
Monitoring the Energy Consumption of Docker
Containers

Mehul Warade1, Kevin Lee1, Chathurika Ranaweera1, and Jean-Guy Schneider2

1School of Information Technology, Deakin University, Geelong VIC 3220, Australia.
2Faculty of Information Technology, Monash University, Clayton VIC 3168, Australia.

mehul.warade@research.deakin.edu.au

Abstract—Containers are an increasingly used mechanism for
providing low-cost, lightweight, portable, standalone applica-
tion deployments, particularly for service orchestration. Docker
provides container technology that enables a single host to
isolate several applications and deploy them rapidly in different
environments. The increasing demand for container applications
and the growing popularity of Docker has motivated extensive
research into evaluating the performance, energy consumption,
and running cost of Docker-based computation. This paper
investigates the energy footprint of Docker containers and
workloads. To motivate research in energy-efficient container
development, this paper takes a practical approach to measure
the energy consumption in common Docker containers under
various workloads.

Index Terms—Virtualization, Containers, Docker, Energy

I. INTRODUCTION

Docker containers provide an infrastructure for lightweight,

deterministic, and manageable isolated containers enabling

agile computing resources. Containers are a form of virtu-

alization where applications can run in isolated environments

with pre-determined dependencies [1]. Docker containers can

launch quickly and with lower overhead as compared to Virtual

Machines. It is common for Docker containers that contain

services to be deployed multiple times daily in support of thou-

sands of users and on hosts with very different hardware [2].

The computing resources available for these containers can be

easily managed. This leads to the highly scalable nature of

the containers. Being lightweight, Docker containers can be

used in conjunction with one another without a huge impact

on their performance.

Docker allows for the seamless development and deploy-

ment of applications as it ensures the dependencies and makes

sure that of consistency of the development environment will

be the same as the deployment environment. According to

a Docker report in 2018, users were running around 154

individual Docker containers on a single host which was

50% higher than that of the previous years [3]. 83% of the

production environments tested in the report of 2018 made

use of Docker for deployment [3]. Although virtualization

has been accepted for many years, the ease of use of Docker

containers has led to massive growth in its usage.

Docker has been gaining popularity due to its multiple

benefits over traditional deployments or virtualization tech-

niques. The increasing use of Docker for deployments has led

to research in performing measurements, optimizations, and

improvements of Docker workloads. Docker containers can

be very efficient in terms of resource utilization, but they can

also consume a significant amount of energy if not properly

managed [4]. Much of the research until recent years looked at

measuring the overheads of Docker, its impact on performance,

and the comparison between bare-metal deployment versus

Docker deployment. The research was aimed towards im-

proving the performance of Docker containers with not much

notice given to their energy consumption [5]. In the recent

past, the energy consumption or carbon footprint of computing

systems has started to gain the attention of researchers as we

are gearing towards global energy crisis [6]–[9].

Despite Docker becoming one of the most used modern

deployment technologies; there is very little information on

the energy consumption of Docker containers and Docker

workloads that can help in developing or making informed

decisions about how to optimize the Docker deployments [10],

[11]. There is a need for a standardized way to measure,

analyze and improve the energy consumption of Docker

containers [12]. Measuring the energy consumption of the

Docker workloads can also help in understanding how energy

consumption correlates to performance [13].

The aim of this study is to begin to understand and motivate

research into analyzing and optimizing the use of Docker

containers with respect to their energy consumption. This

would promote energy-efficient container deployments and a

large proportion of computation infrastructure. It also aims to

provide important additional context metrics for deployment

managers to make decisions that include energy. The key

contributions of the research presented in this paper are: i)

proposing an approach for measuring the energy consumption

of Docker containers. ii) providing in-depth analysis of dif-

ferent factors that affect the energy consumption of Docker

usage iii) providing the motivation for improving the energy

efficiency of Docker containers.

The remainder of this paper is structured as follows.

Section II provides background on container virtualization,

Docker, and energy-aware research in this area. Section III

presets the experimental setup used to conduct this study. Sec-

tion IV presents experiments that observe the energy impact of

a range of standard docker containers and varying workloads.

Section V presents an in-depth analysis of different factors

that affect the energy consumption of the machine. Finally,

Section VI provides conclusions and future work.

1703

2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)

979-8-3503-2697-0/23/$31.00 ©2023 IEEE
DOI 10.1109/COMPSAC57700.2023.00263

20
23

 IE
EE

 4
7t

h
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

A
C

) |
 9

79
-8

-3
50

3-
26

97
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

M
PS

A
C

57
70

0.
20

23
.0

02
63

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

Containers are a type of virtualization technology that

isolates an application or process from the rest of the operating

system (OS) so it can run without affecting other parts of

the system [1], [2], [10]. These containers are managed and

controlled by container engines such as Docker, rkt, runC,

Containerd, LXC, etc. Containers have recently gained popu-

larity due to the rise of micro-services and container orches-

tration tools like Docker Swarm and Kubernetes [14], [15].

Containerization offers many benefits, including portability,

isolation, and ease of use. They are extremely lightweight

and can be instantaneously started, managed, or stopped

with a single command. Docker is a container virtualization

technology [16]. Docker is a tool that enables developers to

easily create, deploy, and run applications in a container.

Fig. 1. Docker: Container-based architecture

As seen from Figure 1, Docker allows multiple applications

to run seamlessly on a single server. Each application along

with its dependencies is isolated in its own container, which

makes it easy to manage and update them. Docker is popular

because it makes it easy to package and ship applications.

Developers can simply create a container, add their application

code, and then ship it off as an image that can be instantiated

on another server. This makes it easy to deploy applications

in a consistent and repeatable manner.

As Docker has been gaining popularity in the field of in-

dustry as well as research, multiple attempts at optimizing the

Docker workloads have been conducted. These optimizations

are in both - the performance and the energy consumption

of the Docker containers. Docker containers consume a lot of

energy if not properly configured or managed. Even though the

main contributor towards the energy consumption of a Docker

container is its CPU load, [17] identified that there are other

components such as the strain on the host Operating System

that can contribute towards the increased energy usage of a

container.

A task scheduling algorithm that takes into consideration the

current energy consumption of the containers aims to handle

requests in real-time and schedule the requests in an energy-

balanced manner [18]. A Workload aware Energy Efficient

Container (WEEC) brokering system is introduced for Docker

containers with the aim to reduce their energy consumption in

Docker-based cloud data centers [19]. A Docker-based energy

management system (DEMS) architecture is developed as an

improvement to the traditional energy management system

(TEMS) and aims to fix the issues of slow deployment and low

flexibility [20]. DEMS reduces the number of web releases of

a container by 3 times and the workload by 2 times.

An approach called brownout is proposed to dynamically

activate or reactive optional containers in data centers [21].

This approach was able to reduce about 10% - 40% energy

consumption of the micro-services hosted by the data center.

Similarly, an Energy-Aware scaling algorithm was developed

to dynamically load balance the requests [22], [23]. The

algorithm is able to spawn new containers during heavy loads

and kill existing containers in order to save energy based on

certain thresholds [22], [24].

Energy consumption increase due to the Docker container-

ization was compared between different Docker workloads.

[13] concluded that running bare metal computations for

I/O overheads is better than using Docker for execution.

A comparison between the energy consumption of different

virtualization technologies such as Virtual Machine, Docker,

and Kubernetes has been conducted [25], [26]. They noted

significant energy consumption differences between the virtu-

alized technologies. The energy consumption of a single web

app container has been captured in response to the scaling and

balancing of the load [27].

The majority of the energy-aware work has been conducted

in relation to a single Docker workload and/ or Docker

workloads deployed in the cloud. The current research in the

field of energy-aware Docker Computing is generic in nature

and tries to reduce or monitor the energy consumption of the

whole Docker as a whole. They do not profile or analyze the

energy footprint of common Docker workloads.

III. EXPERIMENT SETUP

For the purposes of this study, the energy consumption of

multiple Docker containers with different workloads running

on a single computer has been measured. An initial experiment

to showcase the energy monitoring technique used in this study

has also been presented here. In this section, the experimental

setup and the components used to generate, collect, store, and

analyze the energy and performance data are presented.

A. Hardware

1) Host Computer: To simulate real-world conditions, the

research in this paper used an Intel-based x86 NUC as the host

machine to run Docker containers with varying workloads.

The Operating System installed on the Intel NUC is Debian-

based Linux Mint 20 (https://linuxmint.com/, accessed on 4

December 2022). The configuration of Intel NUC is 11th Gen

Intel(R) Core(TM) i7-1165G7 @ 2.80GHz with 4 cores or

CPU and 8 threads. Intel NUC corresponds to computers that

are normally used to run Docker containers.

1704

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

2) Energy Data Collection using Smart Plugs: The host

machine is powered using the main power plug via a smart

energy monitoring plug. The smart plug has an integrated

ESP8266 [28] chip that allows the smart plug to connect

to the local network and enable the collection of energy

data using application programming interface (API) calls.

Internally, the smart plugs collect energy consumption using

the HLW8032 energy meter sensor. The smart plug is running

the latest version of ESPHome Firmware. The firmware has

been modified to measure and deliver the energy data every

500 ms. This data is collected at a set interval and stored in

the database.

There are different endpoints that can be queried to get

different measurements from the smart plug. The API endpoint

smart_plug_v2_current provides us with the current in

Ampere. Similarly, the endpoints v2_power, v2_energy,

v2_voltage provide the consumption data such as the

power (in W), Energy (in kWh), and Voltage (in V) respec-

tively. These endpoints return the data in a JSON format which

is then parsed and stored in the database.

B. Software

1) Energy Collection: FEPAC [12] was modified to collect

energy data from the Smart plugs using API calls. FEPAC

identifies the smart plug using the IP address of the smart

plug when connected to the local network. The energy data

is then collected and stored in a database every 500 ms. The

data in the database is synced with the computation on the

host machine via the timestamp field. The synced data is then

analyzed and important conclusions are made.

2) Docker: The experiment platform is running Docker

Daemon version 19.03.8, build afacb8b7f0 [16]. For the ex-

periments presented in this paper, the Docker daemon uses

the default configuration. The versions of the Docker images

used in this study are the most recent stable versions from the

DockerHub repository [29].

IV. ENERGY CONSUMPTION OF DOCKER WORKLOADS

Section III presented the experimental setup for the exper-

iments conducted throughout this study. Docker containers

are being used everywhere, right from small applications to

hosting full-fledged enterprise solutions. Dockers are highly

scalable and can perform really well under stress [30]. Docker

containers are also able to utilize the full computing resources

of their host [31]. In this section, a number of workloads and

experiments were conducted on different web and database

Docker containers to test their performance and measure their

impact on energy consumption.

A. Measuring the energy consumption vs CPU load

An initial experiment to measure the change in energy

consumption of the host machine with respect to varying

workloads was conducted to confirm the proper and accurate

functioning of the energy monitoring device. Energy consump-

tion data were collected every 500 ms and the load on the host

machine was gradually increased and decreased by maxing

out the threads using the command ‘yes > /dev/null’. Every

time this command is executed, a thread on the host machine

is maxed out that outputs the string ‘yes’ continuously.

The execution data of the experiment is shown in Figure 2.

The orange lines denote the number of threads being maxed

out (also denoted by T0 - T8 at the top).

Fig. 2. Energy consumption of Docker container under stress

Based on the data from Figure 2, the energy consumption

of the host machine increases gradually until the 4 threads

are maxed out on the host machine. After that, even though

the CPU usage is increasing as we max out more threads,

the energy consumption is stable. This is expected as the host

machine is quad-core (i.e. 4 cores and 8 threads). This means

that 4 CPUs can perform 8 tasks parallelly. The base energy

consumption of the host machine is around 3.75 W and the

maximum it consumes is around 47 W when the load is maxed

out. The increase in energy can be seen before the increase

in CPU usage with a delay of around 2 sec. This experiment

successfully shows that smart plugs can be used to accurately

measure the energy consumption of any device connected to

it. Also, it is recommended to use all 8 threads on the host

computer as compared to just using 4 threads.

B. Energy Overhead of Docker

Standard execution of any workload on Docker containers

includes starting the Docker daemon and the service in the

background and then building and/or running the containers

to perform a certain task. This experiment denotes the initial

overhead of starting the Docker daemon and service in the

background. The data from this experiment showcases the

initial impact of Docker on the energy without running any

specific workload on the computer. Based on the data from this

experiment, if the initial energy overhead of Docker is too high

then it might be considered during the calculation of any future

experiments. Figure 3 illustrates the energy consumption of the

host machine before and after turning the Docker daemon on.

The energy consumption of the host machine was collected

for a few minutes before and after turning the Docker daemon

on. It can be seen that the base energy consumption of the host

machine is around 3.75 W. As soon as the Docker daemon is

1705

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Energy Consumption of starting Docker daemon.

turned on (denoted by the Orange line), the energy consump-

tion of the host machine increased to around 18.25 W for a

few seconds and then it came back to the mean average energy

consumption. The difference in the idle energy consumption

of the host machine before and after the Docker daemon is

minimal. This is expected as once the Docker daemon is turned

on, it does not actually use any resource of the host until

a container is activated. Due to the minimal and short-lived

increase in energy consumption of the computer when turning

the Docker daemon on, this energy is not considered for any

future experiments.

C. Web server container

A study showed that a few of the top most used tech-

nologies running using Docker are web servers and database

servers [32]. Out of the top 10 technologies deployed using

Docker, 5 are database-related and 3 are web hosting-related

technologies [32].

In this Section, two web-based Docker containers (Nginx

and Apache) are compared. A number of different experiments

were conducted to measure the performance and energy impact

of these containers. A simple HTML web page of size 615

bytes is being served using these web technologies. The web

servers are stress tested. The stress test includes sending a

huge amount of requests to the web servers and measuring

the latency by which the web page or the request is served.

This test also keeps the connection between the old requests

open to further stress the web server.

1) Web technology fingerprinting and stress test: Finger-

printing web technologies include measuring the energy con-

sumption of starting the containers. This is done mainly to

check the overhead of the container. The containers are then

subjected to a standard stress test using wrk2 benchmarking

tool [33]. For the purposes of this study, the benchmarking

tool is requesting 500,000 requests to the web server every

second and keeping 500 concurrent connections alive.

Figures 4 and 5 illustrate the energy consumption of the

host machine during the fingerprinting and stress test of the

Docker web technologies.

Fig. 4. Energy usage of Nginx container during startup and under load.

Fig. 5. Energy usage of Apache container during startup and under load.

The energy consumption of the host machine was collected

for a few minutes before and after the experiment. The time

when the Docker containers were started and the stress test was

conducted is marked in Figure 4 and 5 (denoted by the Orange

line). A spike in the energy consumption of the host machine

can be seen which is distinctly greater than the base energy

consumption. The startup energy cost of the Nginx container

is greater than that of the Apache Container as an increase

in energy consumption can be when the Nginx container is

turned on as compared to the Apache container.

Both containers consume around the same amount of energy

during the stress test. The energy consumption range of both

containers is between 50 to 56 W. The Nginx server served a

maximum of 114,717 requests per second and Apache served

around 38,636 requests per second. Nginx container can be

considered more energy efficient as it consistently and without

any latency served more requests made by the benchmarking

tool in contrast to Apache. It is important to note that being

able to answer more requests is dependent on many factors

such as the inherent application and what it was optimized for.

In this research, we are comparing the vanilla implementation

of the containers without any changes or optimizations.

1706

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

2) Varying workloads on Web Docker Containers: In this

experiment, the same benchmarking tool is used to stress

test the servers using varying workloads. The only change

in the configuration is the number of requests requested per

second from the server. The number of requests gradually

increase from 10,000 requests per second to 100,000 requests

per second. The data from this experiment will help co-relate

energy with the performance of the Docker containers. This

is done to check the impact of the workload on the energy

consumption of the Docker web server.
Figures 6 and 7 illustrate the energy consumption of the

host machine during the experiment. It should be noted that

the benchmarking tool requests more than what the web server

can process just so as to stress it to its maximum.

Fig. 6. Nginx Docker container’s energy usage with changing workloads.

Fig. 7. Apache Docker container’s energy usage with changing workloads.

Figures 6 and 7 present distinct differences between the

energy consumption of the Nginx and Apache Docker con-

tainers under varying workloads. The Nginx container has

consistent behavior in terms of energy consumption and is

consistently serving the requests made by the benchmarking

tool. A clear increase in energy consumption can be seen

during each benchmark experiment. Also, the peak energy

consumption gradually increases as the workload increases.

In Apache containers, many of the requests were of high

latency and some even failed. This behavior is confirmed by

the energy consumption of the Docker container during the

benchmark test. The energy consumption during each test

spiked instantaneously and then gradually decreased during

the benchmark indicating that the container was not under

stress for the whole duration of the experiment. Due to this,

multiple requests were failing or not being served consistently.

A more in-depth understanding of the Apache web server

and its internal load balancing is required to deduce why this

behavior was observed.

3) Nginx vs Apache: Inconsistent behavior in terms of

energy consumption and performance was observed between

the Nginx and Apache Docker containers in the previous

Section. Apache server drops more requests than Nginx and

due to that the energy utilization data is skewed. A fair

comparison between the energy consumption of the containers/

servers can be done by considering the energy consumption of

the containers when their successful performance (successful

completion of requests) is compared.

Stress tests similar to the previous Section were conducted.

The stress tests provided the number of successful requests

being served by the server and the number of failed/ dropped

requests. This number of successful requests served by both

servers was compared for varying loads of stress.

Fig. 8. Averge Energy consumption of Nginx vs Apache.

Figure 8 illustrate the energy consumption of the host

machine during varying workloads as compared with every

1000 successful requests. As seen from Figure 8, the Nginx

Docker container is more energy efficient as compared to

Apache for different workloads. Nginx has also outperformed

the Apache web server in terms of memory, latency, and

CPU load due to its inherent architecture [34], [35]. A study

showed that Nginx is around 2.5 times faster than Apache

web server [36]. Similar, results can be seen in terms of the

energy consumption of the Docker containers. Apache Docker

containers consume around 2 to 3 times more energy than

Nginx to successfully serve 1000 requests.

1707

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

D. Database Container

In the previous Section, popular Docker-based web tech-

nologies have been compared with each other in terms of

their performance and energy consumption. The second most

used Docker technology after Web server is Databases. In this

Section, two widely used Database Docker containers (Mongo

DB and Postgres) have been compared for their overhead,

and a stress test has been performed with a focus on energy

consumption.

The energy consumption of two Database based Docker

containers has been compared for the overhead and the stress

test. The stress test is conducted using the POC Driver [37]

for Mongo DB and pgbench [38] for the Postgres. Figures 9

and 10 illustrate the starting and stress testing of these Docker

containers. The time when the containers were turned on and

the stress test started and ended have been marked in the

Figures.

Fig. 9. Mongo DB container enable and stress test.

Fig. 10. Postgres DB container enable and stress test.

As seen from Figures 9 and 10, there is not much clear

impact on energy for both the containers being turned on. The

slight increase in energy consumption during that time could

not be clearly associated with the start of the containers due

to a wide range of internal processes by the host machine.

Even though no energy overhead of starting Mongo DB and

Postgres containers can be identified, these containers could

be performing some other background processes.

A notable difference can be seen in the energy consumption

during the stress test of the two containers. The peak energy

consumption of the Mongo DB is between 65 W and 73

W and for Postgres, it is between 50 W and 53 W. Mongo

DB is consuming a lot more energy for the same amount of

performance as compared to Postgres.

E. Fingerprint multiple containers

Starting a Docker container saw an increase in the energy

consumption of the host computer (see Figure 4). In this

Section, multiple different Docker containers were turned on

and the energy consumption was measured to investigate the

overheads of different Docker containers based on their func-

tionality. The containers were turned off and a delay was added

to ensure the containers do not affect each other’s consumption

data. Figure 11 illustrates the energy consumption of different

Docker containers being started one after the other. The type of

Docker container is provided on the top of each corresponding

spike in energy consumption.

Fig. 11. Energy Consumption of different Docker container starting

As seen from Figure 11, differences in the peak energy

consumption can be clearly seen between a few groups of

Docker containers. Nginx container and Python container have

similar energy overhead starting at around 16 W. The vanilla

Docker container (Hello World - second from left) was found

to be consuming the most amount of energy which was around

18 W. PHP and Ubuntu containers consumed around the same

amount of energy between 17 W and 18 W.

The Debian and Alpine containers consumed less energy to

start as compared to all other containers. The Debian container

used around 15 W of energy and the Alpine container used

around 10 W (the lowest among the group). This fingerprinting

of different Docker containers can have multiple security

implications as it shows that the energy consumption of just

starting the containers can be used to uniquely identify the

type of container being started.

1708

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

V. BREAKDOWN OF ENERGY USAGE

To further investigate the differences between the energy

consumption of different Docker containers and the factors

that might be affecting the energy consumption, a series

of experiments were performed with a focus on getting the

internal statistics of the computer and finding the root cause

of the increase in energy consumption. The three main factors

that are being considered are the CPU, Memory, and Input-

Output calls (I/O Utilisation). This will help co-relate the CPU,

Memory, and I/O utilization with the energy consumption of

the host computer.

Figures 12 and 13 illustrate the energy consumption of web

(Apache) and database-based (Mongo DB) Docker containers

being started and stress tested. The graphs also include system

information such as CPU, Memory, and I/O Utilisation. The

point when the containers are started and the stress test is

conducted is marked on the graphs.

Fig. 12. Energy usage breakdown of Apache container during high load.

Figure 12 illustrates the energy consumption of the Apache

container as compared to the CPU, Memory, and I/O utiliza-

tion of the host computer. In contrast to Figure 5, a spike in

energy consumption of the Apache container is not seen when

the container is started. An increase in CPU and I/O utilization

can be seen at the same time. The memory utilization remains

constant during the whole execution of the stress test and

container starting up.

During the stress test, a corresponding increase in CPU

utilization can be seen with less to no comparable increase

in I/O utilization. The energy consumption increases as the

CPU utilization increases and it ranges between 50 to 55 W.

As there is no change in the memory or I/O utilization, the

major factor for the energy consumption of the computer can

be attributed to its CPU utilization.

Figure 13 illustrates the energy consumption of the Mongo

DB container as compared to the CPU, Memory, and I/O

utilization of the host computer. Mongo DB is a database tech-

nology and its major functionality includes storing, reading,

and updating data into memory and disk. The stress test being

conducted tries to insert 100,000 records into the database

Fig. 13. Energy usage breakdown of Mongo DB container during high load.

which in turn gets stored on the disk. As expected, the CPU

utilization is near 100% with all the processing of memory and

reading and writing to the disk. As CPU utilization increases,

a corresponding spike in energy consumption is also seen.

Database technologies are I/O (input-output) intensive tech-

nology. As expected, the memory utilization gradually in-

creases as we request the container to insert more records into

the disk. These records are first stored in the memory and then

a batch of these records is written to the disk altogether. Due

to this, constant spikes in the I/O calls to the disk are seen at

regular intervals.

Based on the data from Figures 12 and 13, the energy

consumption of the host computer is majorly dependent on

the CPU usage of the computation or workload. The memory

and the I/O utilization on their own marginally increase energy

consumption. A comparable increase in energy can be seen

when all three attributes - CPU, Memory, and I/O are being

utilized. The maximum energy consumption range of the

Apache container was around 50 - 55 W and that of the Mongo

DB container was around 68 - 73 W. The CPU utilization

is almost near 100% in both cases but in the latter case,

we have a huge utilization of Memory and the I/O calls to

the disk. There are several factors that can affect the energy

consumption of computers. The type of processor, the amount

of RAM installed, the type of cooling system used, the type of

Operating System, etc. can all have an impact on the amount

of energy a computer consumes. The experiments presented

in this paper are a step towards transparency on factors that

affect the energy consumption of computers and Docker.

VI. CONCLUSION

Docker containers are becoming increasingly popular, as

they offer a convenient way to package and deploy appli-

cations. However, there is a downside to this convenience:

Docker containers can consume a lot of energy. Docker

applications are being increasingly adopted for deploying all

sorts of applications. Therefore, it is important to consider

the implications of these applications and their parameters on

energy consumption. Monitoring the energy consumption of

1709

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

Docker containers can help to save costs and reduce the carbon

footprint of a computation. It can also help in identifying appli-

cations that are unnecessarily energy-intensive and necessary

steps to improve their efficiency can be discussed.
The experimental results presented in this paper have a

number of lessons, i) It is possible to measure the energy

consumption of Docker containers. ii) Using the proposal in

this paper, it is possible to measure the level of workload by

observing the energy consumption of containers. iii) Using this

knowledge you can select from different containerized server

technologies. iv) It is possible to analyze the underlying factors

that impact the energy consumption of the machine.
This paper has demonstrated a strong need for approaches to

optimize container workload executions with a focus on energy

consumption and also performance. In future work, we hope

to further investigate container-based workloads, including

distributed workloads using Docker Swarm and Kubernetes.

It is important to note that, all the experiments presented in

this paper were conducted on a single machine, which makes

extrapolating the results to other platforms difficult because

different hardware setups can have varying power utilization.

This will be further explored in the future by expanding the

computing resource to include more diverse hardware. With

this knowledge, we aim to develop approaches for optimizing

energy-efficient decision-making in container orchestrations.

REFERENCES

[1] I. Docker, “Docker,” lınea].[Junio de 2017]. Disponible en: https://www.
docker. com/what-docker, 2020.

[2] J. Nickoloff and S. Kuenzli, Docker in action. Simon and Schuster,
2019.

[3] E. Carter, Nov 2022. [Online]. Available: https://sysdig.com/blog/
2018-docker-usage-report/

[4] E. Casalicchio and V. Perciballi, “Measuring docker performance: What
a mess!!!” in Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion, 2017, pp. 11–16.

[5] A. Lingayat, R. R. Badre, and A. K. Gupta, “Performance evaluation
for deploying docker containers on baremetal and virtual machine,” in
2018 3rd International Conference on Communication and Electronics
Systems (ICCES). IEEE, 2018, pp. 1019–1023.

[6] S. C. Peter, “Reduction of co2 to chemicals and fuels: a solution to
global warming and energy crisis,” ACS Energy Letters, vol. 3, no. 7,
pp. 1557–1561, 2018.

[7] D. Gielen, R. Gorini, R. Leme, G. Prakash, N. Wagner, L. Janeiro,
S. Collins, M. Kadir, E. Asmelash, R. Ferroukhi et al., “World energy
transitions outlook: 1.5° c pathway,” International Renewable Energy
Agency (IRENA): Masdar City, United Arab Emirates, 2021.

[8] L. Delannoy, P.-Y. Longaretti, D. J. Murphy, and E. Prados, “Peak oil
and the low-carbon energy transition: A net-energy perspective,” Applied
Energy, vol. 304, p. 117843, 2021.

[9] M. Warade, J.-G. Schneider, and K. Lee, “Measuring the energy and
performance of scientific workflows on low-power clusters,” Electronics,
vol. 11, no. 11, p. 1801, 2022.

[10] I. Miell and A. Sayers, Docker in practice. Simon and Schuster, 2019.
[11] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker

development: A large-scale study using stack overflow,” in Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020, pp. 1–11.

[12] M. V. Warade, J.-G. Schneider, and K. Lee, “Fepac: A framework
for evaluating parallel algorithms on cluster architectures,” in 2021
Australasian Computer Science Week Multiconference, 2021, pp. 1–10.

[13] E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does
docker affect energy consumption? Evaluating workloads in and out
of Docker containers,” Journal of Systems and Software, vol. 146,
pp. 14–25, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121218301456

[14] J. Shah and D. Dubaria, “Building modern clouds: using docker, kuber-
netes & google cloud platform,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC). IEEE, 2019,
pp. 0184–0189.

[15] N. Marathe, A. Gandhi, and J. M. Shah, “Docker swarm and kubernetes
in cloud computing environment,” in 2019 3rd International Conference
on Trends in Electronics and Informatics (ICOEI). IEEE, 2019, pp.
179–184.

[16] C. Anderson, “Docker [software engineering],” Ieee Software, vol. 32,
no. 3, pp. 102–c3, 2015.

[17] S. S. Tadesse, F. Malandrino, and C.-F. Chiasserini, “Energy consump-
tion measurements in docker,” in 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), vol. 2, 2017, pp.
272–273.

[18] J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, and H. Luo, “Container-
based fog computing architecture and energy-balancing scheduling al-
gorithm for energy iot,” Future Generation Computer Systems, vol. 97,
pp. 50–60, 2019.

[19] D.-K. Kang, G.-B. Choi, S.-H. Kim, I.-S. Hwang, and C.-H. Youn,
“Workload-aware resource management for energy efficient heteroge-
neous docker containers,” in 2016 IEEE Region 10 Conference (TEN-
CON), 2016, pp. 2428–2431.

[20] Z. Li, H. Wei, C. Lian, and S. Qin, “Docker-based energy management
system development and deployment methods,” in 2020 4th Interna-
tional Conference on Power and Energy Engineering (ICPEE), 2020,
pp. 1–5.

[21] M. Xu and R. Buyya, “Brownoutcon: A software system based on
brownout and containers for energy-efficient cloud computing,” Journal
of Systems and Software, vol. 155, pp. 91–103, 2019.

[22] M. Sureshkumar and P. Rajesh, “Optimizing the docker container usage
based on load scheduling,” in 2017 2nd International Conference on
Computing and Communications Technologies (ICCCT), 2017.

[23] M. Chae, X. THANGONGSAK, Y. GUANG, and H. Lee, “Energy
efficient web load balancer using docker,” in Proceedings of the Ko-
rea Information Processing Society Conference. Korea Information
Processing Society, 2018, pp. 43–45.

[24] N. VasanthaKumari and R. Arulmurugan, “Reorganizing virtual ma-
chines as docker containers for efficient data centres,” in 3rd EAI Inter-
national Conference on Big Data Innovation for Sustainable Cognitive
Computing. Springer, 2022, pp. 201–211.

[25] I. M. Murwantara and P. Yugopuspito, “Evaluating energy consumption
in a different virtualization within a cloud system,” in 2018 4th Inter-
national Conference on Science and Technology (ICST), 2018, pp. 1–6.

[26] Ö. E. Demirkol and A. DEMİRKOL, “Energy efficiency with an
application container,” Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 26, no. 2, pp. 1129–1139, 2018.

[27] S. Kreten, A. Guldner, and S. Naumann, “An analysis of the energy
consumption behavior of scaled, containerized web apps,” Sustainability,
vol. 10, no. 8, p. 2710, 2018.

[28] M. Schwartz, “Internet of things with esp8266,” in Internet of Things
with ESP8266. Packt Publishing Ltd, 2016, ch. 13, pp. 190–200.

[29] J. Cook, “Docker hub,” in Docker for Data Science. Springer, 2017,
pp. 103–118.

[30] A. Sergeev, E. Rezedinova, and A. Khakhina, “Stress testing of docker
containers running on a windows operating system,” in Journal of
Physics: Conference Series, vol. 2339, no. 1. IOP Publishing, 2022.

[31] L. Benedicic, F. A. Cruz, A. Madonna, and K. Mariotti, “Sarus: Highly
scalable docker containers for hpc systems,” in International Conference
on High Performance Computing. Springer, 2019, pp. 46–60.

[32] Datadog, “9 insights on real world container use,” https://www.
datadoghq.com/container-report/, 2022, accessed: 2022-12-10.

[33] G. Tene, “wrk2: a http benchmarking tool based mostly on wrk,” 2018.
[34] W. Reese, “Nginx: the high-performance web server and reverse proxy,”

Linux Journal, vol. 2008, no. 173, p. 2, 2008.
[35] O. H. Jader, S. Zeebaree, and R. R. Zebari, “A state of art survey for

web server performance measurement and load balancing mechanisms,”
International Journal of Scientific & Technology Research, vol. 8, no. 12,
pp. 535–543, 2019.

[36] “Nginx vs apache: Head to head comparison,” https://hackr.io/blog/
nginx-vs-apache, accessed: 2022-12-10.

[37] johnlpage, “johnlpage/pocdriver: Workload driver for mongodb in java,”
Aug 2021. [Online]. Available: https://github.com/johnlpage/POCDriver

[38] “Postgresql manual,” 2013. [Online]. Available: https://www.postgresql.
org/docs/devel/pgbench.html

1710

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 10:48:20 UTC from IEEE Xplore. Restrictions apply.

