
Flexible programmable networking: A
reflective, component-based approach
Ackbar Joolia, Geoff Coulson, Gordon Blair, Antonio Tadeu Gomes,

Kevin Lee, Jo Ueyama
Computing Dept, Lancaster University

[joolia,geoff,gordon,gomes,leek,ueyama]@comp.lancs.ac.uk

Abstract
The need for programmability and adaptability in
networking systems is becoming increasingly important.
More specifically, the challenge is in the ability to add
services rapidly, and be able to deploy, configure and
reconfigure them as easily as possible. Such demand is
creating a considerable shift in the way networks are
expected to operate in the future. This is the main aim of
programmable networking research community, and in
our project we are investigating a component-based
approach to the structuring of programmable networking
software. Our intention is to apply the notion of
components, component frameworks and reflection
ubiquitously, thus accommodating all the different
elements that comprise a programmable networking
system.

1. Introduction
Existing networks have a lot of limitations in the sense
that they are not very flexible and easily adapted to
growing demands in terms of services and new
technologies. Therefore there is an increasing demand for
openness and programmability in the actual networks.
The idea is to be able to ‘open’ these networks up and
rapidly program them in a safe and secure way, to adopt
new services, protocols, architectures and constraints.
Programmable networking environments differ from
other networking environments by the fact that they can
be ‘programmed’ from a basic set of APIs to provide new
services, or offer the capability to inject code into
network nodes so that their behaviour can be changed
accordingly to what is being required from applications,
users or organizations.

In our approach (NETKIT Project), we are investigating
the use of reflection, components and component
frameworks [3] to come up with a software model that
can be applied ubiquitously at all the different levels in
the programmable networking environment, from fine-
grained low-level in-band packet handling, to active
networking execution environments, to signaling.
Reflection provides more openness and in a principled
manner, rather than in an ad-hoc manner. In our project,
we are applying our previous work on reflection, or more
precisely, reflective middleware, in the area of
programmable networking. Reflective middleware
platforms have made significant progress in the past few
years (see, e.g. DynamicTAO [1], and LegORB [2]), and
they have the inherent property of being platforms that
can be flexibly configured, run-time adapted and

reconfigured, especially in terms of non-functional
properties like timeliness, resource management,
transactional behaviour and security.

In the remainder of this paper, we describe briefly our
reflective middleware approach and discuss its potential
for facilitating programmable networking in terms of
more flexibility, deployment, and management purposes
followed by an overview of our ongoing and future
works.

2. Background
Reflection
Reflection [4] is increasingly being applied to a lot of
areas like language design, e.g. Java Core Reflection API
[5], operating system design [6], distributed systems
[7],[8], concurrent language [9] and importantly to us,
the area of reflective middleware[27]. Reflection
provides the capability to overcome the ‘black box’
philosophy of existing platforms by opening up the
underlying structure and accessing it. Through reflection
and the appropriate operations, the internal details of
platforms can be inspected, and it is also possible to
change/insert behaviour of these platforms by exposing
the underlying implementation.

Components
According to Szyperski [3], a software component is “a
unit of composition with contractually specified
interfaces and explicit context dependencies only. A
software component can be deployed independently and
is subject to composition by third parties”. Component
technologies rely a lot on composition rather than relying
on inheritance for the construction of a software
application. The advantage with composition and
components is that new services can be readily added by
the process of assembling the components together, and
components can be re-used over and over again, to come
up with different application logic. We believe that by
making use of a component-based approach, we can
populate the programmable networking environment
uniformly with components being applied at all levels,
from low-level OS-like system support to in-band packet
handling, to active networking execution environments to
high-level coordination and signaling. The presence of
explicit contracts in terms of provided and required
interfaces i.e dependency between specific interfaces and
receptacles, together with composition process can
provide on-demand loading and unloading of
components (as services), and this can be very helpful in
terms of resource handling, security and safety,
management purposes, configuration and reconfiguration
of the system.

Component Frameworks
The other technology that underpins our work on
NETKIT is the use and application of component
frameworks (CFs). Szyperski defines component

frameworks as “collections of rules and interfaces that
govern the interaction of a set of components plugged
into them”. Essentially, component frameworks are
reusable architectures that embody domain-specific
constraints and strategies for composing components.
Making use of component frameworks brings a lot of
inherent advantages which helps with our design:

• Open signaling paradigm (see e.g. [11]) – in which
routers export ‘control interfaces’ through which
they can be remotely (re)configured by out-of-band,
application specific signaling protocols.

However, recently the state of the art is that the
paradigms are beginning to converge. For example, some
open signaling systems now support downloadable
modules on routers and are therefore more dynamic. This
leads to a third approach which has become quite
popular, and which we call out-of-band active paradigm.
These systems differ in their support for kernel vs. user
space modules, and in the way in-band functions can be
adapted/managed/configured.

Component frameworks provide a means of enforcing
desired architectural properties and invariants by
constraining the interactions among their plug-ins (which
are components assembled together through
composition) in a domain-relevant manner. Therefore,
they represent a very viable way to impose our rules and
conditions on the way components interact with each
other.

Active networking systems tend to be the most dynamic
approach to programmable networking since they operate
at a very-fine grain (capsules), but they are not as easy to
deploy as the other approaches, tend to be language
specific (e.g. Java) and prone to security threats. Open
signaling is less dynamic and more coarse-grain (since it
uses interfaces) but it is easier to deploy (especially for
complex distributed services), easier to secure, and has
better performance than active networking. The third
paradigm, out-of-band active, inherits the properties of
both classic approaches in terms of deployment,
management, flexibility and security.

• They increase systems understandability and
maintainability, and simplify component
development through design reuse.

• They can be used to structure the architecture of a
system into a set of specialized and focused
domains.

• They can be used to constrain the scope of dynamic
reconfigurations and ease the task of integrity
maintenance.

Our previous research on the above technologies
indicates that reflection, software components and
component frameworks are highly complementary.
Reflection provides the necessary level of openness to
access the underlying platform architecture while
components can be used for structuring the architecture
appropriately. Configuration and reconfiguration of the
underlying architecture is inherently possible due to the
compositional nature of components, and finally,
appropriate constraints and strategies can be imposed on
these architectures through component frameworks.

3.2 Stratification of the programmable networking
design space
Figure 1 shows a reference stratification of functionality
in the programmable networking environment. It should
be noted that we have used ‘stratum’ instead of layer to
avoid confusion with layered protocol architectures.

Stratum 1, hardware abstraction, contains the minimal
OS-like functionality like threads, memory allocation,
scheduling, library loading, and access to network
hardware) which provide higher-level network
programmability and are present on all participating
nodes (router) of the network. The stratum tries to
provide a uniform structure and services to the upper
strata, thus masking the low-level complexities and
hardware heterogeneity that can exist at that level. This is
quite interesting to our work because we plan to
experiment with software PC-based routers and
specialized programmable network processors like the
IXP1200 [12] and the IBM PowerNP [13]. Services
present at this layer would determine QoS capabilities
(e.g. predictability, throughput and latency) and
flexibility of the system at the higher level.

3. The Programmable Networking environment
This section gives a broad representation of the
programmable networking space design. This is just a
brief overview of the environment, and more insight can
be found in [14, 15, 16, 17, 18, 20]. The reference
stratification depicted below is representative of the
different areas where programmable networking projects
and efforts are being carried out.

3.1 The different paradigms
Historically, there have been two main paradigmatic
approaches to the provision of openness and
programmability in networks:

 • Active networking paradigm (see e.g. [10]) – where
special packets called ‘capsules’ or smart packets
carry programs that can be executed on ‘active
nodes’. These active nodes are usually
programmable routers. Active networking usually
operates in a Java-based environment [10].

4- coordination
3- application services
2- in-band functions
1- hardware abstraction

 Figure 1: Programmable networking design space

Stratum 2, in-band functions, represents the processing
and handling of all of the packets going through the
system/router. For example, the traditional functionalities
present in routers for packets, like packet filters,
classifiers, schedulers, shapers, validators and so on).
Since they occur at a low-level, are in-band and fine-
grained, these functions are performance critical, to
ensure that software and hardware are complementing
each other speed wise, and hence need to be designed and
implemented with great care.

The stratum 3 application services comprise coarser-
grained functions/processes that are less performance
critical and act on pre-selected packet flows. These are
more flexible and dynamic thus offering application-
specific control, management and deployment of services
e.g. introducing new media-filters, or security control.
They usually occur in the active networking execution-
environment [10].

The 4th stratum, coordination, populates out-of-band
signaling protocols that enable distributed coordination
like configuration/adaptation of the lower strata.
Examples are protocols that coordinate resource
allocation (e.g. RSVP) on a set of routers participating in
a dynamic VPN. Systems like Genesis [14], Draco [15],
Darwin [16] employ such an approach.

Figure 2 depicts a general summary of how the
paradigms discussed above map onto the different strata.
It is interesting to observe that much programmable
networking research addresses only a subset of the strata.
Furthermore, an overview of the different
projects/research going on the field of programmable
networking shows that systems that tend to be self-
consciously paradigm-independent usually address only
stratus 1 and/or stratum 2. For example, the Click
modular router [17], Netbind component binding system
[18], Washington University pluggable router framework
[19], and the IEEE P1520 router component model [20]
are all targeted at stratum 2.

4. Implication
Considering the significant research occurring in the
programmable networking environment, we argue that
most work to date has focused on specific and limited
areas, instead of overlooking the overall design space
(see section 3.2). Therefore most solutions are either

partial’ ones or are difficult to be integrated with each
other to produce more comprehensive solutions.

Hence, we believe that what is missing from the state-of-
the-art is a generic framework which is paradigm-
independent (i.e. independent of whether the approach is
active networking, or open signaling, or out-of-band
active), and also equally applicable to all the strata in
Figure 1. while being able to provide unified and explicit
support for implementation, deployment, reconfiguration
and system evolution. Ideally, this framework should
also be programming language and platform
independent.

Having a ubiquitously-applied component model
promises a uniform environment for the development,
deployment, configuration, reconfiguration and evolution
of programmable networking systems at all levels and
granularity. For example, functions as diverse as in-band
packet handling and signaling can be developed,
deployed, configured and reconfigured in a common
manner and can rely on common support such as
dynamic remote instantiation, reflective services, and
security and safety support. More specifically, software
on a single node can be analysed separately as a
composite for consistence, security and integrity
purposes. Our approach enables appropriate third-party
components to be assembled to achieve the desired
functionality (e.g. functionality will vary for various
systems like embedded wireless vs. large-scale routers
vs. specialized routers).

Figure 2: Paradigm mapping onto our stratification

1: hardware
b t ti

2: in-band functions

3: application services

4: coordination Open signaling
approach

Out-of-band active

Active networking
research

5. Ongoing and future work
In the NETKIT project we are addressing the provision
of a generic toolkit support for the programmable
networking environment, which takes in account the
above considerations. NETKIT is based on OpenCOM
[21] (see below), which is a simple, lightweight,
efficient, and language-independent software component-
based computational model resulting from research work
on reflective middleware at Lancaster University.
OpenCOM is a component-based, fine-grained,
programming and platform-independent computational
model, and we assert that these characteristics are very
well suited to be used in implementing systems from the
paradigms discussed previously: active networking, open
signaling and out-of-band active.

The idea is to populate all the strata in the programmable
networking environment with component frameworks
(CFs) based on OpenCOM. Our aim is to deploy
NETKIT in a heterogeneous environment to validate our
claim of a general approach to programmable
networking, while at the same time, trying to maintain as
much commonality/uniformity as possible without
compromising flexibility, (re)configurability or
performance. As such we plan to illustrate NETKIT
working not only in a standard PC-router environment,

but also in a specialized programmable router/network
processor environment - here we are targeting the Intel
IXP1200 [12] - and in ad-hoc networking environments.

5.1 OpenCOM
OpenCOM [21] adopts a computational model
embodying the key concepts: component, interface,
receptacle, local binding and container (see below for
detail). This is illustrated in the figure 3, which shows a
local binding between two components; or more
specifically, between a receptacle and interface of two
different components.

A receptacle expresses a unit of service requirement,
declaring an explicit dependence of one component on
one another. This property of receptacles means that
when a component is dynamically loaded, it is possible to
determine which other interfaces (hence components)
should be present for it to work properly. Containers
provide a run-time environment for a set of component
instances that are mutually participating in local
bindings. They provide generic services for dynamically
loading and unloading components, and for creating and
destroying local bindings. They also offer the possibility
to impose security and safety constraints wherever
possible and appropriate.

OpenCOM provides support for reflection through the
presence of three meta-models. First, there is the
interception meta-model which allows the programmer to
insert code (as interceptors) before or after the invocation
of a particular interface to carry out new behaviour.
Secondly the introspection meta-model which allows the
inspection of types of interfaces/receptacles at run-time,
and thirdly the architecture meta-model which allows the
programmer to view the internal structure of a system
(through behavioural/structural reflection), which is
represented as a topology of components in a system
graph.

These meta-models can be usefully applied to the
Programmable networking domain. For example, the use
of interceptors to do dynamic switching in and out of
components to determine a new architecture, packet
counting, introducing logging and security checks for
access control, QoS monitoring at the higher-levels like
Stratum 2/3. The system graph provides information on
all the receptacles/interfaces/bindings which e.g. can be
used to guide the reconfiguration of forwarders and
classifiers in routing systems. The meta-interface is very
useful in enabling CFs to check the type of interfaces

offered by plug-ins e.g. in a router, for safety reasons, to
prevent the whole system from crashing and maintaining
integrity.

A more exhaustive and complete explanation of
OpenCOM can be found in [21] [22].

5.2 OpenCOM development
For our project, we have been working on the current
OpenCOM to adapt it to our needs because although the
current implementation satisfies a lot of requirements
(has reflective capabilities, component-based,
lightweight) discussed previously, it is still deficient in
certain key areas as discussed below. Generic container

servicesLocal binding

B A

Firstly, we have been working towards the porting of
OpenCOM on Linux. OpenCOM initially ran only on
MS Windows platforms and was quite closely attached to
MS COM. The reason for moving towards Linux is
because the latter has better networking support (and is
more open) than Windows. We proceeded by making use
of XPCOM [23], which is a lightweight component
model that is built atop of the core subset of Microsoft’s
COM; XPCOM is interesting because it claims to be
platform-dependent, and has been deployed on over 15
different platforms, Windows and Linux inclusive. This
has involved freeing OpenCOM from its MS
dependencies, and adapting it to be more platform-
independent by making use of facilities offered by
XPCOM.

Figure 3: Receptacle from component A local
binding to Interface from component B

Currently, we have successfully ported OpenCOM to
Linux our next aim is to work towards removing the
dependency on XPCOM, and to define a very minimal
set of (XP)COM-core functionalities. This would provide
us with a more self-contained minimal OpenCOM
implementation. This is quite important to us, because
our objective is to use OpenCOM on the specialized
network processors (e.g. Intel IXP1200[12]) which
usually have sparse resources and may even have no
operating system environment.

We are also investigating techniques to optimize
OpenCOM performance (e.g. temporarily bypassing
vtables by using partial evaluation techniques [24] to
reduce overhead of cross component calls) and to support
components written in bytecode languages like Java and
C# (this is not supported at the moment in OpenCOM) to
achieve seamless co-existence on both compiled and
bytecode components in the same container.

5.3 Router CF
While our aim for NETKIT is to apply components and
OpenCOM-based CFs uniformly at all levels of the
programmable networking environment (in the different
strata), we currently have only a sparsely populated space
with components and CFs. We have been looking into a
range of CFs and components for the fast-path and per-
flow packets handling areas (stratum 2), plus some

specific signaling/coordination oriented CFs and
components.

We have focused on designing a stratum-2 CF which we
call the ‘Router CF’ [26], which accepts OpenCOM
components as plug-ins that perform arbitrary user-
defined packet-forwarding/processing functions.

We have defined a set of rules and constraints that
components within the Router CF should conform to.
These rules are enforced at run-time by the CF:
• There are two main base-level interface types

IPacketPush and IPacketPull which enable both
“push” and “pull” oriented flow of packets, and
compliant components must satisfy the appropriate
combination of these interfaces/receptacles.

• Compliant components may support a meta-level
interface IClassifier, which offers operations to
install packet filters. Such components are called
classifiers and their inputs and outputs are
appropriately specified in terms of IPacketPush and
IPacketPull for dealing with packets.

• In the case where compliant components are
composite, their internal constituents must conform
to the CF’s rules. Additionally, there is a controller
component (Figure 5) present to manage and
configure the internal constituents of composite
components.

The CF also has the following key properties:
• Single components can support dynamic

addition/removal of constraints through the use of
interceptors as outlined in the discussion of
OpenCOM. These constraints are policed by the
controller.

• The CF can also exploit OpenCOM’s resource CF
[22] to control the resourcing of tasks (e.g. in terms
of allocation of memory to new packet queing

components, thread allocation for forwarders) and
mapping of these resources to their constituent
components.

5.4 Issues with PC-based implementation
While our conceptual modeling of the Router CF is in a
fairly mature state, a lot of crucial factors have to be
taken into consideration in a ‘real-world’
implementation. In particular, when concerning PC-
based routers:
• We will certainly face the problem of untrusted

components. Since our approach is a component-
based one, we expect to use third-party components
to illustrate the flexibility of our system, which
means we need to take safety and security into
consideration. As such, we are thinking to manage
these untrusted components remotely by the parent
composite (in a different address space), or use
techniques like sandboxing to prevent malicious
tampering with the whole system.

• the implementation will be running on the main
processor and as such, it is crucial to decide which
services/operations/processing should be given
priority. Hence, this involves a good evaluation of
how resource partitioning and thread management
can be done, again in a componentized-way.

• the implementation is being based on a Linux
environment, and Linux being ‘open’, we intend to
make full use of its networking capabilities
available. As such, we are working towards having a
stratum-1 support for the PC-based router, which
would provide functionalities like thread
management, scheduling, library loading and
memory allocation.

At the first stage, we have started implementation with an
application-level gateway, with very basic functionality.
It is being implemented in terms of Socket calls, just to
illustrate a simple data-path, with a null forwarder i.e. a
packet coming into the gateway and then going out
without any processing done. And then, gradually, we
plan to build on this prototype, to come up with more
complicated forwarders (e.g. IP protocol processing,
MPLS processing, etc…). Since our aim is to illustrate
the configuration/reconfiguration/flexibility of the router
in terms of components composition, basic IP
functionality will be treated as services to the system, to
make the system open for other protocols. At present, the
interface to the Gateway prototype is socket-based packet
delivery, and we hope to come up with a component
which would interface transparently to the NIC hardware
and even to the IXP1200 board in a later phase.

The Router CF is in an early implementation phase, and
the design might be subject to some slight change in the
future. We hope to come up with a working
implementation soon on a PC-based router, and to be
able to validate its performance and flexibility.

IP
ac

ke
tP

us
h/

Pu
ll

(in
te

rf
ac

es
)

IClassifier

An instance of the
Router CF

Standard OpenCOM meta-interfaces IPacketPush/Pull
(receptacles)

Figure 4: Router CF component

Link
Scheduler

 …IPv6 hdr
process Queuing

forwarding

engine ……
protocol
classifier

IPv4 hdr
process

Access to
IClassifier
interfaces

Controller

= standard OpenCOM meta-interfaces
(IMetaArchitecture, IMetaInterface, etc.) IClassifier

Figure 5: A Router Instance (composite components)

5.5 Working with the IXP1200
We are in the process of implementing the Router CF on
the Intel IXP1200 network processor (see [12] for a more
complete description). Unlike the implementation of the
Router CF on the PC-based platform which runs entirely
on the main processor, the implementation of the Router
CF on the IXP1200 can take advantage of the specialized
hardware. The main characteristic of the IXP1200 is the
ability to perform packet processing on different parts of
the IXP1200 architecture.

 For example on our proposed PC-based router
implementation, we plan to implement both the data
plane and control plane on the host processor, whereas
the IXP1200-based router implementation will have the
data plane running on the Microengines while the control
plane can run on the StrongARM processor and also the
host PC’s processor. This is illustrated in figure 6, which
shows that fast-path processing occurs on the Micro-
engines whilst out-of-band processing like router-
changes or reconfiguration of the Router CF occurs on
the StrongARM or host-PC processor.

A second issue we are looking at is the need for support
at Stratum-1 (figure 1) and the development of OS-
related CFs to support our higher level Router CF.
These will take the form similar to those in THINK [25]
and will allow OpenCOM like-facilities at the level of
resource reconfiguration. We perceive that taking this
path will lead to increased performance, flexibility and
robustness (security) of our architecture.

6. Conclusion
We believe that although there has been significant
research in the field of programmable networking, the
presence of a ubiquitously-applied component model at
all levels of the strata, at any granularity and at any
appropriate language is still missing. What we illustrated
in this paper is our approach to a more integrated
structuring of programmable networking software, and
we intend to achieve our goal by making use of
OpenCOM, which is a reflective lightweight language-
independent model.

Most of our work so far has involved adapting
OpenCOM to our needs for NETKIT and dealing with its
omissions and restrictions. We have designed a CF for
stratum-2 which is in the implementation phase at
present, and we hope to come up with OS-like

components and an appropriate CF at stratum-1 level
very soon, in conjunction with the component placement
on the IXP1200 processor.

Our project is in quite an early phase, and our aim is to
populate all the strata so as to illustrate that our generic
approach works well, in terms of performance, flexibility
and transparency, in the future.

References
[1] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., and
Campbell, R.H., “Monitoring, Security, and Dynamic Configuration with the
dynamicTAO Reflective ORB”. IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing
(Middleware'2000), New York. Apr 3-7, 2000.
[2] Roman, M., Mickunas, D., Kon, F., and Campbell, R.H., “LegORB”,
IFIP/ACM Middleware’2000
[3] Szyperski, C., “Component Software: Beyond Object-Oriented
Programming”, Addison-Wesley, 1998.
[4] Kiczales, G., J. des Rivi貥s, D.G. Bobrow, "The Art of the
Metaobject Protocol", MIT Press, 1991
[5] Sun Microsystems, "Java Reflection", URL:
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html
[6] Yokote, Y., "The Apertos Reflective Operating System: The Concept
and Its Implementation", Proc. OOPSLA'92
[7] McAffer, J., "Meta-Level Architecture Support for
Distributed Objects", Proc. Reflection 96, pp 39-62

PC - processor

StrongARM

Micro-engines

 [8] Okamura, H., Ishikawa, Y., Tokoro, M., "AL-1/D: A
Distributed Programming System with Multi-Model
Reflection Framework"
[9] Watanabe, T., Yonezawa, A., "Reflection in an Object-
Oriented Concurrent Language", In Proceedings of
OOPSLA'88, p306-315
[10] The ANTS Toolkit, http://www.cs.utah.edu/flux/janos/ants.html
[11] Lazar, A.A., Bhonsle, S.K., Lim, K., “A Binding Architecture for
Multimedia Networks”, in David Hutchison, André A. S. Danthine, Helmut
Leopold, Geoff Coulson Figure 6: Possible switching paths through the processors
12] Intel IXP1200; http://www.intel.com/IXA.
[13] IBM PowerNP NP4GS3 Network Processor Solutions Product
Overview, April 2001
[14] Campbell, A.T., Kounavis, M.E., Villela, D.A., Vicente, J.B., de Meer,
H.G., Miki, K., Kalaichelvan, K.S., “Spawning networks”
[15]Isaacs,R., Leslie, I.,”Support for Resource-Assured and Dynamic
Virtual Private Networks”.
[16]Chandra, P., Fisher, A., Kosak, C., Ng, T.S.E, Steenkiste,
P.”Darwin:Customizable Resource Management for Value-Added network
services”.
[17] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F., “The
Click Modular Router”
[18] Campbell, A.T., Chou, S., Kounavis, M.E., Stachtos, V.D., and Vicente,
J.B., “NetBind: A Binding Tool for Constructing Data Paths in Network
Processor-based Routers”
[19] Decasper, D., Dittia, Z., Parulkar, G., Plattner, B., “Router Plugins: A
Software Architecture for Next Generation Routers”
[20] IEEE P1520 http://www.ieee-pin.org/
[21] Clarke, M., Blair, G.S., Coulson, G., “An Efficient Component Model
for the Construction of Adaptive Middleware”
[22] Coulson, G., Blair, G.S., Clark, M., Parlavantzas, N., “The Design of a
Highly Configurable and Reconfigurable Middleware Platform”
[23] Mozilla Organization, XPCOM project, 2001,
http://www.mozilla.org/projects/xpcom.
[24] Jones, N.D., “An Introduction to Partial Evaluation”
[25] Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G., “THINK: A
Software Framework for Component-based Operating System
Kernels”,2002
[26]Coulson G, Blair G, Gomes A.T.A, Joolia A, Lee K, Ueyama J, Ye I,
“Reflective Middleware-based Programmable Networking” (to be
published)
[27]Kon, F.,Costa F, Blair G.S, Campbell R, “The Case for Reflective
Middleware: Building Middleware that is flexible, Reconfigurable, and yet
Simple to use”, 2002

http://www.cs.utah.edu/flux/janos/ants.html
http://www.intel.com/IXA
http://www.ieee-pin.org/
http://www.mozilla.org/projects/xpcom

