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Abstract—In Internet of Things (IoT), the things collect, relay
information, and processes the information collectively and take
self-automated actions. With growing complexities in the IoT
domain and its architectures, a convergence of computation and
communication technologies is becoming a key challenge to meet
the stringent demands of advanced IoT use cases. An exponential
increase in IoT devices and stringent communication and network
constraints such as latency and bandwidth from advanced IoT
use cases, including autonomous vehicles, eHealth, and smart
grid, make it challenging to use the current IoT infrastructure.
Further, most IoT architectures proposed so far focus on a single
IoT use case, with one dimension on communication and the
other on computation architectures. However, in emerging IoT
networks, all computation layers and multiple IoT use cases must
be supported in a single IoT architecture to tackle the exponential
growth in IoT applications cost-effectively and energy-efficiently.
To address this challenge, we propose an optimal node selection
framework that considers all three computation layers (edge, fog,
and cloud) for load balancing and optimizing resource allocations
in an IoT architecture. The proposed approach is evaluated
through simulation results. The results provide an insight into
how the proposed framework can be used to allocate the best
suitable node in the IoT architecture and process the requests
whilst using a minimal number of nodes in the architecture and
satisfying the network and application requirements.

I. INTRODUCTION

Ongoing developments and innovations in computation,

networking, and communication are reshaping the internet of

things (IoT) landscape. With a prediction of an exponential

increase of IoT devices to 500 billion by 2030, current wireless

network technologies and cloud computation capacity will fall

short of meeting the stringent and varying requirements of

diverse IoT application use cases [1]. Even though the fifth

generation (5G) wireless communication, cloud computing,

and fog computing are becoming integral parts of diverse IoT

applications, many challenges are yet to be tackled to gain the

full benefits these technologies have to offer in heterogeneous,

decentralized interconnected IoT networks.

In recent years, researchers have focused on proposing an

IoT architecture for a single application use case and its

different sub-applications. The benefits of the architectures

have been evaluated based on the quality of service (QoS)

metrics, task offloading, and energy efficiency [2]. Recent

research has been focused on issues and hurdles faced via

communication network providers in meeting the demands of

network and application constraints [3], [4]. To achieve the

full potential of IoT and provide end-to-end communication to

support required QoS, efficient caching at different layers and

employing distributed computation needs further investigation.

In particular, there is a need for a generalized IoT framework

that can be used irrespective of the application use case that

considers both application and network requirements. Previous

investigations focused on a single use case and a limited

number of quality of service metrics such as delay, bandwidth,

and energy consumption. To address these challenges and meet

the stringent requirements of emerging IoT applications, we

must enable full convergence of communication and com-

putation technologies. This can be achieved by developing

intelligent frameworks and paradigms that have considered

these technologies at the design and operational phase of IoT

frameworks and architectures.

This paper considers a distributed IoT architecture com-

prised of cloud, fog, and edge layers. We also provide a

brief introduction to various emerging technologies in com-

munication, computation, and IoT architecture, highlighting

the importance of each technology from an IoT architecture

perspective. We then investigate a mechanism that can be used

in such a versatile architecture to efficiently serve diverse IoT

applications ranging from energy monitoring to healthcare.

The key contributions of this paper are 1) the investigation

of an IoT architecture with the usage of fog, cloud, and edge

layers 2) the proposal of an optimal node selection mechanism

based on Integer Linear Programming(ILP) to optimally select

a computation node for processing various IoT applications

while minimizing the usage of resources in the entire IoT

network architecture 3) provides insights into the development

of a generalized framework that can be used to guarantee the

various requirements of IoT applications and communication

networks.

The remainder of this paper is structured as follows. First,

we provide a literature review in Section II focusing on IoT

architectures, load balancing and node selection frameworks,

and emerging IoT applications. In Section III, we elaborate

on the opportunities identified from the literature review and

our prime focus of this paper. In Section IV, we discuss

the IoT network architecture in consideration, followed by a

detailed description of the mathematical formulation of the

proposed optimal node selection framework. The evaluation

of the proposed framework is presented in Section V. Finally,

the paper concludes in Section VI.
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II. LITERATURE REVIEW

IoT has adopted cloud, fog, and edge computing for data

processing and storage. A typical IoT architecture can consist

of one or two of these layers, depending on IoT applications’

various data processing and storage needs. For example, IoT

applications that require low-latency communication, such as

Telehealth, need to be processed closer to the user at the edge

layer to satisfy the application requirements.

Figure 1 illustrates different computation layers that IoT

architectures can use. As shown in the figure, at the edge

layer, edge nodes with processing capability are deployed

near the base station to process the data in the vicinity of

the data sources and end-users [5], [6]. As the edge nodes

are closer to the users, this architecture can minimize the

latency, save network bandwidth, and provide more secure

network connectivity. On the other hand, the fog layer consists

of light processing nodes comprising of modern virtualized

and scalable platforms for computation management, network

administration, and storage services. The fog nodes can also

be deployed closer to the user where more space is available

such as central offices [6]. Most IoT applications we use

today utilize only the cloud layer. The cloud layer consists

of nodes enabled with distributed computing using pooled,

virtualized, and scalable resources, with managed and con-

trolled computing power, complimented by scalable storage

and flexible services widely spread over the internet [6].

Depending on different computation technologies, caching

mechanisms used and types of IoT gateways, and IoT devices

connected, different IoT architectures and frameworks have

been proposed for their optimal operations. We briefly discuss

each of those research works in the following sub-sections.

A. IoT Architectures

IoT layered architectures enable the usage of advanced

computation technologies, thus enabling us to manage the

resources more feasibly and efficiently. Each layer of the IoT

network architecture helps handle and optimize IoT requests.

Edge computing-based architectures emphasize IoT archi-

tectures wherein processing is done very close to the end

user. The content delivery network is one of the proposed

edge computing solutions, which includes deploying and

distributing many servers at various geographic locations to

increase caching and reliability [7]. Many edge computing

solutions like amazon Greengrass, IBM Watson IoT, Cisco

edge, Microsoft Azure IoT Edge, and SAP Leonardo Edge

Services have been recommended to manage IoT applications

for efficient processing and caching. Edge computing helps

reduce operational costs, latency, energy efficiency, near real-

time data analysis, and network load.

Fog computing-based IoT architectures focus on implement-

ing a computation layer near the edge layer and collating

the fog nodes for faster computation and better security. The

energy-aware fog computing techniques in IoT were also

investigated. For example, in [8], a mechanism to offload the

computations tasks to enhance energy efficiency has been pro-

posed. Wherein energy-intensive computation task is offloaded

Fig. 1. IoT Architecture

to under-utilized helper nodes at the network level. The task

helper nodes are structured into either clustered architecture,

centralized architecture, or distributed architecture, based on

the location of the fog node and resource allocation [9], [10].

Reliability plays an important role when deciding the infras-

tructure for an IoT architecture for a specific IoT application

use case. For example, the reliability investigation of different

architectures was presented in which the suitability of a

reliable region for processing the data in an IoT architecture

is tested using a reliability-based network framework for

optimizing target-based performance [11], [12]. Further, the

edge computing service reliability was also investigated using

Markov chain-based method to achieve a balance between

network operating cost and multi-access edge computation

[13]. In mobile edge computing, task computation and task

offloading problems have been addressed using power min-

imization techniques for the entire network considering the

delay and non-reliability [14]. The usage of optimization

frameworks for minimizing the offloading failure probability

was also investigated in the literature [15], [16]. The reliability

of fog computing for smart mobile applications has also

been investigated using techniques such as anomaly detection

and probability functions for successful transmission against

predefined threshold value [17]–[19].

B. Load balancing and node selection frameworks

Due to the growing number of IoT devices and increasingly

stringent demands of IoT use cases, it is challenging to

manage the IoT architecture and its resources optimally. In

this subsection, we review the previous research that focused

on load balancing, node selection, and optimization techniques

to overcome the challenge of efficient resource utilization.

Since the amount of computation and communication re-

sources is limited, it is necessary to distribute the tasks

among different resources. To balance the load on various

resources, we require efficient resource offloading and sharing

mechanisms to achieve the optimal utilization of resources
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and optimal performance. In [20], authors investigated the use

of classic optimization techniques for load balancing, such

as ant colony optimization (ACO) and particle swarm opti-

mization (PSO). The use of network function virtualization,

software-defined networking, and network slicing in a mobile

network for load balancing and improving the availability and

traffic offloading was investigated in [21]. Further, mobile

resource-sharing frameworks on mobile edge servers have

been explored to share the edge resources among multiple IoT

devices in [22]. Energy saving and task offloading techniques

by switching on/off of devices were also investigated in

[23], [24]. These frameworks focused on load balancing and

resource sharing on a single layer. However, the resource

utilization and load balancing considering the usage of all three

layers needs further investigation.

Node selection mechanisms in an IoT architecture play a

crucial role in resource allocation and guaranteeing the QoS

requirements of end users. In [25], authors proposed a K-

means-based optimization framework for fog node placement

and forgy method, mid-point method, sorted cluster mid-point,

and partition mid-point methods for fog node selection. This

optimized number of fog node deployments helps in reducing

the latency. The fog node selection methods based on ran-

dom selection, shortest estimated buffer, profit function, and

shortest estimated latency have been considered for improving

energy consumption, packet loss, and increasing hit ratio at fog

nodes [26]. Moreover, an active node selection mechanism has

been investigated in IoT-based sensing applications in the fog

layer using genetic algorithms and greedy selection mecha-

nisms [27]. A task allocation based on clustering and data

aggregation techniques is used for efficient node selection [28].

Dense deployment of fog nodes with a combination of

unsupervised machine learning using integration of k-means

clustering and Principal Component Analysis (PCA) fog com-

puting design can be done. K-means clustering method is

used for selecting an accurate optimal fog node, and PCA

is used for detecting signal changes on each sub-channel

and abnormal interference at fog nodes [29]. From the above

literature review, it can be observed that most of the research

is emphasized using only one layer for processing the data

in the close vicinity of the end user in an IoT architecture.

With emerging modern IoT applications and their stringent

QoS and computation requirements, it is inevitable to use all

three layers in an IoT architecture efficiently. This is the most

challenging part, in addition to optimal node selection at these

layers for processing the request.

C. Network and Application QoS Constraints

In emerging IoT applications such as smart homes, in-

telligent transportation systems, smart cities, smart health

care, and Industry 4.0/5.0, we need to consider the design

requirements, including low device cost, low deployment cost,

long battery life, extended coverage, security, privacy, and

support for the massive number of devices. IoT applications

are supported through various communication technologies

ranging from low-range wireless networks to wide-area wire-

less networks [30], [31]. The latest communication technolo-

gies, such as 5G, would be able to support ultra-reliable low

latency communication (uRLLC), enhanced mobile broadband

(eMBB), and machine type communication (eMTC) to satisfy

the requirements of IoT applications [32]. However, with

growing machine-type communication(MTC), the IoT network

infrastructure still faces challenges such as scalability, network

management, inter-operability, and heterogeneity [33], [34].

To overcome the challenges faced by the communica-

tion network, we need to introduce the full convergence of

communication and computation technologies. Different IoT

applications have additional requirements. For example, appli-

cations such as autonomous vehicles require fast processing

of videos with higher data rates (between 512 Gbps-1024

Gbps) closer to the end-users while communicating control

messages with minimal latency in a few milliseconds. The

eHealth applications consist of sub-applications like telehealth

and telesurgery, which require a high data rate(5-512Gbps).

Telehealth applications do not have ultra-low latency require-

ments. However, telesurgery applications that involve remote

robotic surgeries do require very low latency in the range of

a few milliseconds. Even smart grid applications consist of

various sub-applications like advanced metering infrastructure,

synchrophasor applications, and supervisory control and data

acquisition (SCADA) applications, which require data transfer

rates in the range of 5-75Mbps and latency in the range of

1-200 milliseconds. Though 5G would be able to meet the

stringent requirements of most IoT applications, the key chal-

lenge in the future would be incorporating the growing number

of IoT devices and stringent IoT application requirements.

Hence we need to consider the convergence of communication,

computation, and caching using advanced technologies like

the sixth generation (6G) wireless network, network slicing,

virtualization, and load balancing.

III. RESEARCH OPPORTUNITIES AND FOCUS

Through the literature review, we identified the research op-

portunities to support and enhance emerging IoT applications

through the convergence of communication and computation

technologies. This section discusses these opportunities, fol-

lowed by the motivational focus of the work presented in this

paper.

Most IoT architectures are designed from an end-user and

application layer perspective considering a single type of user

case which would not be feasible for large-scale deployments.

This is mainly because of scalability, flexibility, and interop-

erability issues. Therefore, developing an IoT network archi-

tecture is necessary, considering the different requirements of

diverse IoT applications and the flexibility and scalability in

the deployment and operations.

IoT architectures’ numerical simulations and validations are

limited to a few QoS metrics, such as energy, latency, and

bandwidth. In the validation process, numerical data have

been used rather than real-world data to validate most IoT

application use cases. Therefore, it is crucial to investigate how

these different architectures would impact the performance
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of multiple QoS metrics, including resource capacity, delay,

reliability, cost, and efficiency. It is worthwhile to investigate

the performance of these architectures on real data, to capture

the unpredictable behaviors of real networks and evaluate their

efficiency.

Most of the node selection and task offloading mechanisms

presented so far mainly focused on collating the nodes to

meet the resource requirements, enhancing energy efficiency,

and optimal path selection considering either cloud or fog

layers. However, the node selection mechanism to optimally

select nodes between edge, fog, and cloud for processing

needs further investigation. Further, the research using edge

computation in IoT network architecture has addressed edge

computation in mobile devices or IoT devices at the edge

node. Therefore, how stationery edge servers can be used for

processing along with fog or cloud is another challenge that

needs to be mastered to support emerging IoT applications.

Another critical challenge that needs attention is how com-

putation and communication resources can be combined for

varying IoT application use cases and how to implement

real-time dynamic service-oriented traffic detection at each

layer of the network architecture. To address these challenges

and limitations in the emerging IoT landscape, IoT requires

sufficient support for ubiquitous communications, aggregation,

and real-time access to services and information. Therefore,

usage of cloud, fog, and edge computing, network slicing,

5G/6G needs to be considered in the design phase of an IoT

architecture to gain the benefits of these technologies in the

device layer, network layer, and application layer of emerging

IoT applications [35]. This will enable the data’s collection,

processing, and storage dynamically at each layer when and

where necessary.

Since the number of IoT devices and their requirements are

increasing exponentially, efficient allocation, load balancing,

and utilization of computing and communication resources

would also need further investigation. In particular, when a

request is generated at the edge layer by an IoT application,

we need to decide which node is suitable to process the data

depending on the QoS requirements of the application and the

network limitations of the IoT network architecture.

To overcome the challenges associated with using all three

cloud, fog, and edge layers for supporting IoT applications, in

this paper, we investigate an IoT network architecture incorpo-

rating modern computation and communication technologies.

The next challenge in such an architecture is optimally se-

lecting a node to process IoT applications. Therefore, in this

paper, we propose an optimal node selection framework for

processing the requests coming in from various IoT applica-

tions to meet network and application-specific constraints.

IV. IOT ARCHITECTURE AND OPTIMAL NODE SELECTION

FRAMEWORK

In this section, we elaborate on the IoT network architecture

in consideration and mathematical formulation of the proposed

optimal node selection framework.

Fig. 2. IoT Network Architecture Diagram.

A. IoT Architecture

Our proposal considers a generalized IoT network architec-

ture consisting of fog, cloud, and edge computing capabilities.

This architecture could enable diverse emerging IoT use cases

discussed before.

Figure 2 illustrates the IoT network architecture we have

proposed to use for serving diverse IoT applications. The

architecture consists of a cloud layer at the top tier, which is

responsible for processing the IoT request with less stringent

requirements. Then, the fog layer at the middle tier consists of

fog nodes responsible for local aggregation, processing, and

analysis. The last tier is the edge layer, where the edge devices

from different users are connected. This network architecture

uses edge servers deployed at the edge layer near the base

stations. The edge servers would be responsible for processing

the data requests based on bandwidth, resource, and latency

requirements and allocate the request to the most feasible node

in either layer. The node selection decision would be made

at the edge layer using an optimization framework. An entity

would be designed at the edge layer for efficient node selection

and to meet the application-specific QoS requirements. Once

the entity decides on an optimal node to process the data,

then the data will be moved to that specific node for further

processing.

In the following subsection, we explain and provide the

mathematical formulation of the proposed optimal node se-

lection framework.
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B. Optimization Framework

For load balancing in an IoT network architecture and

for supporting advanced IoT use cases, it is advantageous

to use a node selection mechanism in the computation and

communication converged architecture to ensure efficient op-

eration. The proposed framework ensures that the minimum

number of nodes is always used in the architecture. At the

same time, all the requirements of 1) IoT applications, such

as latency and bandwidth, and 2) communication networks,

such as connectivity, bandwidth availability, and delay, are

being met. We developed the optimization framework based

on Integer Linear Programming(ILP).

In the following subsections, we define the sets, parameters,

and variables used to model the optimization framework,

followed by a detailed description of the objective function

and constraints.

C. Parameters and Sets

We consider different parameters and sets to represent

various network and computing nodes, communication links

and their limits, locations, and the requirements of diverse IoT

applications.

1) Network Parameters:

• nC: Total number of cloud nodes

• nF : Total number of fog nodes

• nE: Total number of edge nodes

• nL: Total number of all nodes in the network

• Rf [l]: Resource capacity of the fog node at location l
• Re[l]: Resource capacity of the edge node at location l

• Rc[l]: Resource capacity of the cloud node at location l

• Bf : Communication bandwidth capacity supported by all

the fog nodes

• Be: Communication bandwidth capacity supported by all

the edge nodes

• Bc: Communication bandwidth capacity supported by all

the cloud nodes

• d[l][j]: Network delay between lth node and jth node,

represents the delay between nodes in the network

• g[l][j]: Represents the connectivity between two nodes

in the network, g[l][j] =1 if lth node and jth node are

connected with each other

• Lc[l]: Set of all locations l where the cloud node c has

been deployed

• Lf [l]: Set of all locations l where the fog node f has been

deployed

• Le[l]: Set of all location l where the edge node e has

been deployed

• L: Set of all locations of nodes in the network graph

2) Application Request Parameters:

• job: Total number of jobs/ requests

• jr: Job resource requirement

• jb: Job bandwidth requirement

• jl: Job latency requirement

• jo: Job origin node

3) Sets:
• E = 1..nE : Set of edge nodes

• F = 1..nF : Set of fog nodes

• C = 1..nC : Set of cloud nodes

• Lo = 1..nL : Set of nodes, Lo = E ∪ F ∪ C
• jobn: 1..job Range of all the jobs/ requests

D. Variables

• e[j][e] : Boolean variable, e[j][e] = 1 if jth job is

allocated to eth edge node, e[j][e] = 0 otherwise, where

e ∈ E and j ∈ jobn
• f [j][f ] : Boolean variable, f [j][f ] = 1 if jth job is

allocated to f th fog node, f [j][f ] = 0 otherwise, where

f ∈ F and j ∈ jobn
• c[j][c] : Boolean variable, c[j][c] = 1 if jth job is

allocated to cth cloud node, c[j][c] = 0 otherwise, where

c ∈ C and j ∈ jobn
• Ea[e]: Boolean variable, Ea[e] =1 if eth edge node is an

active node, Ea[e] =0 otherwise where e ∈ E
• F a[f]: Boolean variable, F a[f] =1 if f th fog node is an

active node, F a[f] =0 otherwise where f ∈ F
• Ca[c]: Boolean variable, Ca[c] =1 if cth cloud node is

an active node, Ca[c] =0 otherwise where c ∈ C

E. Objective Function

The objective function of the framework is to minimize the

number of nodes used in the entire network. The objective

function is defined in equation 1, which minimises the total

number of active edge (Ea), fog (Fa) and cloud nodes (Ca).

Minimize(
∑

xεE

Ea[x] +
∑

yεF

F a[y] +
∑

zεC

Ca[z]) (1)

F. Constraints

The framework minimizes the number of active nodes whilst

satisfy the requirements of the network and IoT applications.

In this subsection, we formulate the constraints relevant to

these requirements.

1) Network Constraints:
• When we allocate a new job/request to a node, we need

to make sure that each job request is always processed

at only one node at a time in the entire IoT network

architecture. The equation 2 defines this constraint where

the e, f, j variables store the values of the each job

allocated at each edge, fog and cloud node locations,

respectively.
∑

xεE

e[j][x] +
∑

yεF

f [j][y] +
∑

zεC

c[j][z] == 1, ∀ j in jobn

(2)

• In the framework, we also need a constraint for limiting

the total number of active nodes to make sure the number

of active nodes are always less then or equal to maximum

number of nodes deployed at each fog edge and cloud

layer. Equations 4, 3, 5 are defined to satisfy this

constraint where Ea, F a, Ca are active nodes at edge,
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fog and cloud layer and nE,NC, nF are the maximum

nodes supported at each layer respectively.
∑

lεE

Ea[l] ≤ nE (3)

∑

lεF

F a[l] ≤ nF (4)

∑

lεC

Ca[l] ≤ nC (5)

2) Application Constraints:
• We also need to verify that the new requests are allocated

to a node for processing, has connectivity with the

communication node where the requests is originated.

Further, the network connectivity should also be able

to satisfy the delay requirement of the request coming

from the IoT application. Equations 6, 7, 8 are defined to

satisfy delay, connectivity constraints for edge, fog and

cloud layer nodes and are always less then or equal to

the latency required by the IoT job request.

e[j][a]∗(g[jo[j]][a+nC+nF ]∗(d[jo[j]][a+nC+nF ])

<= jl[j] , ∀ j in jobn , ∀ a in E (6)

f [j][a] ∗ (g[jo[j]][a+ nC] ∗ (d[jo[j]][a+ nC])

<= jl[j] , ∀ j in jobn , ∀ a in F (7)

c[j][a] ∗ (g[jo[j]][a] ∗ (d[jo[j]][a]) <= jl[j] , ∀ j in

jobn , ∀ a in C (8)

• When we allocate a new request to a node, we need to

make sure the resource requirement of the job can be

satisfied by the remaining resource processing capacity

of the allocated node at edge, fog or cloud layer. The

equations 9, 10, 11 help in maintaining this constraint

by checking whether the resource requirement of the job

when subtracted from the resource capacity of the node

is always greater than or equal to zero at all three layers.

Re[l]−
∑

jεjobn

e[j][l] ∗ jr[j] ≥ 0, ∀ l in E (9)

Rf [l]−
∑

jεjobn

f [j][l] ∗ jr[j] ≥ 0, ∀ l in F (10)

Rc[l]−
∑

jεjobn

c[j][l] ∗ jr[j] ≥ 0, ∀ l in C (11)

• We also need to verify the bandwidth requirement of

the job against the bandwidth supported by the nodes at

edge, fog and cloud. The bandwidth constraints at edge,

fog, cloud nodes are defined in Equations 12, 13, 14,

respectively. This is achieved by checking whether the

bandwidth requirement of the job when subtracted from

the bandwidth capacity supported by the node, is always

greater than or equal to zero at all three layers.

Be[l]−
∑

jεjobn

e[j][l] ∗ jb[j] ≥ 0, ∀ l in E (12)

Bf [l]−
∑

jεjobn

f [j][l] ∗ jb[j] ≥ 0, ∀ l in F (13)

Bc[l]−
∑

jεjobn

c[j][l] ∗ jb[j] ≥ 0, ∀ l in C (14)

• We need a constraint to make sure that a job allocated at

a location for each layer is less than or equal to nodes

activated at each layer. This constraint is defined in edge,

fog, and cloud layers using Equations 15, 16, and 17, to

make sure that when a job is allocated at a node e, f, c
at each layer, the respective node is active Ea, Fa, Ca at

that respective layer.

e[j][l] ≤ Ea[l], ∀ j in jobn ∀ l in E (15)

f [j][l] ≤ Fa[l], ∀ j in jobn ∀ l in F (16)

c[j][l] ≤ Ca[l], ∀ j in jobn ∀ l in C (17)

• We also need a constraint to make sure the total number

of nodes getting activated in a given layer for process-

ing the incoming IoT request could be greater then or

equal to initial number of activated nodes deployed. This

constraint is satisfied in edge, fog, and cloud layers

using Equations 18, 19, and 20, respectively where total

number of nodes activated at edge (Ea), fog (Fa), and

cloud layer (Ca) can be greater than or equal to total

number of nodes actually deployed and active at each

layer during initial deployment.

Ea[l] ≥ Le[l], ∀ l in E (18)

F a[l] ≥ Lf [l], ∀ l in F (19)

Ca[l] ≥ Lc[l], ∀ l in C (20)

V. EVALUATION

In this section, we evaluate the proposed framework by

using it to optimally select nodes for processing under different

scenarios. We use IBM CPLEX for the implementation of

the framework. Figure 3 illustrates the IoT network graph

we considered for the evaluation. The network graph consists

of two cloud nodes, five fog nodes, and eight edge nodes.

Figure. 3 also shows the connectivity between different nodes.

For the evaluation, the nodes were numbered at different

layers. The resource capacity and bandwidth supported by

each node are also indicated in Fig. 3 with notations R and

B, respectively. The network delay between nodes is also
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Fig. 3. Data set: network graph

illustrated in the figure. The delays between all the nodes were

pre-calculated and stored in parameter d.

All the considered nodes deployed in the network are at dif-

ferent locations and connected via a mesh network with vary-

ing resource capacity, varying bandwidth supported by each

node and varying latency. For verifying our node selection

optimization framework, we would consider that varying num-

bers of IoT requests are received by our framework and test its

efficiency in efficiently processing all the IoT requests using

the least number of active nodes. Each new request is also

associated with a few parameters, including its computation

resource (jr), bandwidth(jb), and latency (jl) requirements

and its origin node (jo). Therefore, each new request with job

number j can be defined as ”Job j[jr, jb, jl, jo]”. We use four

scenarios for evaluating the framework.

In the first scenario, cloud node 2, fog node 4, and edge

nodes 9 and 10 are deactivated. Therefore, 11 computation

nodes are active in our considered IoT network. For example,

we consider a single IoT request from an autonomous vehicle

with a low latency requirement received at node 12, which

can be defined as Job 1[40,1000, 1, 12]. When we applied our

optimization framework, the job was allocated to the active

edge node 12, as shown in Figure 4, without activating any

additional node in the network. The dotted lines between nodes

and new requests indicate the selected node for processing a

particular job.

In the second scenario, we used the same IoT network graph

with 11 active nodes as in scenario 1. However, here we

have increased the total number of IoT requests received to

six from eHealth, autonomous vehicles, and smart grid IoT

Fig. 4. Graphical illustration of the optimal solutions: three scenarios

Fig. 5. Optimal results of Scenario 2

applications, with varying requirements, which were defined

as Job 1[40,1000,1,12], Job 2[50,85,6,8], Job 3[30,1100,1,13],

Job 4[80,60,13,12], Job 5[30,800,5,14], and Job 6[20,300,1,8].

Using our optimization framework, we obtained the optimal

allocations for jobs (ranging from 1 to 6) as shown in Fig. 4.

As shown in the figure, jobs 1, 2, 3, 4, 5, and 6 were allocated

to edge node 5, fog node 1, edge node 6, fog node 3, edge node

8, and edge node 1, respectively. We have also illustrated this

solution in the screenshot from the CPLEX program shown in

Fig. 5. As shown in the figure, active edge and fog nodes are

denoted by the variables e and f , respectively. As we can see

from the result, the number of active nodes remained the same.

Therefore, it is clear from the results that the framework makes

sure all the requests are processed with minimum utilization

of resources and nodes.

In the third scenario, we used the same IoT network graph

Fig. 6. Scenario 3 Results.
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Fig. 7. Graphical illustration of the optimal solution: Fourth scenario

with 11 active nodes as in scenario 2. Here, we considered

seven new job requests, a combination of six job requests

considered in scenario 2 and one additional job request from

the eHealth IoT application, Job 7[40,500,1,9], as shown in

Fig. 4. The optimization framework produced the allocations

shown in Fig. 4. Jobs 1, 2, 3, 4, 5, 6, and 7 were allocated

to edge node 5, fog node 1, edge node 6, fog node 3, edge

node 8, edge node 1, and edge node 2, respectively. Edge

node 2 was inactive before and got activated to serve Job 7.

The e and f variables that illustrate the optimal allocations are

shown in Fig. 6. As we can see from the results, the framework

activates an inactive node to process the IoT requests. From

this scenario, we can understand that if the IoT network

architecture falls short of resources to process all the IoT

requests with the currently active nodes, it can activate inactive

nodes in the architecture to process them while satisfy their

requirements.

In the fourth scenario, we have considered a more complex

network diagram as shown in Fig. 7 with two cloud nodes,

ten fog nodes, and fifteen edge nodes for evaluation. Figure 7

also shows connectivity between different nodes and highlights

active and inactive nodes in the entire network graph. Here

we have considered a single job request from the eHealth

application defined as Job 1[25,1000,5,18] being received at

edge node 7, which is an inactive node. Considering our IoT

network architecture and the network graph, if we did not

use any optimization algorithms for node selection, then the

inactive edge node 7 would be activated to process the request.

This will cause overutilization of the number of nodes and

underutilization of resources in the network. However, using

the proposed optimization framework, an already active edge

node 8 is used to process this new eHealth job request rather

than activating inactive node 7. The optimal allocation is also

shown in Fig. 7. This results in using the minimum number of

already active nodes to process the IoT request and enhancing

the network resource utilization.

From the above evaluation, we can conclude that the con-

sidered IoT network architecture and the ILP framework can

optimally allocate and process the requests originating from

different IoT applications, including smart grid, autonomous

vehicles, and e-Health, whilst satisfying the application and

network requirements. ILP is an NP-hard problem, and we

used CPLEX to find the solutions under different network

scenarios. The solution time could drastically vary with the

size of the data set and the computation capabilities of the

device running the framework. Therefore, in our future work,

we would also explore a heuristic approach for node selections

and test the framework on actual data sets from different

IoT applications to compare the results against the optimal

solutions obtained by the proposed optimization framework.

VI. CONCLUSION

In this paper, we studied an IoT architecture with edge,

fog, and cloud computation layers to support emerging IoT

applications and how we can optimally allocate different IoT

requests to nodes at different layers for processing. We have

proposed an optimal node selection framework based on ILP

for efficiently processing the IoT requests with varying strin-

gent network and application constraints whilst minimizing the

number of nodes used. The approach was evaluated using IBM

CPLEX implementation, which validated the feasibility of our

approach in handling the IoT requests from upcoming IoT use

cases such as autonomous vehicles, eHealth, and smart gird

efficiently under different scenarios. The results demonstrated

the efficiency of our proposed framework. Planned future

works include developing heuristic approaches that can be

used for real-time node selections and comparing the results

with the solution from the proposed optimal node selection

framework.
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