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Energy-efficient computation is an increasingly important target in modern-day com-
puting. Scientific computation is conducted using scientific workflows that are executed
on highly scalable compute clusters. The execution of these workflows is generally geared
towards optimizing run-time performance with the energy footprint of the execution being
ignored. Evidently, minimizing both execution time as well as energy consumption does
not have to be mutually exclusive. The aim of the research presented in this paper is to
highlight the benefits of energy-aware scientific workflow execution. In this paper, a set of
requirements for an energy-aware scheduler are outlined and a conceptual architecture for
the scheduler is presented. The evaluation of the conceptual architecture was performed by
developing a proof of concept scheduler which was able to achieve around 49.97% reduction
in the energy consumption of the computation.

Keywords: energy-aware computing, scientific workflows, scheduling, high performance
computing, parallel computing

1. INTRODUCTION

A scientific workflow is defined as a series of small tasks being executed in a specific
structure to achieve a certain computation goal [1]. A trade-off between run-time perfor-
mance and energy consumption has been seen for multiple workflows [2]. This often
means that after a certain time, using more cluster resources results in minimal computa-
tional improvements but large energy overheads. Workflow engines execute the workflow
and handle all the data, task dependencies, logging, and reporting [3–5], respectively.

Workflow engines have been developed that provide the user with a lot of optimiza-
tion and configuration options. Most scientists do not manage their own cluster infrastruc-
ture and rely on the workflow engine to handle the creation, management, and debugging
of the cluster and workflow. This makes it difficult for them to be able to understand the

Received December 19, 2022; revised June 2, 2023; accepted June 30, 2023.
Communicated by Huo Chong Ling.
+ Corresponding author.

957



958 MEHUL WARADE, KEVIN LEE, CHATHURIKA RANAWEERA, JEAN-GUY SCHNEIDER

environmental impact of their computation and to optimize their workflows or the cluster
for better performance and/or energy consumption.

Scientists have optimized the performance of different workflows for timeliness [6],
performance [7], or data provenance [8]. These optimizations are particular to the specific
workflows and are achieved by modeling and analyzing the workflow [9, 10]. In existing
workflow schedulers, energy considerations are only marginally (if at all) taken into ac-
count. For example, current approaches focus on executing individual jobs rather than
analyzing and understanding the structure and execution characteristics of the workflow
and the individual jobs in the workflow [9, 11, 12].

The aim of this paper is to motivate the development of a scheduler taking into con-
sideration the energy consumption of a scientific workflow and its underlying jobs. The
scheduler needs to be able to understand the workflow at the job level or computation
level in order to make changes to the workflow or the cluster to better accommodate
the execution of the workflow. A set of generic and workflow-specific requirements and
policies for the scheduler are also identified. A proof-of-concept scheduler is developed
based on the conceptual architecture and is evaluated by executing a scientific workflow
and comparing the execution with the standard execution. The authors anticipate that a
formal scheduler built to address the requirements and policies will reduce the energy
consumption of workflows.

The key contributions of this paper are as follows: (i) a survey of the current state
of energy-aware workflow schedulers; (ii) identification of requirements and challenges
for energy-aware schedulers; (iii) a conceptual architecture for an energy-aware scheduler
for scientific workflows; and (iv) a proof of concept implementation and evaluation of the
proposed scheduler. This paper is an extended version of a conference paper [13], which
includes new experimental results, an evaluation of the proposed solution, and additional
discussion.

The remainder of this paper is as follows: Section 2 provides an overview of the
issues associated with workflow execution and energy constraints. This section also pro-
vides an analysis of popular scientific workflows. The requirements and challenges for
the development of an energy-aware scheduler are documented in Section 3. Section 4
presents a conceptual architecture for developing an energy-aware scheduler. The evalua-
tion of conceptual architecture by executing a scientific workflow on a cluster is presented
in Section 5. Finally, Section 6 provides conclusions and future work.

2. BACKGROUND

High-Performance Computing (HPC) has led to an increase in global energy us-
age [14]. As we move towards ExaFLOP performance in HPC, it is becoming more and
more challenging to cope with the increasing energy required for the computation [2].
Monitoring energy usage and developing more energy-efficient methods for computing is
of ever-increasing importance [14,15]. A number of hardware and software methods have
been proposed to tackle this issue. The remainder of this section provides a background
on (i) scientific workflows, (ii) workflow schedulers, and (iii) energy-aware scheduling,
respectively.
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2.1 Scientific Workflows

Workflows are increasingly being used in High-Performance Computing (HPC) to
accommodate for the growing complexity of computation, simulations, and analysis [16].
A workflow comprises of a number of individual jobs that are executed in batches to com-
plete a large computation. These jobs have characteristics that are particular to individual
workflow such as data dependencies, bottlenecks, etc. The execution of such jobs can be
exploited to achieve improvement in performance or energy consumption of the work-
flow. In this section, two popular scientific workflows are described and the jobs that can
be exploited to achieve improvements are discussed.

2.1.1 Montage

Montage [17,18] is a software toolkit used in Astrophotography to combine Flexible
Image Transport System format (FITS) images of the sky into composite images called
mosaics. The toolkit preserves the calibration and positional fidelity of the original input
images. A Montage workflow comprises of a number of tasks to develop a relevant mosaic
of the sky based on its input parameters. Montage has been classified as an input/output-
bound workflow [19] compared to other scientific workflows. The Montage toolkit can be
used to generate workflows of varying sizes depending on the requirements of a scientist.
The varying size of a Montage workflow is specified in (i) degrees of the sky and (ii) the
color channels which the final images should be generated from. Fig. 1 illustrates the
Montage workflow as a directed acyclic graph (DAG). The Montage DAG has 8 levels of
jobs which are dependent on each other after the workflow is submitted (Step 0).

2.1.2 Bioinformatics

The Bioinformatics workflow is based on the data collected by the 1,000 Genomes
Project [20, 21]. The purpose of this workflow is to analyze the data and cross-match
the whole datasets for mutations. The workflow also identifies mutational overlaps in
order to evaluate potential disease-related mutations. The extracted data, along with the
mutation’s sift scores (calculated by the Variant Effect Predictor [22]) can help researchers
in discovering the exact mutation which is the cause of a certain disease in a person. The
Bioinformatics workflow has many characteristics which are specific to the workflow. In
particular, there are two different input variables that can be controlled by the user – the
size of the workflow (the data to be computed) and the number of parallel jobs. Fig. 2
illustrates a directed acyclic graph (DAG) of a Bioinformatics workflow.

Like any scientific workflow, both Montage and the Bioinformatics workflow have
specific characteristics to their structure. Montage has some jobs, in particular mPro-
ject, that is computationally more intensive than others and the bio-informatics work-
flow has a bottleneck in its execution (Individual merge). The size and parameters
of the workflow dictate the number of jobs that are needed for execution. The combina-
tion of the size of the workflow and the number of cluster nodes has a direct impact on
the queuing of jobs, execution time, and energy consumption of the workflow. Identifying
such jobs and smartly executing them can lead to improvements in energy consumption
and the performance of the workflows.
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Fig. 1. A simple Montage workflow.

2.2 Workflow Schedulers

Optimizing schedulers for workflows have always been an area of interest for scien-
tists. An adaptive workflow processing and execution method are possible [23–25]. These
methods take into account the current progress of the workflow and the load on the cluster
to perform scheduling and load balancing.

Another approach for developing effective scheduling of workflows was introduced
in a cloud-based distributed computing systems [26]. Static Provisioning-Static Schedul-
ing under Energy and Budget Constraints (SPSS-EB) and Static Provisioning-Static
Scheduling under Energy and Deadline Constraints (SPSS-ED) were two novel algo-
rithms developed and tested to show improvements in the performance of workflows in a
cloud-based distributed systems [27].

A system for dynamically allocating tasks based on the available infrastructure and
knowledge of the workflow has been developed [28]. The system was able to achieve
faster job run-time along with improved cluster usage. Another scheduler makes use of
critical path analysis to find the optimal execution of tasks to reduce the data transfer be-
tween the nodes [12]. This scheduler achieved a reduction of 66% in execution time over
traditional schedulers. A hybrid algorithm making use of the Particle swarm optimization
(PSO) algorithm and processing bottleneck tasks on high priority has been developed to
achieve better execution time along with no loss in cluster load [29]. Similar results have
been obtained from a scheduler developed by using genetic algorithm [30].
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Fig. 2. A simple bioinformatics workflow.

2.3 Energy Aware Workflow Schedulers

This section focuses on schedulers that have been developed by considering the
cost and energy consumption of the computation. In recent years, the focus has shifted
from ‘faster computation’ to ‘energy-efficient computation’. Due to this a lot of re-
searchers have developed systems that take the cost of computation into consideration
while scheduling the workflows.

Scheduling algorithms have also been introduced to meet time deadlines of computa-
tion while minimizing the energy consumption [9,31]. A scheduler based on a polynomial
time algorithm is proposed to provide real-time dynamic resource allocation in order to
get good solutions in a particular time [32]. Chebyshev scalarization function is used to
develop an energy-aware multi-objective reinforcement learning (EnMORL) algorithm to
reduce the makespan and energy consumption of a workflow [33].

Cloud computing is one of the most researched areas for HPC and energy savings.
Not everyone can afford huge data centers and, cloud computing is the go-to for any
researcher looking for computation. Inter-dependency of tasks leads to huge data transfer
and fewer computation tasks being executed in the cloud. A scheduler to reduce the data
transfer and inter-dependency have been developed with the focus on reducing the energy
footprint of the workflow [34]. The scheduler was able to achieve a 22.7% reduction in
energy at no cost to the makespan of the workflow.

An Energy-Efficient Task Offloading (EETO) policy has been developed to schedule
and offload real-time IoT applications [11]. The policy makes use of the Lyapunov opti-
mization technique to minimize the queuing of tasks and achieves an energy consumption
reduction of about 23.79% as compared to the current techniques. Similarly, a dynamic
offloading and resource scheduling policy is developed to reduce energy consumption
and shorten application completion time [35]. This policy dynamically optimizes the
CPU clock frequency and the wireless transmission power to achieve a reduction in the
energy-efficiency cost (EEC) of the workflow.

The current research in the domain of energy-aware scheduling is workflow specific
and cannot be used for other computations in the scientific community. These schedulers
do not take into account the optimizations that can be made on workflow, job, and cluster
levels. The schedulers try to reduce the inter-dependencies, queuing, increase cluster
usage, etc. A workflow can be executed in a wide number of ways on large configurations
of clusters. A need for a generic scheduler arises that can exploit all the different policies
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to help reduce the energy footprint of the workflow. This scheduler should take into
account all the combinations of cluster configuration and workflow executions to make
the optimal scheduling decision.

3. REQUIREMENTS AND CHALLENGES
FOR AN ENERGY-AWARE SCHEDULER

In this section, the requirements for an energy-aware scheduler are presented, fol-
lowed by a discussion of what challenges must be overcome to implement these require-
ments.

3.1 Energy-Aware Scheduler Requirements

The primary aim of the scheduler is to reduce the energy consumption of workflow
executions. To achieve this, the following requirements have been identified that need to
be met:

R1 The scheduler shall attempt to reduce the energy used for executing a job, workflow,
or set of workflows, respectively;

R2 The proposed scheduler shall not vary the output of the workflow;

R3 The scheduler shall have a set of pre-defined resource (number of nodes, memory,
storage) usage thresholds per job, workflow, or set of workflows;

R4 The proposed scheduler shall allow a user to override predefined thresholds;

R5 The proposed scheduler shall lead to auditable performance changes while saving
energy;

R6 The proposed scheduler shall be able to handle multiple workflows in parallel;

R7 The proposed scheduler shall be fault tolerant and handle workflow failure grace-
fully;

R8 All data generated by the scheduler shall be logged for debugging;

R9 The proposed scheduler shall allow the export of data;

R10 The proposed scheduler shall be compatible across different platforms.

3.2 Challenges for the Development of an Energy-Aware Scheduler

The following challenges were identified during the literature review that affect the
development of the proposed scheduler.

• A workflow management is a complex process. Workflow Management Systems
perform a number of tasks such as executing, logging, pausing, resuming, etc. of
workflows. These are independent tasks that handle different aspects of workflow
management. The scheduler needs to be able to understand the workings and exe-
cution of the workflows. It shall then take decisions based on all the factors.
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• Multiple Workflow Management Systems (WMS) are available. Different
workflow management systems like Apache Airavata, Kepler, Apache Airflow, and
Pegasus have been developed with different use cases and features. The sched-
uler can be developed to work with one of the management systems or can work
independently.

• Different parallel message passing interfaces. Depending on the workflow, a
number of different message-passing interfaces such as mpich, MPI, and mpi4py
are used for inter-node communication. The scheduler can be developed to work
with one of them or can work independently.

• Collection of accurate energy data. Energy consumption data collected from the
sensors are not very precise due to sensor error margins and accessibility issues.

• Multiple workflows with different parameters. Workflows with varying param-
eters and structures make it hard to develop a generic scheduler that can take into
consideration all of these parameters and take decisions based on them.

• Resource Contention. Different workflows can be scheduled on a pool of re-
sources. This is a common practice nowadays and can lead to resource contention
that can affect the energy cost of a workflow. Attempting to reduce the energy of a
workflow in such a scenario is a complex task depending on the number of external
and internal factors of the workflow and the computing resources.

4. ENERGY-AWARE SCHEDULING

The previous sections presented the requirements and challenges for an energy-aware
scheduler. In this section, a generic high-level conceptual design for an energy-aware
scheduler is presented. The design follows and aims to meet all the user requirements
outlined in Section 3.

Fig. 3. Energy aware scheduler.

The high-level working of the scheduler can be described as shown in Fig. 3. The
design presented works independently to generate new energy-aware workflows and con-
figure clusters according to a set of policies. This new workflow can then be executed
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using the existing Workflow Management Systems (WMS). The design requires minimal
installation for its setup and working.

Fig. 4. Detailed breakdown of the energy-aware scheduler.

In response to the requirements set out in Section 3, the core working of the scheduler
can be categorized into three main components as shown in Fig. 4. The scheduler can
understand the workflow, its execution, dependencies, the computing environment, etc.,
and can configure the workflow and the cluster in order to maximize cluster utilization
and reduce energy consumption. The scheduler analyzes the workflow and develops an
energy-efficient solution using this three-part process.

A set of predefined thresholds are provided to the scheduler which relates to the
user’s need and workflow characteristics. A user configuration file can be defined which
overrides the default thresholds. These functionalities are in response to R3 and R4. As
per R9 and R10, the scheduler is developed in a platform-independent universal pro-
gramming language that is capable of generating log files that can be exported for further
analysis.

The scheduler does not change the original workflow or the data used for compu-
tation. Consequently, the scheduler does not vary the output of the workflow during
multiple executions of the same workflow as outlined in R2. Also, in response to R7, the
scheduler generates a new energy-efficient workflow that is executed using a WMS. This
workflow is tested for breaks or faults before submitting it for execution. The three-part
process shown in Fig. 4 is further discussed in this section.

4.1 Cluster Energy-Aware Scheduling (e.g. Parallel Workflows)

This section presents the optimization that the scheduler can perform on the cluster to
make it more energy efficient and optimal for a particular workflow. These optimizations
act as policies for the scheduler and the scheduler makes decisions based on one or more
of these policies.
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• Switching off the nodes that may not be used. The scheduler analyzes the work-
flow and decides the maximum number of nodes the workflow might use based on
the maximum number of parallel jobs. The nodes that are known to be idle during
the whole execution of the workflow, i.e. surplus computing resources, can be shut
down to save energy. In certain cases, when the node is initially used and then idle
for a long time, it can be dynamically turned off to save energy.

• Turning on new nodes if the available resources are less than required. Dur-
ing times of peak computation, if the available resources are insufficient then the
scheduler can dynamically power a node on. This can only be done when the per-
formance increase compensates for the increase in energy consumption ( R5).

• Specifying the number of threads to be used on each node. According to the
complexity of the jobs in a workflow, the scheduler can specify the number of
threads to use on certain nodes depending on the memory requirements. Computa-
tionally expensive tasks can benefit from more CPU and memory usage.

• Optimizing the CPU frequency in the nodes. Over-volting is performed to in-
crease the energy consumption of the CPU in order to increase the computing power
of the CPU. This affects the energy consumption and performance of a node sub-
stantially. Computationally intensive tasks can benefit from overvolting as long
as the performance increase is greater than the energy consumption. Similarly,
undervolting is performed when less computationally intensive tasks such as data
transfer, unzipping, zipping, etc are to be executed.

• Changing network settings. There are many different cluster setups used for high-
performance computing. They vary from one huge supercomputer to multiple small
distributed computer networks across the globe. The scheduler can exploit the net-
work settings to further improve the energy consumption of the whole cluster. For
example, during the network booting of nodes, changing the NFS block size can af-
fect how fast the changes are synced. For distributed computing systems, different
settings such as connection medium, Ethernet links, switch configurations, etc. can
be altered to optimize the cluster for the inter-communication of nodes.

• Turning off non-essential background processes and components on the nodes.
The scheduler can turn off all non-essential processes and components on the node
that consumes energy and do not contribute to the computation. Background pro-
cesses such as system logs, redundant processes from closed apps, etc. can consume
a lot of energy and CPU memory usage. Components such as empty USB ports,
LEDs, HDMI, AUX, etc. can be turned off to save the energy consumption of a
node.

4.2 Energy-Aware Job Scheduling

This section presents the optimization that the scheduler can perform on individual
jobs in a workflow based on their characteristics such as pre-processing, data, network
usage, CPU load, post-processing, etc. to make the workflow execute more efficiently.
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• Scheduling bottleneck jobs first. The job priority determines which job gets
queued before the others. If multiple jobs have the same priorities then all the
jobs get queued and are executed as the resources become available. Normally all
same level jobs in a workflow are given the same priority and this is an issue as one
job could be a bottleneck and releasing it early can be beneficial for the overall exe-
cution of the workflow ( R8). The scheduler understands the DAG of the workflow
and identifies the bottlenecks. It can then assign higher priorities to the jobs that
may benefit from executing early.

• Targeting jobs at specific nodes. In a hybrid cluster environment with a different
mixture of OSs, processor architectures, memory allocations, etc. it is beneficial
to target jobs to specific nodes based on their complexity. Data-intensive jobs can
benefit from non-distributed cluster setups. Similarly, distributed nodes with huge
memory and CPU power can be used to schedule CPU and memory-intensive jobs.
The scheduler makes use of different aspects of the tasks and can find the optimal
scheduling technique to reduce the overall energy consumption of the computation.

• Prioritise based on job size. CPU-intensive jobs are often paired with high mem-
ory requirements. This might not be the case always and the scheduler can identify
these discrepancies. It can then edit the requirements of the jobs to execute them
specifically on nodes that can execute the jobs effectively and with less energy us-
age.

4.3 Energy-Aware Workflow Scheduling

A workflow has many specific configurations that are specific to itself and can be
exploited for an overall decrease in energy consumption and an increase in performance.
This section presents the optimization that the scheduler can perform based on workflow-
specific aspects.

• Using local binaries on the nodes. Many workflows require the installation of
workflow-specific binaries that help in the execution of the tasks. These binaries
are platform-dependent and different binaries are transferred to nodes with different
architectures as a part of workflow execution. This substantially increases the data
transfer overhead as these binaries are transferred every time a job is scheduled.
The scheduler can analyze the workflow and decide to locally install the binaries
on the nodes beforehand, thus saving a lot of communication overhead ( R8). This
leads to huge performance gain and subsequently reduce energy usage.

• Changing the scheduling algorithm. Depending on the complexity of the work-
flow and bottlenecks, different scheduling algorithms such as round-robin and
grasshopper can be used for effective scheduling.

• Multiple workflow execution. Multiple workflows can be executed in tandem
on a resource pool. This can lead to huge queuing and resource contention as
different jobs compete for the available resources. The scheduler can identify the
independent and bottleneck jobs in multiple workflows and execute them first for a
smooth workflow flow. It can also intelligently queue jobs on nodes so as to reduce
the idle time of the nodes while waiting for job dependency to be fulfilled ( R6).
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5. EVALUATION

Section 4 describes the generic conceptual design of an Energy-Aware Scheduler
based on the requirements set out in Section 3. The scheduler introduces a solution to
reduce the energy consumption of the computation by tackling its three main parts – whole
cluster, individual jobs, and the workflow dependencies [13]. This three-point solution
focuses on the major aspects of workflow execution that can affect energy consumption
and aids the scheduler in the decision-making process. To confirm the functioning of
the proposed scheduler, a proof of concept scheduler is developed and evaluated on a
scientific workflow in this section.

In order to have a better representation of a real-world data center with different types
of computer hardware and resources available for different computations, a heterogeneous
cluster of 10 single-board computers (SBCs) of different configurations was developed.
Single Board Computers were chosen as they have been identified as energy efficient for
the amount of performance that they provide [2, 10, 36].

5.1 Experimental Setup

Fig. 5 presents the cluster developed to perform computations for this study. The 10
nodes included five Raspberry Pi 4B (Node IDs – 1 to 5) and five Raspberry Pi 3B+ (Node
IDs - 6 to 10). Raspberry Pi 4B (RPi 4B) have 2GB RAM as compared to 1GB RAM for
the Raspberry Pi 3B+ (RPi 3B+). The processor in the RPi4B is the Broadcom BCM2711
Quad-core ARM Cortex-A72 and RPi3B+ has a Broadcom BCM2837 Quad-core ARM
Cortex-A53 processor. All the nodes are connected to each other and the master node
by 2 Netgear GS110TP switches. These switches provide power to the Raspberry Pi’s
through Power over Ethernet (PoE). The switch then provides easy access to the energy
consumption data of these nodes via its internal power monitoring sensors. The 10-node
cluster was managed by an x86 Linux-based Intel NUC (4 core 8 threads with Linux Mint
OS (https://linuxmint.com/, accessed on 7 October 2022) that acted as a master
node.

Fig. 5. Cluster

https://linuxmint.com/
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The scheduler is evaluated using the execution of a 10k data variant of the Bioin-
formatics Workflow (See 2.1) on the cluster. The workflow is executed using the Pegasus
Workflow Management System (WMS). Pegasus is responsible for the submission, execu-
tion, and management of the workflow [3]. Pegasus makes use of HTCondor, a scheduler
to submit, schedule and execute jobs [37]. The scheduler proposed in this paper alters
the requirements for the executing jobs and manipulates the HTCondor to schedule them
according to the policies on the cluster. RPis are quad-core in nature and as HTCondor
considers each core as an independent resource, the maximum number of jobs that a sin-
gle RPi can execute at any time is 4. In total, the cluster developed in this study can ex-
ecute 40 jobs in parallel.

The standard execution of the workflow is compared with the execution of two poli-
cies that the scheduler used to schedule the jobs and the performance and energy con-
sumption of these executions are collected and analyzed. The amount of resources being
used (see Figs. 6, 8 and 10) and the total number of jobs being executed on the cluster
(see Figs. 7, 9 and 11) as compared to the energy consumption of the cluster are the two
major metrics used to compare the performance of the scheduler. The jobs that are being
executed on the cluster are considered in the analysis. The jobs being conducted by the
master nodes are not considered as they are not related to the computation and are just
majorly related to file transfers or folder creation.

5.2 Normal/ Standard Execution

Standard execution of the Bioinformatics Workflow includes creating the workflow
using Pegasus and submitting it to the cluster. There are no extra configurations associ-
ated with executing the workflow. All the default and standard configuration options are
used. This experiment denotes the normal workflow execution that any scientist performs
using Pegasus. The data from this experiment is considered a baseline for any future
comparisons between the different policies of the scheduler.

The execution data of the experiment is shown below. Fig. 6 illustrates the number of
active threads on each node during the execution of the workflow. The X-axis indicates the
execution time (in seconds) of the workflow at any given instant and the Y-axis indicates
the node ID. Different usage of nodes is denoted by different coloured dots. The analysis
only considers the jobs that are executed on the cluster nodes.

Fig. 7 illustrates the breakdown of the jobs that are being executed on the cluster
and the energy consumption of the cluster. The X-axis indicates the execution time (in
seconds) of the workflow at any given instant. The left Y-axis is the instantaneous energy
consumption of the cluster and the right Y-axis denotes the number of jobs for each job
type being executed on the cluster. Different job types are denoted by different colors.

The standard execution of the Bioinformatics workflow on the heterogeneous cluster
of 5 RPi 4B and 5 RPi 3B+ took 6,658 seconds (approximately 1 hr and 51 min). The
cluster uses the maximum energy during the execution of the individuals job. As can be
seen from Figs. 6 and 7, the majority of the cluster is idle during the execution of indi-
viduals merge job. This is expected behavior as the indiviual merge job is a bottleneck
in the Bioinformatics workflow (see Fig. 2). The execution of the workflow has to com-
pletely stop and cannot proceed without the completion of this job. The individuals job is
compute-intensive and a drop in energy consumption can be as soon as the job is complete
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Fig. 6. Number of Active Threads per node for a bioinformatics workflow for standard execution.

Fig. 7. Number of tasks and Energy Consumption over workflow execution time for standard work-
flow execution.

and other jobs are executed. Considering that this experiment denotes the standard exe-
cution of a workflow, the idle nodes still consume their base energy during the execution.
The standard execution of the Bioinformatics workflows consumed around 63.92 Watt-hr
of energy.

It is important to note that the selection of the node to execute the bottleneck job is
dependent on the internal scheduling policies of the HTCondor [37]. HTCondor schedules
jobs based on the requirement of the job and the available resources. In this instance, all
the nodes can execute the job but only node 6 (see Fig. 6) was available at that instant
which resulted in HTCondor scheduling the job on those nodes.

The execution time and energy consumption data of each individual job are used to
develop policies that will help the scheduler in achieving the reduction in energy con-
sumption and improvement of performance in the computation. For example, individuals
job on the RPi 4B took around 507 seconds (approximately 8 min and 27 sec) and RPi
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3B+ took around 749 seconds (approximately 12 min and 29 sec). Similar data were col-
lected for all the different jobs and used to develop policies for the scheduler accordingly.
The data found that RPi 4B (Nodes 1-5) performs better than RPi 3B+ (Nodes 6-10) in
the majority of the computations.

5.3 Energy Aware Scheduling – Scheduling a Single Set of Jobs on RPi 3b+

The previous section presented the standard execution data of the Bioinformatics
workflow. A proof of concept scheduler based on the conceptual architecture presented
in this paper (see Section 4) was developed and the Bioinformatics workflow is scheduled
and executed according to the policies set by the scheduler. The main aim of the scheduler
is to achieve a reduction in the energy consumption of the workflow at no or minimal cost
to the performance. A policy to utilize the whole cluster to execute the compute-intensive
jobs and then schedule the remaining jobs on nodes that have better performance is being
evaluated in this section.

Fig. 8 illustrates the number of active threads on each node during the execution of
the workflow. The X-axis indicates the execution time (in seconds) of the workflow at any
given instant and the Y-axis indicates the node ID. Different usage of nodes is denoted by
different coloured dots.

Fig. 8. Number of Active Threads per node for a bioinformatics workflow for scheduling a single
set of jobs on all nodes.

Fig. 9 illustrates the breakdown of the jobs that are being executed on the cluster
and the energy consumption of the cluster. The X-axis indicates the execution time (in
seconds) of the workflow at any given instant. The left Y-axis is the instantaneous energy
consumption of the cluster and the right Y-axis denotes the total number of jobs being
executed on the cluster. Different jobs are denoted by different colours.

The scheduler used the following policy for the execution – after the initial execution
of compute-intensive jobs on all the nodes, all the remaining jobs are scheduled only on
the nodes with higher performance. This can be confirmed from Fig. 8 that illustrates the
scheduled tasks on the nodes. A similar observation to that of the standard execution can
be seen while scheduling the bottleneck job (scheduled on node 5). The total execution
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Fig. 9. Number of tasks and Energy Consumption over workflow execution time for scheduling a
single set of jobs on all nodes.

time of the workflow was 6,067 seconds (approximately 1 hr and 41 min), an improvement
of around 8.86% in the performance of the workflow as compared to that of standard
execution. The energy consumption of the execution is found to be 38.25 Watt-hr (40.26%
reduction in energy consumption as compared to that of standard execution). As presented
in Section 4, the scheduler powers the idle nodes off.

5.4 Energy Aware Scheduling – Scheduling All Jobs on RPi4B

The previous experiment showed that the RPi 4B is very energy efficient as compared
to the RPi 3B+. To investigate this further, the scheduler was used to execute the same
workflow again with a different policy. The policy was to schedule the jobs only on the
RPi 4B and to consider the RPi 3B+ as powered off and not in use.

The execution data of the experiment is shown below. Fig. 10 illustrates the number
of active threads on each node during the execution of the workflow. The X-axis indi-
cates the execution time (in seconds) of the workflow at any given instant and the Y-axis
indicates the node ID. Different usage of nodes is denoted by different colored dots. The
analysis only considers the job that is executed on the cluster nodes.

Fig. 11 illustrates the breakdown of the jobs that are being executed on the cluster
and the energy consumption of the cluster. The X-axis indicates the execution time (in
seconds) of the workflow at any given instant. The left Y-axis is the instantaneous energy
consumption of the cluster and the right Y-axis denotes the total number of jobs being
executed on the cluster. Different jobs are denoted by different colours.

As the number of nodes that are being used is only 5, the maximum number of jobs
that can be parallelly executed is 20. This can be confirmed from Fig. 11. A similar
observation to that of the standard execution can be seen while scheduling the bottleneck
job (scheduled on node 4). The maximum number of the individuals jobs that are being
executed parallelly is 20. Due to this, the max energy consumption of the whole cluster
is also around 35 Watts as compared to 65 Watts in the previous experiments. The total
execution time of the workflow was 6,305 seconds (approximately 1 hr and 45 min). The
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Fig. 10. Number of Active Threads per node for a bioinformatics workflow for scheduling all on
RPi4B.

execution time is 5.29% less than that of the standard execution but 3.92% higher as
compared to the previous policy.

The total energy consumption of the computation in this policy was around 32.23
Watt-hr. This is a decrease of around 49.97% as compared to the standard execution (see
Section 5.2). Comparing this with the execution data from the previous policy, this pol-
icy achieved a reduction of 15.74% in energy consumption. In terms of the execution
time, the policy to schedule all the jobs on RPi 4B performs poorly than the policy to
schedule compute-intensive jobs on all nodes and then schedule all remaining jobs on
high-performing nodes. When comparing energy consumption, the current policy per-
forms better than the standard execution and the execution using the previous policy. The
debatable question here can be if the reduction of energy consumption is worth the in-
crease in execution time.

6. CONCLUSION AND FUTURE WORK

Software development for scientific workflow execution on clusters has mainly fo-
cused on improving run-time performance. In this paper, we argue for an energy-aware
scheduler for scientific computing to address this shortcoming. The Scheduler design de-
scribed in Section 4 takes into account all the attributes of the workflow/ cluster. Based
on the data, the scheduler is able to configure the cluster and schedule the workflow in an
energy-efficient manner. The scheduler requires minimal domain understanding and can
understand and schedule the workflow totally based on the jobs, interdependencies, and
complexity.

This paper proposed a scheduler that utilizes cluster resources in an energy-efficient
way for executing workflows. Three different aspects of optimizing computation are dis-
cussed which provide a structure on which the scheduler is to be developed. The scheduler
makes use of different policies to optimize workflow execution. The scheduler was able
to achieve increased performance and reduced energy consumption of the workflow exe-
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Fig. 11. Number of tasks and Energy Consumption over workflow execution time for scheduling
all on RPi4B.

cution as compared to its standard execution.
The approach and experiments shown in this paper demonstrate that different

scheduling policies can have a huge impact on the energy consumption and performance
of workflow execution. In future work, the approach and design are to be formalized and
the scheduler implementation evaluated on a number of real-world scientific workflows.
Energy-Aware workflow execution will be evaluated against normal workflow execution
and the performance of the scheduler demonstrated. This will enable scientists to be more
energy aware of their computation and they can implement policies to reduce energy con-
sumption or to optimize the performance of their computation.
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