by the con
straint defined by Eqn. (4). In addition to stability, 
extracting heavy items from high rack levels often con
sume more time or energy which is not examined in this 
study.

The worker safety utility function Rð Þ is defined by 
measuring the risk of falling objects which threatens 
workers health while retrieving or storing an item. This 
risk is higher in products with uneven weight distribution, 
having bulky non-cuboid boxes, or with unsafe contents, 
such as dangerous chemicals. These hazards can pose 
risks to pickers handling products as well as to other 

workers within the warehouse. For instance, in 
a furniture warehouse, a falling sharp-edged item from 
a top rack level can escalate the severity of potential 
injuries. This risk can be reduced by allocating high risk 
products to lower rack levels. For this, each product is 
allocated a falling risk number between 1 and 9 by an 
expert such as warehouse operation managers, where 1 
represents items with lowest risk and 9 shows items with 
highest falling hazard shown in Table 3.

The objective function used to minimize R while 
observing constraints in this step is given by, 

To improve order-picking efficiency, items with high 
demand and small size must be placed closer to the 
P=D point from where the orders are shipped. In this 
way, the travel distance of retrieving items and, conse
quently, the total order cycle time is decreased [14]. Using 
high-level racks causes some difficulties in modeling the 
problem like considering order-pickers different vertical 
and horizontal speed (7). The distance of location j from 
P=D point Oð Þ in a three-dimensional warehouse is calcu
lated by the introduced revised Manhattan method 
given by 

Since the horizontal and vertical speed of transporters 
is not equal in a pick-up trip, β as an adjustment factor 
is introduced for maintaining the equation consis
tency. For instance, if the average horizontal speed of 
an “order picker” (a transporter driven by the human 
used for picking several items in one trip) is 3 m/s and 
vertical speed is 0:5m=s, β can be set to 3=0:5 ¼ 6.
Order-picking efficiency utility function Dð Þ is used to mea
sure the closeness of desirable items to the P=D point. 
Preferred items are smaller and have high frequent retrie
vals in a warehouse. The objective function for minimiz
ing the total travel distance for picking orders is given by 

Order-picking typically accounts for 55% of warehouse 
operating costs [51] and its optimization is highly pur
sued in warehouse operations.

Table 3. Risk number scale.
Risk no. 1–2 3–4 5–6 7–8 9

Severity Minor Low Moderate High Very High
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In addition to above-mentioned objectives, some 
SKUs are preferred to be stored in a same rack or an 
aisle which are called affinitive SKUs. For instance, in the 
furniture industry, metal legs of a table and its top mount
ing glass plate may be received in different pallets but are 
preferred to be placed in a same rack to facilitate order- 
picking process. To include this preference, a non-linear 
utility function is defined as a penalty (cost) function to 
penalize the affinitive SKUs which are not allocated to 
a same rack. The objective function, which minimizes the 
normalized sum of associated penalties, called affinity 
optimization, is given by 

3.2. Optimization

Solving this NP-hard problem exactly in large ware
houses is not feasible; therefore, AI-based optimization 
approaches utilizing meta-heuristic algorithms are more 
applicable. This study developed a method inspired by 
basin-hopping (BH) [52] and simulated annealing (SA) 
[53] to find a desirable solution in a reasonable time. In 
the proposed algorithm, local search is performed using 
an SA concept while the random jump (perturbation) is 
inspired by BH algorithm. Figure 2 demonstrates how 
the proposed algorithm can investigate the search 
space for the global optimum solution.

The first step is setting up algorithm hyperpara
meters and experimental conditions such as optimi
zer initial temperature, stop criteria, cooling 
schedule and cooling rate, and after that the algo
rithm starts with generating a feasible initial solu
tion which met all model constraints. The optimizer 
finds a random neighbor for the solution (SOi) con
sidering the specific problem constraints. The neigh
bor solution is produced by one of the following 
random mechanisms: relocating a placed pallet to 
an empty location or swapping locations of two 
allocated pallets. If the neighbor has a better utility 
value UVð Þ, the solution is kept as the best solution, 
otherwise (if the neighbor has worse UV), the neigh
bor is kept as the best solution with the probability 
of eΔUV=Ti [54] where ΔUV ¼ ðUVi� 1 � UViÞ:The opti
mizer checks if the sum of relative fluctuations Qð Þ
of “b” consecutive solutions, Eqn. (10), during the 
optimization of an objective function Fð Þ is smaller 
than a certain predetermined value εð Þ and if the 
maximum number of perturbations is not reached. 
If so, the solution is perturbed, and optimizer 

temperature will reset to a fraction of the initial 
temperature given by Eqn. (12).

If Q � ε, the optimizer updates Ti and continues 
iterations, otherwise the algorithm stops iterations 
and returns the optima. If Q< ε and the maximum 
number of perturbations is reached, the algorithm 
continues with iterations until the optimizer tem
perature is less than final temperature. The relative 
fluctuation of the utility values in b consecutive 
solutions before the ith iteration is given by, 

The perturbation mechanism (PtÞ is defined as random 
swapping of the location of a certain percent of items 

p̂ð Þ (also called relocation probability) considering pro
blem constraints. Maximum number of perturbations 

nð Þ, ε, and p̂ are the model hyperparameters defined by 
the user.

Geometric cooling, Eqn. (11), is a common type of 
cooling schedule where α is normally between 0:8 and 
1. The larger value of α means the slower cooling 
schedule and the lower chance of getting trapped in 
a local optimum [54]; however, the optimization time 
would increase. 

The optimizer initial temperature (T0) can be deter
mined by the maximum difference between utility 
values of two neighbors ðΔUVmaxÞ [54]. The pro
posed SLAP optimization algorithm is shown in 
Algorithm 1. The initial setup is executed in the 
first 5 lines of the algorithm, while lines 6 to 13 
illustrate the simulated annealing component of the 
optimizer. After appropriate number of iterations, 
the best solution achieved in line 12 is utilized as 
a seed structure for perturbation. The new structure 
is generated by random displacement of the seed 
structure [55] which is defined as perturbation 
mechanism. Lines 14 to 16 depict the perturbation 
part, inspired by basin hopping algorithm.

4. Evaluation of SLAP optimizer

4.1. Data gathering and design of experiments

The efficiency of the proposed algorithm is evaluated by 
solving the storage assignment problem in a flexible 
storage warehouse of an Australian furniture company. 
Data from this case study were used to generate realistic 
test cases for the experimental evaluation. Input data 
such as bays’ locations are extracted from warehouse 
layout drawings. The floor plan of the warehouse has 65 
five-to-six level racks, and each rack contains 240 to 336 

46 A. ZARINCHANG ET AL.



bays or storage locations ðSLjÞ with different weight 
capacities, heights, and distances to the P/D point.

A placed order is received in one or more contain
ers, where each container can hold up to 21 pallets and 
each pallet contains one or more sales units. Order (I) 
and storage location information is captured by the 
company’s warehouse management system (WMS). 
A pallet must be placed in one empty location (where 
Avj ¼ 0Þ and items in a pallet would be retrieved in 
sales units such as cartons. Four racks of the company 
warehouse are selected as potential locations in this 
study and the WMS shows 169 empty locations in 
selected racks. The warehouse has a picker-to-part 
manual retrieval system [56] where workers pick 
items from racks and take them to shipping area by 
forklifts or Order Pickers. Considering the transporters 
speed, β is set to 6 in this problem.

Eight experiments have been designed to evaluate 
the proposed approach considering the four objec
tives: picking efficiency, affinity, rack stability, and 
worker safety. Table 4 summarizes the eight experi
ments performed in this study. The experiments are 
designed such that the small and large incoming 
orders contain 15 and 90 pallets, respectively, varying 
in weights, safety risk, annual demand, and quantity 
per pallet that should be assigned by the proposed 
algorithm. An example of small-order specifications is 
shown in Table 5, and it is assumed that the large order 
contains six small orders, i.e. the algorithm must assign 
incoming pallets to 15 or 90 empty bays (out of 169) 
across the warehouse optimizing three introduced sin
gle objectives. It is assumed that at least one storage 
location can be found to accommodate each pallet in 
the defined experiments.

A grid search method is used to set the hyperpara
meters of the algorithm. The optimizer initial tempera
ture is calculated using ΔUVmax in the following 
optimization sections. The cooling schedule is selected 
to have a rate of α = 0.998 to ensure very slow cooling 
process. The stop criterion is determined by the algo
rithm target temperature (Tf Þ, i.e. Tf = 0:01� 10� 3. The 
value of Tf is close to zero but never reaches absolute 
zero because of the geometric cooling schedule used 
to define the optimizer temperature. The numbers of 
perturbations nð Þ, b, δ, and p̂ are obtained experimen
tally (using grid search method) in this problem, and 
they are set to 3, 100, 4; and 0:25, respectively, for all 
experiments. The pre-determined value for the experi
ments is ε = 0:01 for Experiments 1 and 2, ε = 0:03 for 
Experiments 3 to 6, and ε ¼ 0:1 for Experiments 7 and 
8. The penalty for not placing affinitive items on the 
same rack is assumed a constant value and due to the 
random nature of this optimization, all experiments are 
conducted 10 times to examine the variation of results. 
The experiments are performed on a commercial com
puter using Intel® Core™ i5-1035G1 CPU with base 
clock speed of 1.00 GHz and maximum turbo fre
quency of 3.6 GHz and 8 GB of memory.

4.2. Optimization for order-picking efficiency

The objective is to minimize the distance utility func
tion or distance paved by transporters for picking the 
customers’ orders. The optimizer initial temperature 
for the proposed optimization is set to 1 considering 
the maximum possible difference between values of 
the utility function Dð Þ for two neighbors (ΔUVmax) [54]. 
This maximum difference is determined by moving 

Algorithm 1. SLAP optimization algorithm inspired by Basin hopping and Simulated Annealing
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Set up algorithm parameters and experimental conditions

Generate a feasible initial solution 

Find a random neighbor for the solution considering problem 
constraints. 

Does the neighbor have a better 
utility value?

No

Calculate acceptance probability (p) and generate a random 
uniform number (r) between 0 and 1.  

Is r smaller than p (r < p)?

Yes

Accept the neighbor as the best solution and update the temerature

Yes

No

Stop and return the best solution

No

Yes

Perturb the 
solution and 

reset
temperature

Is Q < ε and 

No

Is maximum 
number of 

perturbation 
reached ?

Yes

Is temperature < final 
temperature?

Update 
temperature

NoYes

Figure 2. Flowchart showing the SLAP optimization algorithm.

Table 4. Experiment order, sizes, and objectives.
Experiment Order Size (pallets) Objective

1 15 pallets Order picking efficiency
2 90 pallets Order picking efficiency
3 15 pallets Rack Stability
4 90 pallets Rack Stability
5 15 pallets Safety
6 90 pallets Safety
7 15 pallets Items affinity
8 90 pallets Items affinity
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a pallet with the highest demand score D
0

i � q
0

i

� �
from 

closest to the farthest possible empty location.
Experiment 1 is performed using a feasible initial 

solution where an incoming order must be placed in 
15 out of 169 available locations with the objective of 
maximizing order-picking efficiency. The calculated 
initial value of utility function D, Eqn. (8), for this 
experiment is 9:09� 10� 2. After repeating the experi
ment for 10 consecutive runs, the mean UV of final 
solutions is improved (i.e. decreased) by 49% to 
4:63� 10� 2. Standard deviation of final solutions is 
2:24� 10� 5 which is less than 0:1% of the mean and 
the average execution time is 8 s. The slight variation 
of final value happens due to random nature of this 
optimizing process. As illustrated in Figure 3, the algo
rithm has hill-climbing capability and the tendency to 
accept worse neighbors during iterations with the 
probability of eΔUV=Ti to prevent getting stuck in 
a local minimum.

In addition, three jumps, representing three pertur
bations, can be observed in the graph of distance 
utility values during the course of optimization. When 
the optimization is close to the last iteration in each 
perturbation, the probability of selecting worse solu
tion decreases and less fluctuation is observed. 
Similarly, Experiment 2 runs 10 times using a feasible 
initial solution and the execution time takes 42 s in 
average. The mean UV of obtained solution decreased 
to less than 70% of its initial through iterations and the 
standard deviation of final solution is less than 0:2% of 
the mean. Figure 4 illustrates the fluctuation of dis
tance and cost utility values in a sample run of 
Experiment 2.

In experiments 1 and 2, there is a notable fluc
tuation of Distance UV at the experiment’s outset 
and following each perturbation, primarily due to 
the elevated optimizer temperature. Second and 
third perturbations experience less variation of UV 

Figure 3. Distance (D) optimization in Experiment 1: optimizing distance utility function for incoming order of 15 PLs varying in 
weight, safety risk, annual demand, and quantity per pallet. The algorithm manages to find a solution around 20,500th iteration.

Table 5. Example of small-order specifications.

SKU(i) PL ID

PLi

wi kgð Þ Di ri qi

1 999101 767 82 5 70
2 999102 541 37 9 20
3 999103 493 10 8 70
4 999104 421 40 5 50
5 999105 381 87 8 20
6 999106 365 32 9 100
7 999107 346 95 9 10
8 999108 342 70 9 80
9 999109 332 87 4 50
10 999110 326 95 5 30
11 999111 289 31 7 40
12 999112 265 34 3 60
13 999113 180 72 3 20
14 999114 58 74 3 70
15 999115 22 53 1 70
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due to having lower optimizer temperature at their 
beginning. Figure 4 also shows a possible correla
tion between distance and cost (affinity) optimiza
tion; however, it is not examined statistically in this 
study. An improvement of rack stability and safety 
is achieved during distance optimization due to 
the method of distance calculation. Since vertical 
distance is adjusted by β in the revised Manhattan 
method, the optimizer prefers to locate items in 
lower shelves which influences the solution to 
meet other problem objectives, Eqns. (1) and (6), 
partially. Figure 5 depicts the UVs of instability and 
risk through a run of the distance optimization in 
Experiment 2. The left vertical axis represents rack 
instability UV and the right one shows risk UV . The 

perturbations of solutions are also evident as three 
distinct leaps in Figure 5.

4.3. Optimization of rack stability

This step aims at maximizing rack stability by minimizing 
the height of center of gravity considering allocation 
constraints. With distance optimization, ΔUVmax for this 
utility function is calculated and initial optimizer tempera
ture is set to 1. Figures 6 and 7 illustrate rack instability 
UVs in one run of optimizations and how the optimizer 
escapes from the trap of local optimums to satisfy the 
stability objective function. The optimizer found the glo
bal minimum of Experiment 3 in less than 7s where the 
utility value of minimum is 0:0 in all 10 runs. Zero 

Figure 5. Rack instability (W) and risk (R) fluctuations during distance optimization for Experiment 2. Although a decrement is 
seen, it does not converge toward minimum.

Figure 4. Distance (D) optimization for Experiment 2: allocating a large size order. The optimizer can escape from the local 
minimums and convergence happens after 18,500th iterations.
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instability was attained in the optimization of the small 
order, as the optimizer managed to allocate all items on 
the ground level of the racks. In Experiment 4, the solu
tion is achieved in 38 s, and final utility value of all runs is 
less than 38% of the initial value.

The standard deviation of final solutions is less than 
0:03% of the average, which is acceptable for this 
problem. There is an observed improvement of storage 
risk during rack stability optimization as shown in 
Figure 8. This improvement must happen due to the 
existence of zj in their objective function, Eqns. (1) and 
(6), and possible correlation between risk number and 
weight of an SKU, therefore locating heavy pallets in 
lower shelves can improve storage risk as well. There is 
no sign of correlation between stability and distance 
objectives, and only random fluctuation of distance 
UVs is observed in rack stability optimization. During 
stability optimization, cost (penalty) utility values 

fluctuate randomly, and no specific pattern is observed 
according to Figure 7.

4.4. Optimization for safety

To minimize the risk of falling objects in the ware
house, SKUs with higher risk numbers must be 
assigned to lower shelves. Optimizer initial tempera
ture is adjusted to 1 which are calculated in the same 
way of optimizations in Sections 4.2 and 4.3. 
Experiments 5 and 6 are conducted for 10 times to 
examine the algorithm applicability and variation of 
the final solutions. Figure 9 depicts risk UVs during 
one run of Experiment 5. The utility value of 
a generated feasible initial solution reduces to the 
optimum value of 0:0 at the end of optimization in all 
runs. The average execution time is 8 s in the con
ducted experiment. Zero risk was achieved in the opti

Figure 7. Rack instability (W) optimization for Experiment 4. It converges toward the minimum after 13,000th iterations.

Figure 6. Rack instability (W) optimization for Experiment 3. It converges toward the optima after 10,000th iterations.
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Figure 10. Risk (R) optimization for Experiment 6. It does not show a steep slope of improvement after 9,500th iterations and 
converges to the minimum after 11,500th iterations.

Figure 9. Risk (R) optimization for Experiment 5: wide range of fluctuation at the beginning is seen but it converges toward the 
final solution after 7,500th iterations.

Figure 8. Distance (D) and Risk (R) values through stability optimization for Experiment 4. An improvement is observed for Risk (R) 
but distance (D) has random fluctuation.
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mization of small orders, because the optimizer suc
cessfully allocated all items to the ground level of the 
racks, thereby completely eliminating the risk of falling 
objects.

Comparing the safety utility value of the initial solu
tion in Experiment 6 and the average UVs of 10 runs 
shows 49% decrement with the standard deviation of 
0:04% in this optimization and average execution time 
was 34 s. Figure 10 demonstrates the improvement of 
safety UVs in a run of Experiment 6 while avoiding local 
minimum traps. There exists a random fluctuation in 
cost utility values, and no discernible correlation 
between safety and cost can be derived.

There is no evidence of an improvement of dis
tance in the safety optimization, but rack stability 

shows enhancement confirms existing correlation 
explained in Section 4.3. Figure 11 illustrates how 
distance fluctuates and stability improves in a run 
of Experiment 6.

4.5. Optimization for affinity

It is preferable to assign affinitive or similar types of items 
in a same rack to avoid order-picking confusions and 
reducing order-picking time. Experiments 7 and 8 are 
conducted 10 times each in order to minimize the speci
fied penalty (cost) function. Illustrative runs of the opti
mization for Experiments 7 and 8 are presented in 
Figures 12 and 13, respectively. For the small order 
(Experiment 7), the initial solution is 1 which means no 

Figure 12. Penalty (P) optimization for Experiment 7. The optimizer could place all affinitive items in a same rack.

Figure 11. Distance (D) and rack instability (W) values through safety optimization for Experiment 6. Improvement is observed for 
instability, but distance depicts random variation.
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affinitive items in a same rack. The optimizer could allo
cate all affinitive items in a same rack and find the mini
mum achievable penalty in this experiment which is zero.

The penalty utility value was 87:04� 10� 2 in initial 
allocation of experiment 8, and the penalty reduced to 
zero where the standard deviation of solutions is zero. 

No huge leaps of penalty UVs are observed due to the 
larger value of ε and the global minimum is found 
during minimization. Random fluctuations of rack 
instability and risk UVs are observed during penalty 
optimization as depicted in Figures 13 and 14. 
Although there might be possible correlation between 
penalty and distance optimization, the impacts of opti
mizing items affinity on order picking efficiency are not 
examined in this study and can be further assessed 
using discrete event simulation of order-picking 
process.

5. Discussion

While many existing studies on warehouse optimi
zation yield valuable theoretical insights, they have 
often failed to benefit related industries due to their 
lack of consideration for practical factors. Storage 
allocation and safety measures were traditionally 
regarded as tactical decisions. The utility functions 

Table 6. Initial and final utility values of the problem objective 
in conducted experiments by proposed SLAP optimizer vs 
SCIP.

Experiment
Initial Utility 

Value
Achieved Utility Value 

(SLAP Optimizer)
Achieved Utility 

Value (SCIP)

1 9:09� 10� 2 4:63� 10� 2 4:63� 10� 2

2 13:26� 10� 2 9:08� 10� 2 9:07� 10� 2

3 15:21� 10� 2 0:00 0:00
4 18:70� 10� 2 7:17� 10� 2 7:17� 10� 2

5 24:50� 10� 2 0:00 0:00
6 29:90� 10� 2 9:85� 10� 2 9:85� 10� 2

7 1 0:00 N/A
8 87:04� 10� 2 0:00 N/A

Figure 13. Penalty (P) and risk (R) optimization for Experiment 8. The optimizer could find the minimum penalty after 4,900th 
iterations.

Figure 14. Distance (D) and rack instability (W) UVs during affinity optimization. No specific correlations or patterns can be 
observed in the graph.
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introduced in this research not only aid in measur
ing the quality of an assignment solution but also 
serve as objective functions for the developed opti
mizer to enhance allocation decisions. The proposed 
optimizer can solve the SLAP using linear or non
linear objective functions and outperforms the 
simulated annealing method. In fact, the optimiza
tion algorithm functions as a pure simulated anneal
ing optimizer when the number of perturbations (n) 
is set to zero. Nonetheless, zero (0) did not emerge 
as the optimal value for n during the hyperpara
meters tuning process. Furthermore, the optimizer 
possesses the capability to directly seek solutions 
for SLAP as long as the problem’s objectives and 
constraints can be mathematically modeled. This 
eliminates the need to explore potential transforma
tions from objective functions to constraints.

Table 6 provides the initial and the mean of best 
achieved utility values of the objective obtained by the 
proposed SLAP optimizer experiments described in 
Section 4. The same experiments are also conducted 
using one of the fastest well-known optimizers called 
Solving Constraint Integer Programming (SCIP) [57] 
adopted by Google OR-Tools [58]. The solver is open- 
source, noncommercial, and widely used for solving 
MILP problems.

Although SCIP achieved a slightly better solution in 
Experiment 2, the proposed algorithm was able to find 
comparable solutions to SCIP in all other experiments. 
Nevertheless, SCIP cannot find a solution for a SLAP 
with nonlinear objective functions (i.e. Experiments 7 
and 8). In contrast, the proposed SLAP optimizer is able 
to find reasonable solutions. However, the execution 
time of finding a solution with SCIP is less than 6 s in all 
conducted experiments, which is faster than the SLAP 
optimizer developed in this research. Table 7 

summarizes the mean of final utility function values 
after performing the defined experiments.

Industrial warehouses need to be able to adjust 
the problem objective or the storage location 
objective for different types of products over time. 
The results of this study highlight the flexibility and 
adaptability of the proposed methodology in 
addressing different warehouse optimization priori
ties. The impact of selecting different objective 
functions on the utility value (UV) of the final solu
tions is illustrated in Table 7. For example, when 
the problem was optimized for safety (i.e. 
Experiment 6), the resulting risk utility value was 
47% better than for the same problem where pick
ing efficiency was optimized (i.e. Experiment 2). 
Conversely, the picking efficiency utility value for 
Experiment 2 was 31% lower (indicating better per
formance) than Experiment 6. The ability of deci
sion-makers to examine the impact of different 
objective functions on the assignment problem 
will enable them to make informed decisions 
which can enhance picking efficiency or maximize 
safety when performing material handling opera
tions in a warehouse. The proposed methodology 
will also enable decision-makers to allocate multiple 
incoming orders on an on-demand basis. In addi
tion, SLAP optimization can be a competitive 
advantage in warehousing industries where efficient 
order fulfillment and safe work environment are 
critical.

In terms of computational time, investigating the 
total search space is the worst-case scenario often 
performed by optimization techniques like 
Enumeration method of assignment [59]. The search 
space size can be calculated by a permutation equa
tion which is a function of two factorial expressions. 
Therefore, the complexity of the problem increases 
dramatically with the number of occupancy variables 
(i.e. the number of available locations and pallets). 
Table 8 shows execution time for allocating a smaller 
number of pallets to a storage facility with 169 empty 
locations by investigating the entire search space. It 
can be deduced from the results in the table that 
examining the entire search space for large-order 

Table 8. Execution time of examining total search space for 
small-order size.

Incoming Pallets Search Space Size Execution Time (Seconds)

1 169 <1
2 28392 <1
3 4:74� 10� 2 2
4 7:87� 10� 2 268
5 1:30� 10� 2 48,461

Table 7. Mean values of the final utility functions for the SLAP optimizer after the completion of 
experiments.

Experiment Distance Rack Instability Safety Penalty (Cost)

1 4:63� 10� 2 4:08� 10� 2 5:20� 10� 2 63:33� 10� 2

2 9:08� 10� 2 12:02� 10� 2 18:48� 10� 2 64:08� 10� 2

3 10:53� 10� 2 0:00 0:00 89:43� 10� 2

4 13:23� 10� 2 7:17� 10� 2 12:32� 10� 2 50:96� 10� 2

5 9:38� 10� 2 0:00 0:00 88:78� 10� 2

6 13:07� 10� 2 9:09� 10� 2 9:85� 10� 2 50:45� 10� 2

7 14:88� 10� 2 16:20� 10� 2 25:89� 10� 2 0:00
8 13:98� 10� 2 14:21� 10� 2 22:62� 10� 2 0:00
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assignments, like a 90-pallet order, can quickly become 
impractical from a computational time perspective.

Although not as fast as the SCIP program, the pro
posed SLAP optimization method is able to find an 
industry acceptable solution for allocating a large 
order between 5 and 45 s. To achieve this time, the 
maximum number of solutions mð Þ that are investi
gated with the proposed SLAP method using the geo
metric cooling schedule, Eqns. (11) and (12), can be 
calculated by 

which is less than 30; 000 in all defined experiments 
in this study. Since the proposed optimizer does not 
examine all the search spaces, the execution time is 
still acceptable for real-world optimizations.

6. Conclusion

Artificial intelligence has been introduced as an essen
tial tool of the fourth and fifth industry generations and 
improved efficiency of different sectors including the 
logistics industry. SLAP is a consistent challenge in 
medium to large size warehouses and proved as an NP- 
hard problem. In this study, the SLAP is modeled with 
mixed integer non-linear programming technique and 
is solved using a random optimizer inspired by basin- 
hopping and simulated annealing algorithm for discrete 
variable optimization. This paper focused on four prac
tical objectives: order-picking efficiency, rack stability, 
worker safety, and affinity. The approaches presented in 
this paper optimize for each of these individually.

The proposed approach can find a reasonable solution 
for nonlinear problems and avoids local optima due to its 
hill-climbing feature. The optimizer can solve the SLAP 
and find desirable solutions in reasonable time, regard
less of the equation type of objective functions or con
straints. The experiments conducted in this study for 
allocation of small and large order size show that 
although distance optimization achieved a decent solu
tion for the problem, only moderate improvement of 
safety and stability is observed during the optimization. 
This solution might not be acceptable for employers or 
safety regulators as they desire to protect workers safety 
in organizations. On the other hand, the proposed algo
rithm could obtain acceptable solution considering safety 
and rack stability objectives and an indication of positive 
correlation between minimizing storage risk and instabil
ity is observed through optimization. This correlation 
must be because of the possible dependency of risk 
number and SKU weight. But safety improvement did 
not have any impact on order-picking efficiency which 
is an enormous challenge for warehouse operation opti
mization. Furthermore, the performance of the proposed 
optimizer and SCIP solver has been compared, and it is 

shown that the optimizer could achieve comparable 
solutions in most of the experiments; however, the SCIP 
could find final solutions more rapidly.

In future work, multi-objective SLAP optimization will 
be investigated to consider all objectives simultaneously. 
The multi-objective approach has already been studied in 
many similar fields such as resource allocation with 
Quality of Service constraints [60] or redundancy alloca
tion problem [61] and has achieved appropriate results. 
Furthermore, the development of a mathematical or 
simulation model can be investigated to validate and 
measure the impact of employing the proposed 
approach on the order cycle time. Moreover, the pro
posed model is capable of incorporating different con
straints and safety or non-safety objectives such as 
energy consumption to examine other aspects of the 
problem and expand it to more comprehensive 
optimization.
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Nomenclature

AI Artificial Intelligence
AIX Association Index
BH Basin Hopping
COI Cube per Order Index
GA Genetic Algorithm
IoT Internet of Things
IT Information Technology
MILP Mixed Integer Linear Programming
NP Nondeterministic Polynomial time
OR Operation Research
OSHA Occupational Safety and Health Administration
PSO Particle Swarm Optimization
QAP Quadratic Assignment Problem
RFID Radio Frequency Identification
SA Simulated Annealing
SCIP Solving Constraint Integer Programming
SKU Stock Keeping Unit
SLAP Storage Location Assignment Problem
UV Utility Value
WMS Warehouse Management System
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