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Abstract—The installation of both residential and commercial
photovoltaic cells (PVs) has been growing rapidly. In either
situation maximising the efficiency of the PVs is critical this
can be hindered by soiling, cracks, and other defects. Detecting
such faults through regular inspections is an essential yet costly
task for small and large scale PVs deployments. The research
presented in this paper proposes a drone-based system that
navigates a PVs installation, capturing an image and the location
of the panels. Machine Learning is then used to detect any
instances of soiling or visual faults, these locations can then
be used by a cleaning robot or a maintenance team depending
on the type of damage or soiling. The proposed approach is
evaluated using real deployed PV cell arrays, demonstrating it
as an effective solution for detecting PV soiling.

Index Terms—Solar Panel, Computer Vision, Framework,
Soiling Detection, Drone, Automated

I. INTRODUCTION

As the worlds energy requirements grow [1], it is increas-
ingly important to find an energy production method that
is sustainable and renewable. Photovoltaic cells in the form
of solar panels are one of the most extensively used forms
of renewable energy and there is a strong future for the
technology [2], with the increase of installations across the
globe in the last decade. This trend is likely to continue with
the global primary energy demands predicted to be made up
of 27% solar energy by 2070 [3].

Solar panel energy output can be hindered by environmental
factors, one of which being the accumulation of dust on the
panels surface. This is a significant issue considering the
expected contributions to the energy demands of the globe that
solar will make, and that many of the locations most viable
for Photovoltaic deployments are subject to large or frequent
amounts of dust [4]. This can result in efficiency drops of up
to 22% [5], [6] since panels are commonly wired in series
meaning it only takes one panel to be affected for the whole
modules efficiency to be affected. Solar panels can also be
subject to faults, whether due to harsh operating environments
or errors in their production. These faults can include cracks,
delamination, snail trails and discolorations. Depending on the
type and extent of the fault can either reduce the panels power
output or render the panel defective.
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To ensure that current and future deployments of Solar
panels are kept operating at peak efficiency, the panels surface
has to be inspected and cleaned. Many methods for solar panel
detection and inspection exist, including manual inspection,
laser detection, infrared thermography. The manual inspection
of solar panels in a large power station isn’t viable due to the
shear quantity of panels. Laser detection methods focus on
the detection of faults in panels at manufacturing time which
is not a suitable solution for panels that have already been in
operation for many years. A promising area of research is fault
detection using vision, both infrared and visible light, that can
be applied universally to any PV panel installations.

The aim of the research presented in this paper is to
investigate techniques and propose an optimal architecture for
detecting solar panels and their physical status using drones.
This approach will allow the design and development of a
complete drone-based system that detects soiled or faulty PV
modules in varying sizes of PV installations. The contributions
of this paper are: (i) digital image processing methods for the
detection of arrays of solar panel arrays, panels and cells, (ii)
an automated framework for drone-based PV soiling detection.

Section II presents a review of the literature. Section III
describes TRANSECT, an automatic solar panel soiling de-
tection framework. Section IV presents an evaluation of the
system. Section IV-C presents a discussion on the real world
suitability of this drone-based framework. Finally, Section V
presents some conclusions and future work.

II. BACKGROUND

The output of PV cells is highly dependent on the state
of the panels, including the prescience of damage or dust.
Efficient systems will have to be developed to ensure that
both the existing and also future PV installations are regularly
monitored so the necessary maintenance can be performed.
Currently, this is a manual process involving with technicians
visually inspecting PVs. One possible approach is to take im-
agery of PV arrays and analyse this to determine their current
state. Computer Vision is the process by which computers
attain a broad understanding of digital images, essentially
attempting to automate the functionality of the human eye.
In this particular application the objective is to detect solar
panels in images, extract the panels and determine if there
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is any difference between the characteristics of the detected
solar panel and those of a panel known to be functioning
correctly. To achieve this, the most common method used
is edge detection because it is relatively simple due to the
reduced data processing requirements, while simultaneously
retaining the structural data of the objects edges [7].

To determine which object within the digital image is the
desired target of the edge detection a threshold is usually
applied, extracting the areas of the image with the expected
color of the target object. Various color spaces exist for the
segmentation of images including RGB (Red, Green, Blue),
HSL (Hue, Saturation, Lightness) and HSV (Hue, Saturation,
Value). RGB isn’t the best for this application due to its
chrominance and luminance values are combined, making it
difficult to identify the same color under different lighting
environments [8]. The HSV color space however separates
these values, where hue is the main color value, saturation
being how bright the color is and value representing the
luminance. Reducing the noise of the resultant binary image is
done with a Gaussian Filter [9], to identify the objects edges
a border following algorithm is deployed [10].

Multiple image processing methods can be used for detect-
ing soiling of PV modules, including segmentation, threshold-
ing, edge segmentation, and region segmentation [11]. Region
segmentation was found to produce better results when identi-
fying instances of uniform soiling, whereas edge segmentation
was most effective for PV modules experiencing nonuniform
soiling. Yap [12] concluded that Lee’s [13] algorithm which
block matches was the most accurate in both the control and
photograph image tests. In these experiments were conducted
using a single yellow dust to soil the panels, in reality soiling
can take many forms, such as droppings from flora and fauna.
In order for these image processing techniques to be applied
to images of many different PV modules, approaches need to
consider the variety of soiling.

Convolutional Neural Networks (CNN) have been demon-
strated to detect both soiling and faults. DeepSolarEye [14]
uses RGB images and environmental factions (solar irradiance
and time), to estimate the power lose experienced by the
PV module, the soiling type and localisation. This system
solves the detection portion of the problem of detecting and
locating soiled or faulty PV panels in a large PV installation.
Shihavuddin [15] compared CNN performance in detecting
soiling and faults of both wind turbines and PV panels. This
study used four different image sets, three of solar panels, one
of which being a subset of Mehta et al. [14] images, and one of
wind turbines. When detecting faults and soiling exclusively
on PV panels the EfficientDet - D5 [16] deep learning object
detection framework performed the best.

Cavieres et al. [17] uses RGB images and environmental
data to predict the energy loss of a PV module. It does this
by identifying and pulling each defective PV module from
within a RGB image. The panels operating condition is then
analysed and compared to a ’healthy’ PV module that is
operating in the same conditions. Henry et al. [18] proposes
an automatic detection system uses an aerial drone to capture

both RGB and IR images. The drones flight path is calculated
by using a satellite image or an orthomosaic of the entire PV
installation to detect the locations of the PV arrays. Once the
drone has captured the images of the entire PV installation,
the PV modules are analysed for defects using the maximum,
minimum and average temperature of each of the modules.

III. TRANSECT: AN AUTOMATIC SOLAR PANEL SOILING
DETECTION FRAMEWORK

A. Overview

In this paper, we propose a system, named TRANSECT,
that detects arrays of solar panels from digital images, the
panels of each array are then detected and extracted, it then
detects the cells within each panel, from which the detected
number of cells can be compared to the expected number of
cells to determine the state of the solar panels surface. The
systems works using live video streamed from teleoperated or
fully automated drones.

B. System Aims

The aim of the proposed system is to combine multiple dig-
ital image processing techniques to create detection pipelines
for detecting arrays of solar panels, solar panels and the cells
within them. These pipelines will be employed in a larger ar-
chitecture to detect solar panels and their physical status, with
the final objective being to design, develop and test a complete
system that detects soiled or faulty PV modules in varying
sizes of PV installations, with the following requirements.

e Req 1: The system must detect and extract arrays of solar
panels from digital images.

e Req 2: The system must be able to distinguish between
the panels in an array of panels.

e Req 3: The system must be able to estimate the amount
of soiling present on an array of solar panels by analysing
an image of it.

e Req 4: The system must be able to locate the panels that
are affected by soiling.

C. Solar Panel Detection Approach

The proposed system architecture, illustrated in Figure 1,
uses image processing techniques, including a HSV conver-
sion, blue or black color range extraction, Gaussian filter, and
binary threshold. In this, the original image is converted to
the Hue, Saturation, Value color space (HSV), to separate the
color component (Hue) and the intensity component (Value
and Saturation) of the image. Changes in lighting conditions
impact intensity rather than the color allowing for more
accurate color segmentation of the image.
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Fig. 1. Default Detection Setup

The blue or black is then extracted from the image, the
HSV color ranges of blue and black are defined in Table ITI-C.
OpenCV represents Hue, Value and Saturation with the ranges
0-179, 0-255 and 0-255 respectively. If a pixel has a HSV color
value in the range Table III-C, then that pixel is set to 255,
otherwise it is set to zero, creating a threshold image.

TABLE I
THE DEFAULT HSV COLOR RANGES.
Hue | Saturation | Value
Blue Lower 75 0 0
Blue Upper 140 | 255 255
Black Lower | 0 0 0
Black Upper | 180 | 255 30

The image is smoothed to reduce the noise present in
the image, this is done by applying a Gaussian filter to the
threshold image. The default Gaussian Kernel size used is
(7,7). Tt is then again converted to a binary image using a
default threshold value of 60. This sets every pixel in the gray

scale image with a value greater than the threshold to 255
otherwise the pixels value is set to zero.

Contours are created along the border of black and white
pixels using the algorithm [10], which are then filtered by
area. The default minimum contour area was set to 5000. The
images used in the initial proof of concept testing of the system
were selected from Google Image search for ’solar panels’.

D. Solar Panel Array Detection

For solar panel array detection, first, the the default process
was used. Table II highlights that the HSV blue threshold
lower boundary Value and Saturation was raised to gain a
better distinction between the arrays, by further excluding the
darker gaps between the arrays and the lighter borders of the
arrays from the threshold. it also displays that the default color
range of black was modified to detect the non-perfect black
of the solar panels.

TABLE 11
HSV COLOR RANGE FOR DETECTING ARRAYS OF PANELS.
Hue | Saturation | Value
Blue Lower 70 60 80
Blue Upper 140 | 255 255
Black Lower | 100 | 25 35
Black Upper | 130 | 80 80

The minimum contour area was lowered to 2000 to allow
for the detection of the arrays further away in the image. The
Gaussian Blur Kernel size was reduced to (5,5), in order to
avoid blurring the image leading to array merging.

E. Individual Solar Panel Detection

The default method was modified for detecting individual
panels in an image. The Gaussian Blurring step was disabled
unless the algorithm failed to detect more than the minimum
expected panel count of five. The minimum detected contour
area was then lowered from 1000 to 500, Gaussian Blurring
with a kernel size of (7,7) was applied to the image and
the contours were detected again. The HSV color threshold
for blue and black was also modified for this application,
as depicted in Table III, this was do to allow for greater
distinction between the blue and black of the panels and the
dark shadows and silver edges that border them.

TABLE III
HSV COLOR RANGE FOR DETECTING SOLAR PANELS.
Hue | Saturation | Value
Blue Lower 70 70 60
Blue Upper 140 | 255 240
Black Lower | 100 | 20 40
Black Upper | 130 | 85 140

An additional method to detect the corners [19] of the
detected panels was added to the default setup. These corner
coordinates were then used to transform the possibly warped
panels into rectangles for detecting the number of cells.
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FE. Solar Cell Detection

This system aims to take the transformed panels extracted
from the panel detection system and apply a narrower HSV
blue and black color range, shown in Table IV, to filter and
then detect the individual cells present in the panel. It achieves
this by using the same process as described in Section III-E
to detect the cells and identify the corners of each cell, only
differing in the HSV range.

TABLE IV
HSV COLOR RANGE FOR DETECTING CELLS WITHIN SOLAR PANELS.
Hue | Saturation | Value
Blue Lower 100 100 100
Blue Upper 140 | 200 235
Black Lower | 100 | 25 35
Black Upper | 130 | 280 80

G. System Design

The base system architecture, shown in Figure 2 is con-
sistent for both blue and black panels and the four different
input types. First the selected input image is taken by the
Array Detection, if any array is detected is is returned as an
re-projected image, which is in turn used as input foe the
panel detection module. Each panel is then used as individual
input for the cell detection module, the final cell count is then
calculated by counting the array of each panels cell contours.
Each of the array, panel and cell detection modules are all
variations on similar methods as seen in Section III-C.

Start

Input Image

Array Detection

Extract Array
Parameters

Reprojected Array

Panel Detection

Extract Panels
Parameters

Array of Reprojected Panels

Cell Detection

Extract Cells
Parameters

Array of Cell Outlines

End

Fig. 2. High level architecture of TRANSECT

The Driver class gets the configuration data from user input
or a JSON file. If the input type is defined as an image,
a collection of images or a saved video the driver class
instantiates ArrayDetection, PanelDetection and CellDetection
objects. The input image or video frame is then passed to the
ArrayDetection object which outputs the largest array in the
image, this is extracted and re-projected, then used as input
for the PanelDetection object. Each panel is then extracted and
re-projected for the detection of each of the panels cells. Each
object relies on the same base of image processing methods,
just with parameters tailored to the specific detection type.
The detection results are then printed to the command line,
and written to a csv file for future analysis.

H. Algorithm

Blue or black is extracted from the image, the HSV color
ranges of blue and black are defined in Tables II, III and IV.
OpenCV represents Hue, Value and Saturation with the ranges
0-179, 0-255 and 0-255 respectively. If a pixel has a HSV
value in the defined color ranges, then that pixel is set to 255,
otherwise it is set to zero, creating a threshold image.

The image can then be smoothed to reduce the noise present
in the image by applying a Gaussian filter to the threshold
image. The default Gaussian Kernel size used is (7,7). After
the image has been smoothed it is once again converted to a
binary image using a default threshold value of 60. This sets
every pixel in the grey scale image with a value greater than
the threshold to 255 otherwise the pixels value is set to zero.

Contours are then created along the border of the black
and white pixels using the algorithm [10], which are then
filtered by area. The default minimum contour area is set to
5000. The corners of each detected contour are calculated by
iterating over the pixels to find the sub-pixel accurate location
of corners or radial saddle points, as described in the algorithm
proposed by [20].

To re-project the detected array and panels the corners are
passed to OpenCV’s warpPerspective method, which applies
a perspective transformation to the image using the formula:

Muyz+Mioy+Miz Moyx+Moay+Mas )

dSt(x’ y> - STC( Msziz+Mz2y+Mss’ Msix+Msay+Mss

1. System Deployment and Applications

The system supports two modes, either the user specifies the
system configuration data manually via the CLI, as follows.

S python3 Driver.py -gui
The system can also be run in headless mode, which relies
on a JSON configuration input file, as follows.
$ python3 Driver.py —-input input.json
If the input type is defined to be the live video stream from
a DIJI Tello drone, seen in Figure 4, a Drone object is created.
Which establishes the connection to the drone via WiFi, and
starts receiving the video stream. Each frame is then used as
input and goes through the Array, Panel and cell detection
process. If there is no array detected the system does not
attempt to detect panels of cells.
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Fig. 3. TRANSECT: Full System Architecture

A. Detection of Solar Panels

Different color ranges are used for detecting the different
areas of the solar panel arrays. To achieve optimal detection
rates of blue arrays the lower boundary saturation and lightness
values were raised, to distinguish between arrays positioned
close together. All of the HSV values of the lower boundary
black threshold were raised, since black solar panels are not a
perfect black color, they often contain hints of grey and blue.
The color range adjustments made are displayed in Table II.

The blur kernel size was increased to 15, to ensure that
all the panels with in the array are detected. The minimum

To evaluate the implemented system, it was tested with on contour area is not utilised in this stage of the detection,
a range of real deployed solar panels. The aim was primarily because the system sorts the contours by area and selects the
to test the systems ability to detect solar panels and arrays, largest to perform further detection on.
and to evaluate system performance. Each of the blue and black color thresholds were modified

Fig. 4. DII Tello Drone

IV. SYSTEM EVALUATION
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Listing 1 input.json file example
{

" _comment_input_type": "IMAGE=1
, IMAGES=2, VIDEO=3, DRONE=4",
"input_type":4,
"input_path":"./input",
"output_path":"./output",

" _comment_file type": "JPG=1,
PNG=2, MP4=3",
"file_type":3,
"_comment_panel_type":
BLACK=2",
"panel_type":1,
"no_arrays":1,
"no_panels":12,
"no_cells_per_panel":
"no cells covered":0

"BLUE=1,

60,

Fig. 5. System Detecting Panels with soiling.

for the detection of panels with in the given array, as seen
in Table III, to improve the algorithms ability to establish the
difference between the light colored borders of the panels, the
base color of the panels and the shadows under them. The
minimum contour area was lowered to detect panels that are
further from the camera or in slightly lower resolution images.

The color ranges used to detect the cells of both blue and
black panels was narrowed, to achieve higher rates of cell
edge detection, they were narrowed to the values presented in
Table IV. The blurring step was also disabled for this detection
step because of the narrow borders between the cells being
easily removed by the blurring process.

The system determines how much of a solar panel is
compromised by soiling by comparing the expected number
of cells to the detected number of cells. Figure 5 shows the
system detecting each panel in an input array. The panels
that are affected by soiling are passed to the cell detection
component of the system which fails to detect the affected
cells, displayed in Figure 6.

B. System Evaluation

The system architecture is efficient when analysing single
images or smaller collections of images. However the effi-
ciency can be improved when analysing videos, it currently
attempts to detect solar panel arrays on every frame of the
video, this leads to the system analysing many similar or
even the same frames. The flexibility of the system could

Number of panels: 12
Number of cells per panel: 60

Number of cells covered: 40
/home/zbrydon/honours/Solar-Panel-Cleaning-Drones/system/inputarrays-1
er_panel-60-cells_covered-40. jpg

== Summary ==

Frame number: @

Number of Arrays Detected: 1

Number of Arrays Expected: 1
Percentage of Cells Detected: 100.0%
Number of Panels Detected: 12
Number of Panels Expected: 12
Percentage of Cells Detected: 100.0%
Number of Cells Detected: 546
Number of Cells Expected: 680
Percentage of Cells Detected: 75.83%

zbrydon@DESKTOP-S5IUEL

/honours/Solar-Panel-Cleaning-Drones/system$

Fig. 6. The number of cells detected.

be improved by initially detecting multiple arrays instead of
taking the largest contour each time and that step of the
detection process. This would allow the system to detect
multiple arrays while also improving detection accuracy for
arrays that are segmented due to heavy soiling.

The detected results and expected results were saved and
graphed, resulting in the graph presented in Figure 7. It
displays a general trend that the system fairly accurately
detected cells when the number of cells covered is below 180
(approx. three panels). As the number of cells covered by the
simulated soiling increases the systems accuracy decreases.

There is a few notable outliers present, which are caused
by the presence of the simulated soiling in a pattern which
happens to split the solar array into multiple sections, like
that in Figure 8. When detecting an array the system selects
the largest area, which in this case would be the two panels
in the bottom left corner of the image. The system then
moves straight to detecting the panels within the array without
checking if the original image contains multiple arrays.

Fig. 8. Multiple Panel sections visible

C. Discussion of real-world suitability

The system was deployed on a physical solar panel installa-
tion in optimal lighting conditions, displayed in Figure 9.Video
of the solar panels was captured by the drone’s camera, each
frame was then passed into the system.
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Fig. 7. Error Rate and No. Detected Cells vs No. of Cells Covered
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== Summary ==

Frame number: 540

Number of Arrays Detected: ©
Number of Panels Detected: @
Number of Cells Detected: ©

== Summary ==

Frame number: 541

Number of Arrays Detected: @
Number of Panels Detected: @
. . Number of Cells Detected: 0
Fig. 9. Deployment Conditions =

== Summary ==

The system performs well in certain frames, as illustrated D
in Figures 10 and 11, but fails to detect accurately in others MINGER GrF COTenss [EReEEn G
. . . | Number of Panels Detected: ©
due to the less than ideal panel installation environment. The
black panels on a black tiled roof, with other black objects

present such as solar pool heating, makes it difficult for the SLETaTVESS
array detection algorithm to find the four corners of the array Frame number: 543

. . . . Number of Arrays Detected: 1
of panels. This is shown in Figure 12, where the algorithm Number of Panels Detected: 10

mistakenly includes some of the solar pool heating in the
detected array area.

Fig. 11. Accurate Detection Results

There are several limitations introduced by the utilisation
of a small commercial drone, as follows.

o The battery capacity (1100mAh) of the drone is too small
for sustained flight and video capture/streaming for more
than five to ten minutes, making it not be suitable for a
commercial deployment of this system.

o The video is streamed via Wi-Fi from the drone, meaning
the the drone cannot travel far from the controlling
device and obstacles between it and the controlling device

Fig. 10. Accurate Detection Example impact the quality of the signal.
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o The drone camera is locked in a fixed horizontal position,
limiting the systems ability to locate the panels which are
affected by soiling since the position of the drone is not
the same as the panel being detected.

The design limitation of the system in its current version is
the lack of duplicate panel detection logic. Since the detection
algorithm is running on each frame, the same panels are being
detected multiple times, leading to unrealistically inflated
panel detection counts.

Fig. 12. Incorrect Detection

V. CONCLUSION

This paper has presented techniques and architecture for
detecting solar panels and their physical status. It proposed an
approach for a solar module detection system that determines
the percentage of cells that are compromised by soiling. This
system utilizes the three modules previously mentioned that
detect arrays, panels and cells, outlined in the system diagram.

The major contribution of the research presented in this
paper is the proposed combination of digital image processing
methods and their respective parameters, employed to detect
arrays, panels and cells of both blue and black photovoltaic
panels. This was achieved by extracting the desired color
threshold from an image, dynamically applying a Gaussian
filter to the image to reduce the noise dependent on the target
of the detection, a binary conversion, edge detection, corner
detection and a final image re-projection.

In future work, the next step is to determine the optimal con-
trollable environmental conditions for detecting solar panels
and their faults in images and soiling condition, using the pre-
viously developed systems. The detection system has currently
only been tested on one real world solar panel deployment, this
provided a sound proof of concept for the systems viability.
The next steps from here, is further testing on many different
solar panel deployments, containing different solar panel types
and installation surfaces. The addition of enabling the system
to locate the solar panels that have been soiled, is a crucial
next step in the development of a complete detection system
that fills the gap in the current research.
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