
Adopting Industry Agile Practices in Large-scale Capstone
Education

Jean-Guy Schneider, Peter W. Eklund, Kevin Lee, Feifei Chen, Andrew Cain, Mohamed Abdelrazek
School of Information Technology

Deakin University, Geelong
Geelong, Victoria

{jeanguy.schneider,peter.eklund,kevin.lee,feifei.chen,andrew.cain,mohamed.abdelrazek}@deakin.edu.au

ABSTRACT
This paper presents the practice and experience in adopting an
agile organizational model for a final-year capstone program in
Software Engineering. The model developed is motivated by
having real (and developing) software artifacts with incrementally
changing team members working on a product-line. This in turn
results in more sophisticated capstone student-project outcomes.
The model proposed supports student mentoring and promotes,
through its internal organization, leadership and personal
responsibility. The students are supported by professional software
engineers, up-skilling workshops, and academic supervisors who
act as a personalized reporting and grading point for the team. The
academic supervisors are themselves supported by a tribe leader, a
faculty member who assumes overall responsibility for a
product-line, and who acts as a report to an external industry
client/sponsor. This paper describes the motivation for the
capstone model, its adoption, and some preliminary observations.

CCS CONCEPTS
• Social and professional topics → Model curricula; •
Software and its engineering→ Programming teams.
KEYWORDS
Software engineering education, agile software development,
capstone education
ACM Reference Format:
Jean-Guy Schneider, Peter W. Eklund, Kevin Lee, Feifei Chen, Andrew Cain,
Mohamed Abdelrazek. 2020. Adopting Industry Agile Practices in Large-
scale Capstone Education. In Software Engineering Education and Training
(ICSE-SEET’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3377814.3381715

1 INTRODUCTION
To better prepare students for the life-long learning required in
contemporary workplaces, and help them transition from an
educational environment to a professional workplace, educational
institutions are focusing on project-based learning in teams. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7124-7/20/05. . . $15.00
https://doi.org/10.1145/3377814.3381715

activity is mainly focused in the latter years of both Bachelors and
Masters degrees.

To give students an as authentic learning experience as possible,
many software-focused degrees are adopting agile approaches in
their team-based capstone projects (as discussed in more detail in
Section 3). While there are many reasons for adopting an agile
approach to Software Engineering education, this is not a trivial
undertaking and a number of constraints need to be taken into
account.

To be successful with agile requires devolved collaborative
decision-making with self-organising teams [7], something
students in a Higher Education setting adapt to with difficulty [34].
To create software using a sustained, iterative way, a team needs to
have a stable base to work from, something that takes time to
establish [16] and may not always be achievable in the short
time-frames in which educational projects operate [14]. A
capstone Software Engineering experience should also satisfy the
graduate learning outcomes for an ICT-degree, which should in
turn, if properly designed, reflect industry expectations on what
ICT-graduates should “look like” when they complete their
education.

An additional challenge in many growing ICT-departments
(such as our own) is a significantly increased student cohort that
transitions into capstone projects, requiring the capstone project
organisation to exhibit scalability without diminishing the quality
of the experience or the student outcomes, respectively. This can
be particularly challenging if the capstone experience relies on the
availability of suitable projects from external (i.e. industry)
stakeholders.

To address these challenges, we propose a novel approach, called
ACE, a model for managing capstone projects in education by (i)
adapting Spotify’s squads and tribes [2] model – a model designed
to deal with multiple teams in a product development organisation
and the ability to manage agile with hundreds of teammembers [13]
– to an educational setting, (ii) introduce learning outcomes that
define the outcomes we specify Software Engineering students
need to demonstrate on completion of their capstone project, (iii)
proposing a teaching period timeline that provides students with a
guiding framework to succeed in an agile environment. Throughout
the rest of this paper, we motivate and illustrate the key elements
of the model in detail and report on the evaluation of the initial
implementation in a tertiary setting. Although the model is still
evolving, our experiences show that the students are receiving
a capstone experience that is a more realistic match to industry
practice than comparable Software Engineering capstone models.

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Schneider et al.

The remainder of this paper is organized as follows: Section 2
describes themotivation for the work; Section 3 presents a literature
review on approaches to capstone projects in tertiary education;
Section 4 proposes a new organisational model to group project-
based capstone projects; Section 5 presents an evaluation of the
proposed approach in the context of higher education; Section 6
discusses the outcomes of the work; Finally, Section 7 summarizes
the main findings and presents future work.

2 MOTIVATION
Project-based learning is a proven way of achieving the critical
graduate learning outcomes of communication, problem solving
and teamwork. Group project-based capstone units1 allow
students to develop valuable inter-personal and project
management skills. In the computing sciences, it also allows
students to work on solving interesting and relevant real-world
problems. Students often cite their capstone experience as the
most rewarding, challenging and memorable of their degree2 [24].
Therefore, it is important to effectively resource and support
capstone projects. This is challenging with the commonly large
cohorts in Australian computing degrees (and likely elsewhere)
and pressures on academic staffing, respectively.

There are other constraints to consider as well. A capstone
Software Engineering experience should satisfy the graduate
learning outcomes for an ICT-degree, which should in turn, if
properly designed, reflect well industry expectations of what an
ICT-graduate should “look like” when he/she completes his/her
education. The capstone organisation and delivery can therefore
not drift too far from the defined graduate learning outcomes from
the degree it supports.

The following introduces some high-level goals for supporting
successful capstone units from experience – summarized here.

Motivation 1: Industry relevant experience
Motivation 2: Authentic learning experience
Motivation 3: Continuity of learning experience
Motivation 4: A successful client experience
Motivation 5: Scalability of approach
Motivation 6: Effective support of students
There is a need for students to have an Industry relevant

experience which allows them to work on a project that has
obvious societal benefits. Evidence shows that capstone projects
with an industry focus benefit both the student learning
experience and the project outcome [5, 24].

Typically, ICT professionals do not act in isolation, so it is
important that students have a Authentic learning experience
in a group project setting. This means recognising that software
developers spend most of their time working on projects
modifying others’ code and using domain-specific tools.
Embedding these characteristics in the capstone design enables a
more sustainable model of delivery [27]. Furthermore, the artefact,
project, theme, and/or idea that the students work on should be
“realistic” and exhibit sufficient complexity and detail to allow the
1Components of a degree include modules, subjects, units of competency or units,
the completion of which leads to the award of a degree. In our a case study a “unit"
represents 1/4 of full-time study or 120 hours of effort, involving 1-hour a week contact
with the squad supervisor and up to 4-hours a week with other squad members.
2A.k.a. programs or courses, we will use degree hereafter for consistency.

students to respond to it with work packages that are suited to the
effort expected from each team member. Student capstone projects
that start from scratch every teaching period rarely exhibit the
complexity to generate the hours-of-work required. The capstone
organisation should be continuous and sustainable, this to support
complex outcomes that represent artefacts/projects/themes or
ideas that continue from one teaching period to the next.

Due to external pressures, students are increasingly
undertaking university studies in flexible ways (part-time,
full-time, online, distance), and driving their own learning
experience. It is common to split the capstone experience into
components to support such flexibility – with individual students
taking different pathways from their peers. This means that
students frequently do not take capstone units in consecutive
teaching periods.3 It is therefore vital that any approach to
capstone ensures a Continuity of learning experience and
supervision. The ideal situation is for clients to offer long-term
projects, for supervisors to oversee the same projects each
teaching period, and for students to work on the same project
within their capstone experience, respectively.

When designing an approach to capstone, it is important to take
into account the needs of all stakeholders [41]. In particular, A
successful client experience ensures continuity – an unhappy
client is unwilling to be involved in future projects. For a
computing capstone client, success is generally measured in terms
of the software product produced, and clients often also have some
short- or long-term recruitment goals. Not all student group
projects can result in successful software prototypes, so a desirable
characteristic of capstone projects is the possibility of multiple
groups working on the same project in parallel. In this way, the
client can take the best of the student solutions and build on these
in future iterations.

To effectively support capstone projects with large cohorts of
hundreds (to thousands) of students, it is important to have the
Scalability of approach as a consideration when designing the
capstone experience. There are particular challenges with large
cohorts in capstone due to having to: (i) form and manage groups;
(ii) gain and support clients; (iii) support the effective supervision of
groups; and (iv) fairly assess and moderate the work achieved. With
generally increasing numbers, ensuring a consistent experience is
also challenging.

There are increasing pressures on University students that can
have an impact on their studies. There is also an increasing number
of students in employment during their studies, increasing the
time pressure. Capstone projects can place additional stress on
students due to their increased (actual or perceived) value and
the additional pressure of working with others in a team. It is
therefore important to have a system in place to allow the Effective
support of students. This is especially true for online or distance-
learning students who may have compounded difficulties when
communicating as groups.

The following section will examine approaches to achieving
these goals for group project-based capstone projects.

3We use the generic term “teaching period” to represent a 12-week teaching period or
semester.

Adopting Industry Agile Practices in Large-scale Capstone Education ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

3 LITERATURE REVIEW
Group-based project management in higher education is mostly
exercised as capstone units at both undergraduate (UG) [19, 32]
and post-graduate (PG) [20] coursework degrees. The capstone
units are increasingly widespread around the globe, as a result of
both accreditation expectations, and strong consensus among
educator and industry stakeholders that students need hands-on
practical project experiences [32]. In capstone units students
typically demonstrate their understanding of collaboration and
community as part of a team-based project. These projects,
involving real-world experiences, are a form of authentic learning
which allows students to turn information into applied
knowledge [25].

Meier et al. [21] reported experience with group-based project
work for large teams in Web development. Experiences with game
development in a capstone project is reported in [37]. However,
the capstone units we support are very diverse, with many groups
developing projects that can be cyber-physical systems or computer
games, alongside projects that follow a more traditional software
development life-cycle, such as Web apps. Therefore, our approach
needs to accommodate the diversity of ICT-skills it supports, and
reflect the industry relevance of the projects on offer.

Furthermore, in recent times, agile methodologies have become
increasingly popular in the ICT-industry because of improved
project performance and rapid development time [8]. In addition,
research has shown that adopting agile methodologies improves
management of the development process and decreases the
amount of overtime, by actively involving the client throughout
the project life-cycle, thus increasing client satisfaction [11]. There
is a certain inevitability that the ICT-development methodology
followed should be a variant of agile [18]. The organisation and
assessment of capstone units, therefore, needs to accommodate the
transition from waterfall to agile [12], as a reflection of the
dominant methodology in contemporary Software
Engineering practice.

Agile methodologies (e.g., Extreme Programming (XP) [3, 17],
Scrum [36], Feature-driven Development (FDD) [26], Dynamic
System Development Method (DSDM) [39], Crystal Clear [6] and
others [1]), have been widely adopted in ICT capstone unit
teaching in the past by higher education institutions. An
embedded system design capstone course offered for Computer
Engineering Technology students is reported in [22, 23].
Poženel [28] reports experiences in a software engineering
capstone course requiring students to follow the Scrum
methodology. Fan [9] discusses the lessons learned in
implementing Software Engineering capstone courses, focusing on
project management.

Knudson and Radermacher [15] present how they integrate
agile practices and principals in a computer science and Software
Engineering capstone. Mahnic [19] describes an undergraduate
capstone unit in Software Engineering using Scrum for the first
time, focusing on students’ estimation and planning skills. Rover et
al. [31] documents the use of scrum for a two-semester senior
design project by profiling the experience of the student design
team, customer, and faculty mentor. Rico and Sayani [30] reported
a capstone unit in which students were able to choose any agile

methodology for their project. A pedagogical approach was
reported in [40], in which the authors proposed a hybrid course of
Information Systems based on XP, Scrum and FDD. Other reports
on the introduction of agile methodologies in team-based projects
include work presented by Hedin et al. [10], Schneider et al. [35],
or Williams et al. [43] (just to name a few).

However, none of the above-mentioned approaches suits
capstone projects with large cohorts of hundreds (to thousands) of
students due to the lack of scalability. The approach proposed by
Stansbury et al. [38] uses agile methodologies and tools to better
support larger and more multi-disciplinary teams for Computer
Engineering and Software Engineering capstone units. Each large
capstone team (12 to 16 students) was divided to four sub-teams
and each sub-team worked on different features of a complex
project. However, similar to other approaches discussed above, this
approach does not support continuity of learning experience and
supervision, as the students were required to complete short-term
capstone projects in the same academic year.

To address the above-mentioned limitations of existing models,
a new model is implemented for the organisation of capstone units.
It is a hybrid, based on Spotify’s squad and tribes [2], as Spotify’s
main purpose is to deal with multiple teams in a product
development organisation, focusing on the ability to manage agile
with hundreds of team members [13]. Our model is described in
the section that follows. The model has been applied at both UG
and PG capstone project units; however for the purposes of this
paper, we report only on the PG capstone units offered to Masters
level students4 because these units implement individual
assessment using DoubtFire,5 a web-based learning management
system, that provides students with a task-oriented approach to
assessment by portfolio development (Capstone assessment is
reported in a companion paper [42]).

4 ACE: AGILE CAPSTONE IN EDUCATION
In this section, we present a new approach to managing the group
project-based capstone experience. We first introduce the learning
outcomes we desire students to demonstrate at the completion of
their capstone experience. We then present the structure of, and
the rationale behind, the new model. This is illustrated with an
associated teaching period timeline that provides students with a
guiding framework to succeed in an agile environment in general
and, more specifically, in the context of the proposed model. Finally,
we discuss the support structure we put into place in order for each
of the elements to work together effectively and link the elements
of the model back to the motivations introduced in Section 2.

4A Masters degree in Australia is a qualification that meets the criteria of the Level 9
of the AQF (Australian qualification framework) see https://www.aqf.edu.au. In the
Bologna process this is equivalent to 120 ECTS in the 2nd cycle of study. There is no
federal standard for Masters degrees in the US, rather federal accreditation legislation,
“The Higher Education Act” expired in 2013, and is currently before Congress, see
Council for Higher Education Accreditation https://www.chea.org
5https://doubtfire-lms.github.io/doubtfire.io/

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Schneider et al.

(1) Apply professional practice, including mentoring of team
members, active and consistent participation, effective
communication, contribution of technical expertise, and
adherence to ethical codes of conduct as a member of an
Software Engineering project team.

(2) Analyse stakeholders’ needs, project goals, and team
capabilities to identify, prioritize, and schedule project
deliverables, and take responsibility for the execution of the
project plan (usually a feature-based plan for the current sprint)
and associated reporting.

(3) Given a project plan and deliverables, identify, select, justify,
and apply contemporary Software Engineering methods, tools
and techniques to meet project outcomes, and provide guidance
to team members on effective application of these.

(4) Showcase personal skills developed, including areas for future
learning, and key project outcomes, including lessons learnt and
recommended future directions, to specialist and non-specialist
audiences.

(5) Reflect on, and take responsibility for their own learning,
effectively manage their own time and processes, and provide
mentoring to members of the project team as a means of
managing continuing professional development.

Table 1: Unit LearningOutcomes for second capstone project
unit.

4.1 Unit Learning Outcomes
The cornerstone of model is the introduction of well-defined Unit
Learning Outcomes (ULOs)6 that define the outcomes we want
students to demonstrate at the completion of their capstone
project experience. The specifics of the ULOs are guided by the
principle of having students solve real-world, ill-structured
problems, improving students outcomes on conceptual
understanding, problem-solving and meta-cognitive skills [29], as
well as giving them insights into technology, product development,
project-based learning, and teamwork [5]. We were also guided by
accepted professional Software Engineering practices as well as
the desire to enable our students as life-long learners.

At Deakin, the students of all of our ICT-degrees (including
Software Engineering students) are required to complete two
interlinked capstone project units. The Unit Learning Outcomes
for the second capstone project unit are given in Table 1. The
ULOs for the first capstone unit are similar, but with less emphasis
on leading and more emphasis on learning what a team-based
project work is. Both the proposed project model and the teaching
period timeline we introduce in the next two sections, combined
with suitable assessments, enable students to demonstrate
achievement of these learning outcomes after successfully
completing the second capstone unit.

6Unit Learning Outcomes are comparable the Knowledge Units in the “Computing
Curriculum – Software Engieering”, cf. http://sites.computer.org/ccse/know/FinalDraft.
pdf

Tribe

Squad

Student

Student

Student

Student

Student

…

Squad

Student

Student

Student

Student

Student

…

Squad

Student

Student

Student

Student

Student

…

…

SupervisorSupervisor Supervisor …

Unit Chair

Product Owner

Product Vision

Technical

Direction
Tribe Leader

Technical Staff
Technical

Support

Figure 1: Tribes and squads of proposed capstone model.

4.2 Overview of Model
Figure 1 illustrates the key components of our capstone project
model. The model is inspired by Spotify’s “Tribes and Squads” [2]
but adjusted to an educational setting.

The overarching building block of the model is a Product Tribe
where a large, long-term product undergoes enhancements over a
number of teaching periods. The vision of the product tribe is set
by a Product Owner – an industry representative – consistent
with the approach of Schneider and Johnston [33] – that brings a
non-academic perspective to the project setting – and supported by
a Tribe Leader (an academic staff member with a specific interest
in the project) who translates the vision into manageable work
packages for each teaching period. Within a product tribe there are
a number of Squads (i.e. teams of students) that are responsible
to deliver a set of work packages over the duration of a teaching
period. Based on what each squad manages to deliver, the vision
of the product tribe is reviewed in-between teaching periods and a
new set of work packages are identified.

The Tribe Leader also acts as a “gateweay” between students
and the Product Owner and streamlines any communication
required, to clarify scope of work packages, requests for feedback
etc. By doing so, the Tribe Leader shields the external Product
Owner from the challenges students face with externally-facing
communication, such as relevancy or frequency, and hence
improves the experience of Product Owner (one of the key goals
stated in Section 2). Communication channels between Tribe
Leader and students vary, often the Tribe Leader communicates
with the supervisor who in turn relays advice. In other tribes, the
Tribe Leader meets frequently with the students. Squads and their
supervisor are organised around Microsoft Teams groupware and
communication between students and supervisor is both written
and in person. There were 29 supervisors in the 2nd teaching
period in 2019 for the two PG capstone units, and 16 unique tribes.

Although in our setting students are required to complete two
capstone project units, they do not have to enroll in these units

Adopting Industry Agile Practices in Large-scale Capstone Education ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

in consecutive teaching periods. In order to minimize effort in
inducting students into a product tribe, but still allowing them the
flexibility of a gap between the two capstone project units, squads
are comprised of (a roughly equal number of) students from both
capstone units: we refer to students in the first capstone unit as
Junior students whereas students in their second unit are Senior
students.7 The Senior students are mainly responsible to “drive”
the squad, whereas the Junior students are there to learn about
the product tribe, and increasingly support the senior students in
working on deliverables.

During the first two weeks of a teaching period, Junior students
express their preferences for particular project tribes, but not a
specific squad within these tribes. Once allocated to a product
tribe, a student remains in their product tribe across both capstone
units, giving them the necessary continuity, even if they choose
to have a gap between the two units. However, the squads of a
product tribe are reset at the start of each teaching period and Senior
students do not necessarily work with the same peers as before.
This gives students a team-work experience similar to many real-
world workplaces, where the composition of work teams changes
routinely.

Based on past experience “experimenting” with the size of project
teams, we opted for large(r) squads of 10 to 12 students. This is a
little larger than the 7±2 recommend in the Agile Manifesto [4] but
not unheard of depending on the agile technique [36]. In the case
of student squads, this size allows us to maintain squad viability
even if there is shrinkage.8 This also allows the students to work
on larger, more complex work packages and gives them a sense
of achievement if they manage to contribute to deliverables of a
scale and/or complexity typical in industrial settings. The size of
the squad is also more in-line with what happens in industry, and
provides enough capacity to engage junior students more gradually
(and not insisting they be “productive” from the get go). It also
mitigates the risk that 1 or 2 students pull-off the entire set of
deliverables in an “all-nighter” or two, and where the rest of the
squad mops up and writes documentation.

Each squad has a dedicated Project Supervisor (generally an
academic staff member) who oversees the students’ work, mentors
them in project activities, engages in weekly squad meetings, and
serves as a first point of contact if/when problems arise within the
squad. As with the students, we aim to have project supervisors
stay within the same product tribe from teaching period to teaching
period in order to reduce their workload in familiarizing themselves
with the context of their product tribe.

Finally, two Unit Chairs with overall responsibility for grading
and the coordination and collection of assessment (one for each
of the two project units) oversee all activities during a teaching
period. They are also responsible to moderate expectations across
squads in order to ensure that all students get an equal learning
experience and are assessed as fairly and transparently as possible.

Another benefit of the model is that it reduces the work to source
suitable external projects. In 2019, we had a total of 16 product tribes
with PG students catering for app. 300-350 students per teaching
7There is no implied (nor inferred) hierarchy, we call them C1 and C2 students, short
for Capstone 1 and Capstone 2, respectively.
8Students may withdraw over the time-frame of the teaching period for many different
reasons.

period. With a more “traditional” approach to capstone projects (i.e.
a smaller team of 4-6 students etc.) we would have had to source
many more projects.

4.3 Teaching period timeline
Figure 2 summarizes the key aspects of the teaching period timeline.
For our purposes, we have split a teaching period into four × 3-
week time periods (or iterations) with a “preparation” week before
the first and some “buffer time” after the last iteration: this can be
adjusted if a teaching period has a different duration.

Prior to the start of the teaching period, the Product Owners
and Tribe Leaders review the deliverables from the previous
teaching period, discuss the vision of the respective project and
define, as well as prioritize, work packages to be completed based
on the anticipated number of squads. The Unit Chairs allocate
Project Supervisors to the relevant squads and discuss teaching
period timelines, assessment tasks etc. with the supervisors and
the technical support staff. If need be, introductions are made
between all stakeholders in order for communication during the
teaching period to be as smooth as possible.

During Week 1 of the teaching period, the Tribe leaders get
together with all returning Senior students of their respective
Product Tribe, discuss the identified work packages, and with
assistance of the Unit Chairs, allocate the Senior students to the
relevant squads. For the remainder of the first three weeks, the (yet
incomplete) squads review and refine their respective work
packages, seek clarification from the Tribe Leader (if necessary),
devise any necessary roles within the squad, and set up the
“infrastructure” (communication tools, repositories, development
tools etc.) to be used. The students further identify any
project-specific skills gaps within each squad such that these can,
ideally, be closed by Junior students assigned to the squad. Finally,
at a high-level, each squad plans the activities for the remainder of
the teaching period and define milestones for the three iterations
to come.

In parallel, the Junior students are being inducted into the entire
capstone project set-up, participate in refresher workshops on
various project-relevant topics (e.g., project management,
teamwork, iteration planning and reviewing, repository systems),
receive an overview of all the product tribes, and complete a skills
survey. Although the Junior students can express preferences for
which Tribes they would like to work in, the allocation to squads
also takes the results of the skills survey, identified skills gaps by
the Senior students as well as availability constraints into
consideration. Ideally, all Junior students are allocated to a squad
and introduced to their peers, project supervisor and the squad’s
modus operandi by the end of Week 3 so that everything is “work
ready” by the start of Week 4.

During the first iteration (Weeks 4 to 6), the Junior students
are inducted into their squad and Product Tribe, identify what
knowledge and skills they lack in order to become a productive
squad member, and are tasked to close their knowledge and skill
gaps as much as possible. The Senior students, on the other hand,
execute the plan they devised during the first three weeks and
mentor the Junior students across a variety of project-specific issues.
A weekly “stand-up” meeting with the Project Supervisor provides

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Schneider et al.

Wk0 Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8 Wk9 Wk10 Wk11 Wk12 Wk13 Wk14

Capstone 1 Unit:
Program Induction
(Junior Students)

Capstone 2 Unit:
Project Planning
(Senior Students)

Iteration 1
(Senior Students

induct
Junior Students)

Handover

&
Showcase

Unit Chairs,
Tribe Leaders,
Tech Team &
Supervisors
Meeting

Iteration 2
(Senior Students

guide
Junior Students)

Iteration 3
(Senior Students
collaborate with
Junior Students)

Learn & Assist Learn & Contribute Contribute & Master

Plan & Execute Plan & Execute Plan & Execute

Planning
Work
Packages
Coordination
Headsup etc.

Program Induction for
Junior students,
Recruitment to Tribes

Review and Planning by
Senior students

Handover of
completed work

Project Demo
and Showcase

Tribe and Squad Induction,
Upskilling of Junior Students

Project Execution and
Iteration Review/Planning

Technology Review,
Interview with Supervisor,
Project Execution and
Iteration Review/Planning

Project Execution and
Handover Preparation

Project Execution and
Showcase Planning

Figure 2: Teaching period timeline of proposed capstone model.

the opportunity for project updates, feedback and discussion on
key challenges.

At the end of the iteration, each squad reviews the work
completed as well as the effectiveness of their internal processes
and practices, discusses their findings with the Project Supervisor,
and devises a plan for the next iteration. In addition, each student
(individually) compiles a brief report on their achievements and
their plan forward (in line with the squad’s plan). The individual
retrospectives are then used to give students feedback on how they
are “travelling”. Dedicated 1-to-1 discussions are held in Week 7 in
order to allow the students to discuss their progress with their
Project Supervisor.

During the second iteration, Junior students are expected to
conclude their up-skilling activities and gradually start to contribute
towards deliverables. They may still need support from the Senior
students, but are asked to become increasingly more independent.
There is also an expectation that they become fully familiar with
the context their Product Tribe and the scope of what their squad
has been tasked to achieve. The Senior students are still mainly
responsible for project execution, but they are instructed to reduce
the level of support they are giving to the Junior students, and to
expect them to contribute more. Similar to the first iteration, both
squad-based and individual retrospectives are compiled and Project
Supervisors provide feedback on these retrospectives.

During the final iteration, each squad is expected to complete
the work packages they have been assigned. Both Junior and Senior
students are expected to fully collaborate on project work and the
level of mentoring by Senior students is reduced to a minimum.
The aim is that at the end of this iteration, all Junior students have
a sufficient knowledge about their Product Tribe to confidently
graduate to the Senior student role when they come back for their
second capstone project unit.

In order to finalize the squad’s work, the Junior students are
to compile handover documentation, including the relevant work

products, and these will be passed to the Product Owner for their
review. The handover artefacts will also serve as the basis for new
squads’ work packages in the following teaching period. The Senior
students, on the other hand, prepare a show-case presentation
where they demonstrate the main outcomes of the squad’s work
(the combined work of both the Junior and Senior students) to a
wider audience, their peers, other Faculty and externals partners.
We generally organize a show-case event at the conclusion of each
teaching period where these presentations are made, judging is
held and prizes awarded.

Once all project activities are completed, the students are tasked
to compile a learning portfolio, providing a summary of all activities
they were involved in during the teaching period, a reflection on
key learnings as well as a discussion how they achieve the Unit
Learning Outcomes for their respective capstone project unit.

4.4 Project Environment
One of the observations made in prior teaching periods was that
not all Project Supervisors had the necessary in-depth knowledge
in a project’s technology-stack and supporting tools to confidently
and competently provide guidance and support to their students.
We also noticed that it was very challenging (if not impossible) for
students to find suitable work spaces on campus, for meetings and
collaborative work sessions. As a consequence, we introduced (i) a
physical collaboration work-space (equipped with a mix of meeting
rooms, wall-to-wall whiteboards, large screens, workstations etc.)
with exclusive access for the capstone project students and (ii) a
co-located help-hub with Technical Advisors available during office
hours Monday to Friday. All meeting rooms are equipped with
video conferencing facilities in order for “off-campus” students to
participate in squad meetings.

The Technical Advisor’s role is to provide all squads with
assistance with any technology-related questions they have, hence

Adopting Industry Agile Practices in Large-scale Capstone Education ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

mitigating the need to have all Project Supervisors expert with all
the technology involved, and also organize drop-in workshops on
topics relevant across a number of Product Tribes. We instructed
Project Supervisors to have their weekly “stand-up” meetings in
the collaboration space and strongly encouraged the students to
spend some time before/after their supervisor meeting
collaboratively working on their projects.

In order to facilitate the burden of managing a large number of
squads within each teaching period, and avoiding the problem of
each squad having their own set of tools (with associated learning
challenges), we introduced a uniform set of collaborative support
tools across all squads: Microsoft Teams, Atlassian Bitbucket and
Trello. One of the compelling reasons for using Microsoft Teams
over other groupware solutions is the ease with which it allowed
the unit administrators to pre-populate the squads in the
continuing tribes, and to directly create the Teams groups from the
Global Address List (GAL) in MS Exchange Server. Changes in
squad composition, that involve additions and deletions, are also
easily maintained using MS Teams, so this platform was selected
for group-based conversations and documentation sharing. Thanks
also to an Atlassian site-license and deployment on a local server,
we conducted workshops on the use of Bitbucket, so that students
had access to a web-based version control repository hosted on
campus. Another important resource for web-based Kanban-style
list-making is Trello9 and this was also available to our students
for collaboration, project management and planning, respectively.
If squads wanted to use different tools for collaboration and
file-sharing, they needed explicit approval from their Project
Supervisors.

Although the chosen collaborative support tools may not be the
ultimate solution to the needs to run and manage a large number
of squads, they provided an acceptable compromise with regards
to industry-relevance and adoption, usability, accessibility (at no
extra costs to students), availability across multiple platforms, and
administrative support, respectively.

4.5 Addressing the Motivations
Our model is designed to address the six motivations discussed in
Section 2. The structure of the model supports longer-term
continuous “live” products to be worked on, allowing the tackling
of more complex problems (Motivation 1: Industry relevant
experience). The on-boarding and mentoring of Junior students as
well as an agile methodology is also in line with industry
expectations and practice. The model provides a structure for
stakeholders at different stages of knowledge of the project to
interact (Motivation 2: Authentic learning experience). As the
model is explicitly designed to support longer projects with
multiple student squads, students can have breaks in between
different capstone units, and return to the same Tribe, thus
reducing the need to learn a new context (Motivation 3: Continuity
of learning experience).

With the embedded ability to have multiple student squads
working on a project in parallel, and for the projects to be worked
on in a continuous way over a longer time-period, there is an
increased chance for a client (i.e. the Product owner) to be satisfied

9www.trello.com

and, therefore, continue to want to be involved (Motivation 4: A
successful client experience). This is further facilitated by Tribe
leaders shielding clients from “unnecessary” interactions with
students and translating the project vision into work packages.

As well as supporting more continuous projects, the model also
explicitly supports multiple simultaneous squads within each tribe.
With this approach it is feasible for potentially hundreds of students
to work on the same long-term product at any given point in time
(Motivation 5: Scalability of approach).

The model is about the structuring of the capstone learning
experience, but like any teaching, will require effective support for
all students. As well as the embedded student-student support
mechanisms, the model introduces a consistent approach and
uniform tool-set, which is easier to support and maintain
(Motivation 6: Effective support of students).

How well the model realizes these goals is very much
dependent on the deployment for a particular capstone experience.
The following section provides an evaluation of the model when
used for the first time in university capstone units.

5 INITIAL EVALUATION
5.1 Setting for case study
All ICT-degree programs at Deakin have a mandatory capstone
component consisting of two capstone project units, each requiring
at least 120 hours of effort across a teaching period. All students
must complete these units prior to graduation. The number of
students across all our ICT-degrees has increased from approx. 1,500
in 2015 to approx. 4,000 in 2019, with anticipation of continuing
growth in the coming years. Given the current trend, we expect
in the order of 1,000 students enrolling in capstone projects each
teaching period in the not distant future.

The proposed capstone project model as presented in the
previous section was first introduced to two PG capstone project
units in 2019 with the aim to roll-out the model to UG capstone
project units in 2020. Across the two PG capstone project units we
ran during the second teaching period, a total of 302 students,
allocated to 29 squads (each with a unique Project supervisor)
composed of 9 to 12 students,10 worked on a variety of different
projects.

5.2 Survey description
As part of the ongoing evaluation of the capstone units we routinely
survey students, project supervisors, Tribe leaders, capstone unit
coordinators, and the unit administrative team. We also sought
feedback from external client organisations. Aside from assessment
satisfaction (dealt with in a companion paper [42]), we are interested
in perceptions around organisation of the squads, the success (or
otherwise) of roles played by the actors in the model in Figure 1,
and an evaluation of usefulness of the resources that support the
capstone units, including the physical collaboration space, the help
hub, technical advisors and up-skilling workshops. The focus of
the survey is to seek evidence-based feedback that will further
drive innovation in subsequent iterations. Of particular interest is

10Due to late enrollments and withdrawals, not all squads had the same number of
students.

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Schneider et al.

the organisation of the mixed squads, Junior and Senior capstone
students, and whether this results in positive learning experiences
and outcomes for both student cohorts.

To this end, a survey was designed for students with 26 ordinal
choice questions and 2 open-ended textual questions. The
open-ended questions called for two aspects of the assessment that
worked well, and two aspects that could be improved, 5 of the 26
ordinal choice questions concerned assessment (dealt with in an
accompanying paper [42]). Project supervisors were asked 18
ordinal choice questions and one free text question “What would
you change about the unit? What works and what does not?”
Throughout the remainder of this section, we will report on the
key findings from the surveys.

5.3 Survey Results
93 students responded to the survey (51 Junior; 42 Senior), a
response rate of 31% of the total enrollment. More than half of the
respondents claimed that they had had industry-based group-work
experience prior to the start of the capstone units (32 Junior; 17
Senior)11 Of the 49 students who said they had prior
industry-based group-work experience, 7 disagreed (2 of these
strongly so) with the statement that the capstone experience
created an environment similar to what is expected in industry, 9
were neutral to this statement and 33 agreed (12 of these strongly
agreed) that the capstone experience created an environment
similar to what is expected in industry. This suggests that students
with prior industry experience were convinced that the capstone
provided an authentic industry-like experience. On the other hand,
only one of the students without prior industry-based group-work
experience disagreed with the statement, but the total agreement
rate was slightly lower compared to the students with prior
industry experience (64% versus 67%).

The project supervisors were surveyed along the same lines. 12
responded, 2 disagreed, 1 was neutral, and 9 agreed (1 strongly
agreed) with the statement the capstone experience created an
environment similar to what is expected in industry. Therefore,
there is doubt in some quarters that the capstone experience
created an environment similar to what is expected in industry.
One explanation lies in the observation that a couple of the tribes
are inwardly focused, with a product owner internal to the
organisation.

A main feature of the implementation of the model described in
Figure 1 is that a squad contains both Junior and Senior students.
This feature is intended to encourage mentoring between students
at different stages through the capstone units. How well does
mentoring (and communication) work in the mixed Junior and
Senior squads?

71% of all Senior students responding to the survey felt positively
about them bringing the Junior students up to speedwith the project
(cf. Figure 3) with only 3% disagreeing (the remaining 26% having
a neutral view). On the other hand, as indicated in Figure 4, 69%
of all Junior students agreed that the Senior students helped them
to come up to speed with the project (with 22% strongly agreeing).

11An explanation for the difference between senior and junior students self-reporting
industry experience is that the senior students have, after already completing the first
capstone unit, reconsidered the definition of industry experience.

7%

23%

47%

20%
4%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

3%

26%

42%

29%
Strongly Disagree
Neutral
Agree
Strongly agree

Figure 3: “As a Senior student, Junior students we responsive
to my help coming up to speed with the project.”

7%

23%

47%

20%
4%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

3%
19%

9%

47%

22%

Strongly Disagree
Disagree
Neutral
Agree
Strongly agree

Figure 4: “As a Junior student, Senior students helped me
come up to speed with the project.”

7%

23%

47%

20%
4%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

3%5%

47%

45%Disagree
Neutral
Agree
Strongly agree

Figure 5: “As a Senior student, I was prepared and able to
mentor Junior students.”

9% of Junior students were neutral to this proposition with 22%
disagreeing (3% strongly). Therefore, there is strong evidence that
mentoring by Senior students is taking place and that it is positively
delivered, but it seems somewhat less positively received by the
Junior students, indicating they had not received sufficient help.
This is something we need to investigate further and address in
future.

On the question to Senior students, as to whether they were
prepared and able to mentor the Junior students, the vast majority
of Senior students agreed (92% agreement with 45% Strong Agree)
with only 3% disagreeing (cf. Figure 5). When it comes to the
question whether the communication between squad members
was useful and productive, 81% of students responded positively to
this question (with 35% strongly agreeing) with only 3%
disagreement. However, more Senior students disagreed with the
usefulness of the communication than Junior students (7% vs. 3%),
albeit at a very low level.

We surveyed the students about the supporting project tools (cf.
Section 4.4) and asked if Microsoft Teams, Bitbucket, and Trello
were useful for facilitating group-work. 87% of students agreed

Adopting Industry Agile Practices in Large-scale Capstone Education ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

7%

23%

47%

20%
4%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

2% 11%

43%

44%Disagree
Neutral
Agree
Strongly agree

Figure 6: “The supporting project tools (MS Teams,
Bitbucket, Trello) were useful for facilitating teamwork.”

that they were, and only 2% disagreed, noting that they preferred
alternatives (cf. Figure 6). In contrast, only 2 of the project
supervisors were neutral about the collaboration tools, the
remainder were positive.

Although 68% of the respondents found the dedicated
collaborative space as useful (28% neutral responses), 36 students
(i.e. 39%) indicated that they used the space less than five times
during the teaching period. Looking at the responses to these two
questions in more detail, only one student that used the
collaborative space once a week (or more) disagreed with the space
being useful to their project. Most students that used the space
regularly found it useful, and not surprisingly, the students that
did not frequent the space did not find it useful. Although from an
academic perspective we think such a collaborative space is useful
and should be regularly used, the data shows that we need to do
more to encourage our students to make an effort and benefit from
such a dedicated work-space.

88% of students survey agreed (of these 40% strongly agreed)
with the statement that “The capstone project unit(s) allowed me
to improve my IT skills in order to get IT-related employment in
industry.” Interestingly, we have a slightly higher agreement to
this question by students with prior industry-based group-work
experience versus students without such an experience (90% vs.
86%). However, more Junior students agree with this question than
Senior students (92% overall agree versus 83% agree). We need to
find out more why it is that 17% of Senior students did not feel as if
their IT-related employment skills were improved by the second
capstone project unit, and how we can address this in future.

In other results from the survey, not surprisingly, project
supervisors were less enthusiastic than the students about certain
student-facing services and facilities: the help hub, the technical
advisors and the physical collaboration space, some project
supervisors complained that the technical advisors had
contradicted their advice. All the project supervisors recorded that
interactions between the project supervisor and the squad were
useful and productive, and while only 6 students disagreed with
this statement, 79% of students recorded positive interactions with
their project supervisor. Some project supervisors reported
confusion among the students by the large number of different
roles: project supervisor, unit chair, tribe leader, client, and
technical advisors. Students also reported that it surprised them
how much management and communication skills influenced the
project’s success.

7%

23%

47%

20%
4%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

17%

47%

33%
Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Figure 7: “The 3 Iterations (duration of 3 weeks each) were a
good model for project work.”

In terms of what aspects of the unit worked well, students
reported teamwork, communication, the groupware tools, the
3-week iteration cycles (cf. Figure 7), the end of teaching period
showcase, and the weekly project supervisor meetings. On what
aspects of the unit could be improved, students mentioned more
workshops about tools, better interaction with other squads, so
that experience could be shared, and better matching of
supervisor’s expertise to projects. Many students wanted better
and more access to the Tribe Leader and/or external Product
Owner.

6 DISCUSSION
In running our model, we identified a set of issues and challenges
that we plan to address in coming teaching periods, including the
following seven points.

1. Closer and better pairing of supervisors skills to projects.
History has shown that one of the key factors for successful
project outcomes are engaged project supervisors. We find that
supervisors assigned to projects in their areas of interest are more
engaged, supportive and better able to steer the project, as well as
provide technical advice. The future plan is, when possible, to
allow supervisors to bid on projects they are interested in
supervising and to get academic staff earmarked for supervision
involved early, when new Product Tribes are introduced.

2. Offer more up-skilling workshops. A significant number of
students demonstrated limited skill-sets when they commenced
the capstone units and so it is difficult to assign them, in any
strategic way, based on the skills survey. We identify two types of
workshops to organise: (i) one or more agile practice workshops to
ensure that students understand and know how to refine user
stories, manage project backlogs, set priorities, etc. and; (ii)
technical workshops to ensure students are in a position to take
ownership of their assigned tasks. This is especially critical for
Junior students that need further skills in design thinking, i.e.
Unity, web stack, Ethereum, and other technologies and
approaches, respectively.

3. We need to minimise internal-facing tribes by building out our
external industry network. In past years, external clients were lost
because projects and students could not adequately respond to
requirements and/or did not deliver on promises. To date we are
going through what can be described as a model validation phase,
a phase where we want to ensure the model actually works, that
proper workplaces and resources are available, before exposing our
model externally. Our approach to external clients has therefore

ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea Schneider et al.

been conservative. Now that the model is stable and producing
fruitful outcomes, our capstone management team are talking with
more external partners with the aim of having an increased number
of industry-based Product owners (currently around 20).

4. We should implement the Spotify chapter concept, a horizontal
collection of students with common interests across squad boundaries.
A useful feature of the Spotify agile model is to consider horizontal
tiers (cohorts) across different Tribes and Squads as “chapters”. We
see this as a way to organise a response to the demands for
additional up-skilling workshops mentioned earlier, as well as
organising clubs around the roles or tools, e.g., around UX/UI,
design thinking, MongoDB, React.js, jQuery etc. This is an
opportunity both to share knowledge between students, who share
the same role or are using the same tools, and also as a platform
for Senior students to coach Junior students outside the bounds of
their respective squads.

5. Better clarity on delegations to minimize interference between the
advice offered by supervisor, tribe leader and technical advisors.With
many stakeholders and roles in the project ecosystem, the suitability
of communication is difficult to fully manage. For example, we have
experienced students asking business (scope) related questions to
technical advisors. These conversations led to confusion in some
cases regarding project priorities. On the other hand, dialogue
between roles is often necessary and productive, for instance some
user stories or requirements planned by project supervisors or
clients are not practical and need to be either broken-down or re-
prioritised as a result of technical limitations or constraints. We are
developing detailed role descriptions to help all stakeholders better
understand their responsibilities in the project ecosystem.

6. It probably does not matter what group-ware tools you select.
We have changed some of the group-ware tools used in the
capstones from previous teaching periods, i.e. switching from
Slack12 to Microsoft Teams because of its integration with our
infrastructure. From an operations perspective it is easier to add
and remove groups and students via scripts compared to Slack.
These changes turned out to be useful to reduce the management
overhead, but did not affect collaboration (at least as evidenced in
our survey), mostly because the majority of features required to
run a successful project are available across all groupware
platforms. When we re-evaluate the choice of group-ware tools in
the future, we will use this more pragmatic approach.

7. Junior & Senior students benefit from collaboration in Squads.
There are many useful features resulting from blending Junior and
Senior students in a single squad. For Junior students, it allows a
smooth transition to the project, up-skilling on relevant skills given
the stability of the projects, and acquiring the necessary orientation
from Senior students. We also noticed that Senior students are
more enthusiastic about mentoring Junior students. They become
mature when they get to play the role of a senior member in the
team. Such an arrangement seems to push Senior students to try to
find answers to questions from Junior students, both in relation to
the project requirements and to the technology stack. Our initial
observations indicate that blended squads work surprisingly well
and we are encouraged to roll out blended squads in other project
units where possible.

12https://slack.com

7 CONCLUSIONS AND FUTUREWORK
This paper reports the adoption of a hybrid agile organisational
model based on Spotify’s Tribes and Squads for the purpose of
teaching delivery of capstone units containing large number of
students. The design is motivated by a set of features that we want
to satisfy: (i) industry relevant experience; (ii) authentic learning
experience; (iii) continuity of learning experience; (iv) a successful
client experience; (v) scalability of approach; and (vi) effective
support of students.

Our initial evaluation of the proposed model shows positive
indicators across the majority of these features. On the last point
in particular, we have found evidence that student mentoring is
occurring in blended squads and that it is positively given and
received, without any perceived communication loss compared to
squads that are composed of only students at the same level.

The only feature we do not have sufficient data to draw any
conclusions on is feature (iv) – a successful client experience. As
part of our future investigations, we intend to survey and closely
work with the various Product Owners to identify their views and
measure their experience.

The model we presented is evolving incrementally based on
evidence-based feedback from its stakeholders: students, technical
advisors, supervisors, Tribe Leaders, Product Owners, unit chairs,
and the capstone project management team. The research team
plans to conduct a longitudinal study that will allow the
presentation of comparative results based on student performance
in addition to measuring stakeholder satisfaction. Because of the
size of the student cohort, organisational innovation can be
introduced to a subset of that cohort, and student performance and
stakeholder satisfaction tested against this baseline model.

ACKNOWLEDGMENTS
The authors would like to thank the members of the School of
Information Technology Capstone Projects Team at Deakin
University, especially Kristiina Tukk and Jesse Mcmeikan, for their
support of this work. We would also like to thank the anonymous
referees for their valuable comments and helpful suggestions.

REFERENCES
[1] Malek Al-Zewairi, Mariam Biltawi, Wael Etaiwi, and Adnan Shaout. 2017. Agile

software development methodologies: survey of surveys. Journal of Computer
and Communications 5, 05 (2017), 74–97.

[2] Mashal Alqudah and Rozilawati Razali. 2016. A Review of Scaling Agile Methods
in Large Software Development. International Journal on Advanced Science,
Engineering and Information Technology 6, 6 (2016), 828–837.

[3] Kent Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley.

[4] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. 2001. The Agile Manifesto. (2001).
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf. Accessed on
30-Oct-2019.

[5] Bernd Bruegge, Stephan Krusche, and Lukas Alperowitz. 2015. Software
Engineering Project Courses with Industrial Clients. ACM Transactions on
Computing Education 15, 4 (2015), 17:1–17:31.

[6] Alistair Cockburn. 2004. Crystal clear: a human-powered methodology for small
teams. Pearson Education.

[7] Sharon Coyle, Kieran Conboy, and Tom Acton. 2015. An exploration of the
relationship between contribution behaviours and the decision making process
in agile teams. In Proceedings of the 36th International Conference on Information
Systems. Fort Worth, Texas, USA, 1–15.

Adopting Industry Agile Practices in Large-scale Capstone Education ICSE-SEET’20, May 23–29, 2020, Seoul, Republic of Korea

[8] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils BredeMoe. 2012.
A decade of agile methodologies: Towards explaining agile software development.
Journal of Systems and Software 85, 6 (2012), 1213–1221.

[9] Xiaocong Fan. 2018. Seven Principles of Undergraduate Capstone Project
Management. In Proceedings of the International Conference on Software
Engineering Research and Practice. Las Vegas, Nevada, USA, 106–112.

[10] Görel Hedin, Lars Bendix, and Boris Magnusson. 2003. Introducing Software
Engineering by means of Extreme Programming. In Proceedings of 25th
International Conference on Software Engineering. Portland, Oregon, USA, 586–
593.

[11] Rashina Hoda, James Noble, and Stuart Marshall. 2011. The impact of inadequate
customer collaboration on self-organizing Agile teams. Information and Software
Technology 53, 5 (2011), 521–534.

[12] Eric Kisling. 2019. Transitioning from Waterfall to Agile: Shifting Student
Thinking and Doing from Milestones to Sprints. In Proceedings of Southern
Association for Information Systems. 1–2.

[13] Henrik Kniberg and Anders Ivarsson. 2012. Scaling agile@ spotify.
(2012). https://creativeheldstab.com/wp-content/uploads/2014/09/scaling-agile-
spotify-11.pdf. Accessed on 30-Oct-2019.

[14] Dean Knudson and John Grundy. 2016. International Capstone Exchange – the
SUT and NDSU Experience. In Proceedings of 2016 Capstone Design Conference.
Columbus, Ohio. https://doi.org/10.13140/RG.2.1.1181.9764

[15] Dean Knudson and Alex Radermacher. 2011. Updating CS capstone projects to
incorporate new agile methodologies used in industry. In Processings of the 24th
IEEE-CS Conference on Software Engineering Education and Training. Honolulu,
HI, USA, 444–448.

[16] Stefan Koch. 2005. Evolution of Open Source Software Systems–a Large-scale
Investigation. In Proceedings of the 1st International Conference on Open Source
Systems. Genoa, Italy, 148–153.

[17] Lowell Lindstrom and Ron Jeffries. 2004. Extreme Programming and Agile
Software Development Methodologies. Information System Management 21, 3
(2004), 41–52.

[18] Baochuan Lu and Tim DeClue. 2011. Teaching Agile Methodology in a Software
Engineering Capstone Course. Journal of Computing Sciences in Colleges 26, 5
(2011), 293–299.

[19] Vijan Mahnic. 2012. A Capstone Course on Agile Software Development Using
Scrum. IEEE Transactions on Education 55, 1 (2012), 99–106.

[20] Angela Martin, Craig Anslow, and David Johnson. 2017. Teaching Agile Methods
to Software Engineering Professionals: 10 Years, 1000 Release Plans. In Proceedings
of the 18th International Conference on Agile Software Development. Cologne,
Germany, 151–166.

[21] Andreas Meier, Martin Kropp, and Gerald Perellano. 2016. Experience Report of
Teaching Agile Collaboration and Values: Agile Software Development in Large
Student Teams. In Proceedings of the 29th International Conference on Software
Engineering Education and Training. Dallas, Texas, USA, 76–80.

[22] Antonio F Mondragon-Torres. 2013. An agile embedded systems capstone course.
In Proceedings of 2013 IEEE Frontiers in Education Conference. Oklahoma City, OK,
USA, 127–133.

[23] Antonio F Mondragon-Torres, Alexander Kozitsky, Clifford Bundick, Edward
McKenna, Eric Alley, Matthew Lloyd, Peter Stanley, and Roger Lane. 2011. Work
in progress – An agile embedded systems design capstone course. In 2011 Frontiers
in Education Conference. Rapid City, SD, USA.

[24] Bahram Nassersharif and Linda Ann Riley. 2012. Some best practices in
industry-sponsored capstone design projects. In 2012 Capstone Design Conference.
Champaign-Urbana, Illinois, USA.

[25] Andres Neyem, Jose I Benedetto, and Andres F Chacon. 2014. Improving
software engineering education through an empirical approach: lessons learned
from capstone teaching experiences. In Proceedings of the 45th ACM Technical

Symposium on Computer Science Education. Atlanta, Georgia, USA, 391–396.
[26] Steve R Palmer and Mac Felsing. 2001. A practical guide to feature-driven

development. Pearson Education.
[27] Ian Parberry, Timothy Roden, and Max B Kazemzadeh. 2005. Experience with

an industry-driven capstone course on game programming. In Proceedings of
the 36th SIGCSE Technical Symposium on Computer Science Education. St. Louis,
Missouri, USA, 91–95.

[28] Marko Poženel. 2013. Assessing teamwork in a software engineering capstone
course. World Transactions on Engineering and Technology Education 11, 1 (2013),
6–12.

[29] Michael J. Prince and Richard M. Felder. 2006. Inductive Teaching and Learning
Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering
Education 95, 2 (2006), 123–138.

[30] David F. Rico and Hasan H. Sayani. 2009. Use of agile methods in software
engineering education. In Proceedings of 2009 Agile Conference. Chicago, IL, USA,
174–179.

[31] Diane Rover, Curtis Ullerich, Ryan Scheel, Julie Wegter, and Cameron Whipple.
2014. Advantages of agile methodologies for software and product development
in a capstone design project. In Proceedings of 2014 IEEE Frontiers in Education
Conference. Madrid, Spain, 1–9.

[32] Jan Schilling and Ralf Klamma. 2010. The difficult bridge between university and
industry: a case study in computer science teaching. Assessment & Evaluation in
Higher Education 35, 4 (2010), 367–380.

[33] J. . Schneider and L. Johnston. 2003. eXtreme programming at universities - an
educational perspective. In 25th International Conference on Software Engineering,
2003. Proceedings. 594–599. https://doi.org/10.1109/ICSE.2003.1201242

[34] Jean-Guy Schneider and Lorraine Johnston. 2005. eXtreme Programming –
Helpful or Harmful in Educating Undergraduates? Journal of Systems and Software
74, 2 (Jan. 2005), 121–132.

[35] Jean-Guy Schneider and Rajesh Vasa. 2006. Agile Practices in Software
Development – Experiences from Student Projects. In Proceedings of the 17th
Australian Software Engineering Conference. Sydney, Australia, 401–410.

[36] Ken Schwaber and Mike Beedle. 2002. Agile Software Development with Scrum.
Prentice Hall Upper Saddle River.

[37] Tucker Smith, Kendra ML Cooper, and C Shaun Longstreet. 2011. Software
engineering senior design course: experiences with agile game development in a
capstone project. In Proceedings of the 1st International Workshop on Games and
Software Engineering. Honolulu, HI, USA, 9–12.

[38] Richard Stansbury, Massood Towhidnejad, Jayson F Clifford, and Michael P
Dop. 2011. Agile methodologies for hardware/software teams for a capstone
design course: lessons learned. In Proceedings of American Society for Engineering
Education. Russellville, Arkansas, USA, 1–13.

[39] Jennifer Stapleton. 1997. DSDM, dynamic systems development method: the method
in practice. Cambridge University Press.

[40] Chuan-Hoo Tan, Wee-Kek Tan, and Hock-Hai Teo. 2008. Training students to be
agile information systems developers: A pedagogical approach. In Proceedings of
the 2008 ACM SIGMIS CPR Conference on Computer Personnel Doctoral Consortium
and Research. Charlottesville, VA, USA, 88–96.

[41] Robert H Todd and Spencer P Magleby. 2005. Elements of a successful capstone
course considering the needs of stakeholders. European Journal of Engineering
Education 30, 2 (2005), 203–214.

[42] Laura Tubino, Andrew Cain, Jean-Guy Schneider, Dhananjay Thiruvady, and
Niroshinie Fernando. 2020. Authentic Individual Assessment for Team-based
Software Engineering Projects. In Proceedings of IEEE/ACM 42nd International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). ACM, Seoul, South Korea. to appear.

[43] Laurie Williams and Richard Upchurch. 2001. Extreme Programming in Software
Engineering Education?. In Proceedings of the 31st Annual Frontiers in Education
Conference. Reno, Nevada, USA, 1–6.

