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Abstract 
The need for programmability and adaptability in 
networking systems is becoming increasingly important. 
More specifically, the challenge is in the ability to add 
services rapidly, and be able to deploy, configure and 
reconfigure them as easily as possible. Such demand is 
creating a considerable shift in the way networks are 
expected to operate in the future. This is the main aim of 
programmable networking research community, and in 
our project we are investigating a component-based 
approach to the structuring of programmable networking 
software. Our intention is to apply the notion of 
components, component frameworks and reflection 
ubiquitously, thus accommodating all the different 
elements that comprise a programmable networking 
system. 
 
1. Introduction 
Existing networks have a lot of limitations in the sense 
that they are not very flexible and easily adapted to 
growing demands in terms of services and new 
technologies. Therefore there is an increasing demand for 
openness and programmability in the actual networks. 
The idea is to be able to ‘open’ these networks up and 
rapidly program them in a safe and secure way, to adopt 
new services, protocols, architectures and constraints. 
Programmable networking environments differ from 
other networking environments by the fact that they can 
be ‘programmed’ from a basic set of APIs to provide new 
services, or offer the capability to inject code into 
network nodes so that their behaviour can be changed 
accordingly to what is being required from applications, 
users or organizations.  
 
In our approach (NETKIT Project), we are investigating 
the use of reflection, components and component 
frameworks [3] to come up with a software model that 
can be applied ubiquitously at all the different levels in 
the programmable networking environment, from fine-
grained low-level in-band packet handling, to active 
networking execution environments, to signaling. 
Reflection provides more openness and in a principled 
manner, rather than in an ad-hoc manner. In our project, 
we are applying our previous work on reflection, or more 
precisely, reflective middleware, in the area of 
programmable networking. Reflective middleware 
platforms have made significant progress in the past few 
years (see, e.g. DynamicTAO [1], and LegORB [2]), and 
they have the inherent property of being platforms that 
can be flexibly configured, run-time adapted and 

reconfigured, especially in terms of non-functional 
properties like timeliness, resource management, 
transactional behaviour and security. 
 
In the remainder of this paper, we describe briefly our 
reflective middleware approach and discuss its potential 
for facilitating programmable networking in terms of 
more flexibility, deployment, and management purposes 
followed by an overview of our ongoing and future 
works. 
 
2. Background 
Reflection 
Reflection [4] is increasingly being applied to a lot of 
areas like language design, e.g. Java Core Reflection API 
[5], operating system design [6], distributed systems 
[7],[8], concurrent language [9] and importantly to us, 
the area of reflective middleware[27]. Reflection 
provides the capability to overcome the ‘black box’ 
philosophy of existing platforms by opening up the 
underlying structure and accessing it. Through reflection 
and the appropriate operations, the internal details of 
platforms can be inspected, and it is also possible to 
change/insert behaviour of these platforms by exposing 
the underlying implementation. 
 
Components 
According to Szyperski [3], a software component is “a 
unit of composition with contractually specified 
interfaces and explicit context dependencies only. A 
software component can be deployed independently and 
is subject to composition by third parties”. Component 
technologies rely a lot on composition rather than relying 
on inheritance for the construction of a software 
application. The advantage with composition and 
components is that new services can be readily added by 
the process of assembling the components together, and 
components can be re-used over and over again, to come 
up with different application logic. We believe that by 
making use of a component-based approach, we can 
populate the programmable networking environment 
uniformly with components being applied at all levels, 
from low-level OS-like system support to in-band packet 
handling, to active networking execution environments to 
high-level coordination and signaling. The presence of 
explicit contracts in terms of provided and required 
interfaces i.e dependency between specific interfaces and 
receptacles, together with composition process can 
provide on-demand loading and unloading of 
components (as services), and this can be very helpful in 
terms of resource handling, security and safety, 
management purposes, configuration and reconfiguration 
of the system. 
 
Component Frameworks 
The other technology that underpins our work on 
NETKIT is the use and application of component 
frameworks (CFs). Szyperski defines component 



frameworks as “collections of rules and interfaces that 
govern the interaction of a set of components plugged 
into them”. Essentially, component frameworks are 
reusable architectures that embody domain-specific 
constraints and strategies for composing components. 
Making use of component frameworks brings a lot of 
inherent advantages which helps with our design: 

• Open signaling paradigm (see e.g. [11]) – in which 
routers export ‘control interfaces’ through which 
they can be remotely (re)configured by out-of-band, 
application specific signaling protocols. 

 
However, recently the state of the art is that the 
paradigms are beginning to converge. For example, some 
open signaling systems now support downloadable 
modules on routers and are therefore more dynamic. This 
leads to a third approach which has become quite 
popular, and which we call out-of-band active paradigm. 
These systems differ in their support for kernel vs. user 
space modules, and in the way in-band functions can be 
adapted/managed/configured.  

 
Component frameworks provide a means of enforcing 
desired architectural properties and invariants by 
constraining the interactions among their plug-ins (which 
are components assembled together through 
composition) in a domain-relevant manner. Therefore, 
they represent a very viable way to impose our rules and 
conditions on the way components interact with each 
other. 

 
Active networking systems tend to be the most dynamic 
approach to programmable networking since they operate 
at a very-fine grain (capsules), but they are not as easy to 
deploy as the other approaches, tend to be language 
specific (e.g. Java) and prone to security threats. Open 
signaling is less dynamic and more coarse-grain (since it 
uses interfaces) but it is easier to deploy (especially for 
complex distributed services), easier to secure, and has 
better performance than active networking. The third 
paradigm, out-of-band active, inherits the properties of 
both classic approaches in terms of deployment, 
management, flexibility and security. 

• They increase systems understandability and 
maintainability, and simplify component 
development through design reuse. 

• They can be used to structure the architecture of a 
system into a set of specialized and focused 
domains. 

• They can be used to constrain the scope of dynamic 
reconfigurations and ease the task of integrity 
maintenance. 

 
Our previous research on the above technologies 
indicates that reflection, software components and 
component frameworks are highly complementary. 
Reflection provides the necessary level of openness to 
access the underlying platform architecture while 
components can be used for structuring the architecture 
appropriately. Configuration and reconfiguration of the 
underlying architecture is inherently possible due to the 
compositional nature of components, and finally, 
appropriate constraints and strategies can be imposed on 
these architectures through component frameworks. 

 
3.2 Stratification of the programmable networking 
design space 
Figure 1 shows a reference stratification of functionality 
in the programmable networking environment. It should 
be noted that we have used ‘stratum’ instead of layer to 
avoid confusion with layered protocol architectures. 
 
Stratum 1, hardware abstraction, contains the minimal 
OS-like functionality like threads, memory allocation, 
scheduling, library loading, and access to network 
hardware) which provide higher-level network 
programmability and are present on all participating 
nodes (router) of the network. The stratum tries to 
provide a uniform structure and services to the upper 
strata, thus masking the low-level complexities and 
hardware heterogeneity that can exist at that level. This is 
quite interesting to our work because we plan to 
experiment with software PC-based routers and 
specialized programmable network processors like the 
IXP1200 [12] and the IBM PowerNP [13]. Services 
present at this layer would determine QoS capabilities 
(e.g. predictability, throughput and latency) and 
flexibility of the system at the higher level. 

 
3. The Programmable Networking environment 
This section gives a broad representation of the 
programmable networking space design. This is just a 
brief overview of the environment, and more insight can 
be found in [14, 15, 16, 17, 18, 20]. The reference 
stratification depicted below is representative of the 
different areas where programmable networking projects 
and efforts are being carried out.  
 
3.1 The different paradigms 
Historically, there have been two main paradigmatic 
approaches to the provision of openness and 
programmability in networks: 

 • Active networking paradigm (see e.g. [10]) – where 
special packets called ‘capsules’ or smart packets 
carry programs that can be executed on ‘active 
nodes’. These active nodes are usually 
programmable routers. Active networking usually 
operates in a Java-based environment [10]. 

4- coordination 
3- application services 
2- in-band functions 
1- hardware abstraction 

 Figure 1: Programmable networking design space 
 



Stratum 2, in-band functions, represents the processing 
and handling of all of the packets going through the 
system/router. For example, the traditional functionalities 
present in routers for packets, like packet filters, 
classifiers, schedulers, shapers, validators and so on). 
Since they occur at a low-level, are in-band and fine-
grained, these functions are performance critical, to 
ensure that software and hardware are complementing 
each other speed wise, and hence need to be designed and 
implemented with great care. 
 
The stratum 3 application services comprise coarser-
grained functions/processes that are less performance 
critical and act on pre-selected packet flows. These are 
more flexible and dynamic thus offering application-
specific control, management and deployment of services 
e.g. introducing new media-filters, or security control. 
They usually occur in the active networking execution-
environment [10]. 
 
The 4th stratum, coordination, populates out-of-band 
signaling protocols that enable distributed coordination 
like configuration/adaptation of the lower strata. 
Examples are protocols that coordinate resource 
allocation (e.g. RSVP) on a set of routers participating in 
a dynamic VPN. Systems like Genesis [14], Draco [15], 
Darwin [16] employ such an approach. 
 
 
 
 
 
 
 
 
 
 
Figure 2 depicts a general summary of how the 
paradigms discussed above map onto the different strata. 
It is interesting to observe that much programmable 
networking research addresses only a subset of the strata. 
Furthermore, an overview of the different 
projects/research going on the field of programmable 
networking shows that systems that tend to be self-
consciously paradigm-independent usually address only 
stratus 1 and/or stratum 2. For example, the Click 
modular router [17], Netbind component binding system 
[18], Washington University pluggable router framework 
[19], and the IEEE P1520 router component model [20] 
are all targeted at stratum 2. 
 
4. Implication 
Considering the significant research occurring in the 
programmable networking environment, we argue that 
most work to date has focused on specific and limited 
areas, instead of overlooking the overall design space 
(see section 3.2). Therefore most solutions are either 

partial’ ones or are difficult to be integrated with each 
other to produce more comprehensive solutions. 
 
Hence, we believe that what is missing from the state-of-
the-art is a generic framework which is paradigm-
independent (i.e. independent of whether the approach is 
active networking, or open signaling, or out-of-band 
active), and also equally applicable to all the strata in 
Figure 1. while being able to provide unified and explicit 
support for implementation, deployment, reconfiguration 
and system evolution. Ideally, this framework should 
also be programming language and platform 
independent. 
 
Having a ubiquitously-applied component model 
promises a uniform environment for the development, 
deployment, configuration, reconfiguration and evolution 
of programmable networking systems at all levels and 
granularity. For example, functions as diverse as in-band 
packet handling and signaling can be developed, 
deployed, configured and reconfigured in a common 
manner and can rely on common support such as 
dynamic remote instantiation, reflective services, and 
security and safety support. More specifically, software 
on a single node can be analysed separately as a 
composite for consistence, security and integrity 
purposes. Our approach enables appropriate third-party 
components to be assembled to achieve the desired 
functionality (e.g. functionality will vary for various 
systems like embedded wireless vs. large-scale routers 
vs. specialized routers). 

Figure 2: Paradigm mapping onto our stratification  
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5. Ongoing and future work 
In the NETKIT project we are addressing the provision 
of a generic toolkit support for the programmable 
networking environment, which takes in account the 
above considerations. NETKIT is based on OpenCOM 
[21] (see below), which is a simple, lightweight, 
efficient, and language-independent software component-
based computational model resulting from research work 
on reflective middleware at Lancaster University. 
OpenCOM is a component-based, fine-grained, 
programming and platform-independent computational 
model, and we assert that these characteristics are very 
well suited to be used in implementing systems from the 
paradigms discussed previously: active networking, open 
signaling and out-of-band active. 
 
The idea is to populate all the strata in the programmable 
networking environment with component frameworks 
(CFs) based on OpenCOM.  Our aim is to deploy 
NETKIT in a heterogeneous environment to validate our 
claim of a general approach to programmable 
networking, while at the same time, trying to maintain as 
much commonality/uniformity as possible without 
compromising flexibility, (re)configurability or 
performance. As such we plan to illustrate NETKIT 
working not only in a standard PC-router environment, 



but also in a specialized programmable router/network 
processor environment - here we are targeting the Intel 
IXP1200 [12] - and in ad-hoc networking environments. 
 
5.1 OpenCOM 
OpenCOM [21] adopts a computational model 
embodying the key concepts: component, interface, 
receptacle, local binding and container (see below for 
detail). This is illustrated in the figure 3, which shows a 
local binding between two components; or more 
specifically, between a receptacle and interface of two 
different components. 
 
 
 
 
 
 
 
 
 
A receptacle expresses a unit of service requirement, 
declaring an explicit dependence of one component on 
one another. This property of receptacles means that 
when a component is dynamically loaded, it is possible to 
determine which other interfaces (hence components) 
should be present for it to work properly. Containers 
provide a run-time environment for a set of component 
instances that are mutually participating in local 
bindings. They provide generic services for dynamically 
loading and unloading components, and for creating and 
destroying local bindings. They also offer the possibility 
to impose security and safety constraints wherever 
possible and appropriate. 
 
OpenCOM provides support for reflection through the 
presence of three meta-models. First, there is the 
interception meta-model which allows the programmer to 
insert code (as interceptors) before or after the invocation 
of a particular interface to carry out new behaviour. 
Secondly the introspection meta-model which allows the 
inspection of types of interfaces/receptacles at run-time, 
and thirdly the architecture meta-model which allows the 
programmer to view the internal structure of a system 
(through behavioural/structural reflection), which is 
represented as a topology of components in a system 
graph. 
 
These meta-models can be usefully applied to the 
Programmable networking domain. For example, the use 
of interceptors to do dynamic switching in and out of 
components to determine a new architecture, packet 
counting, introducing logging and security checks for 
access control, QoS monitoring at the higher-levels like 
Stratum 2/3. The system graph provides information on 
all the receptacles/interfaces/bindings which e.g. can be 
used to guide the reconfiguration of forwarders and 
classifiers in routing systems. The meta-interface is very 
useful in enabling CFs to check the type of interfaces 

offered by plug-ins e.g. in a router, for safety reasons, to 
prevent the whole system from crashing and maintaining 
integrity. 
 
A more exhaustive and complete explanation of 
OpenCOM can be found in [21] [22]. 
 
5.2 OpenCOM development 
For our project, we have been working on the current 
OpenCOM to adapt it to our needs because although the 
current implementation satisfies a lot of requirements 
(has reflective capabilities, component-based, 
lightweight) discussed previously, it is still deficient in 
certain key areas as discussed below.  Generic container 

servicesLocal binding 

B A 

 
Firstly, we have been working towards the porting of 
OpenCOM on Linux. OpenCOM initially ran only on 
MS Windows platforms and was quite closely attached to 
MS COM. The reason for moving towards Linux is 
because the latter has better networking support (and is 
more open) than Windows. We proceeded by making use 
of XPCOM [23], which is a lightweight component 
model that is built atop of the core subset of Microsoft’s 
COM; XPCOM is interesting because it claims to be 
platform-dependent, and has been deployed on over 15 
different platforms, Windows and Linux inclusive. This 
has involved freeing OpenCOM from its MS 
dependencies, and adapting it to be more platform-
independent by making use of facilities offered by 
XPCOM.  

Figure 3: Receptacle from component A local 
binding to Interface from component B 

 
Currently, we have successfully ported OpenCOM to 
Linux our next aim is to work towards removing the 
dependency on XPCOM, and to define a very minimal 
set of (XP)COM-core functionalities. This would provide 
us with a more self-contained minimal OpenCOM 
implementation. This is quite important to us, because 
our objective is to use OpenCOM on the specialized 
network processors (e.g. Intel IXP1200[12]) which 
usually have sparse resources and may even have no 
operating system environment. 
 
We are also investigating techniques to optimize 
OpenCOM performance (e.g. temporarily bypassing 
vtables by using partial evaluation techniques [24] to 
reduce overhead of cross component calls) and to support 
components written in bytecode languages like Java and 
C# (this is not supported at the moment in OpenCOM) to 
achieve seamless co-existence on both compiled and 
bytecode components in the same container. 
 
5.3 Router CF 
While our aim for NETKIT is to apply components and 
OpenCOM-based CFs uniformly at all levels of the 
programmable networking environment (in the different 
strata), we currently have only a sparsely populated space 
with components and CFs. We have been looking into a 
range of CFs and components for the fast-path and per-
flow packets handling areas (stratum 2), plus some 



specific signaling/coordination oriented CFs and 
components. 
 
We have focused on designing a stratum-2 CF which we 
call the ‘Router CF’ [26], which accepts OpenCOM 
components as plug-ins that perform arbitrary user-
defined packet-forwarding/processing functions.  
 
 
 
 
 
 
 
 
 
We have defined a set of rules and constraints that 
components within the Router CF should conform to. 
These rules are enforced at run-time by the CF: 
• There are two main base-level interface types 

IPacketPush and IPacketPull which enable both 
“push” and “pull” oriented flow of packets, and 
compliant components must satisfy the appropriate 
combination of these interfaces/receptacles. 

• Compliant components may support a meta-level 
interface IClassifier, which offers operations to 
install packet filters. Such components are called 
classifiers and their inputs and outputs are 
appropriately specified in terms of IPacketPush and 
IPacketPull for dealing with packets. 

• In the case where compliant components are 
composite, their internal constituents must conform 
to the CF’s rules. Additionally, there is a controller 
component (Figure 5) present to manage and 
configure the internal constituents of composite 
components. 

 
 
 
The CF also has the following key properties: 
• Single components can support dynamic 

addition/removal of constraints through the use of 
interceptors as outlined in the discussion of 
OpenCOM. These constraints are policed by the 
controller. 

• The CF can also exploit OpenCOM’s resource CF 
[22] to control the resourcing of tasks (e.g. in terms 
of allocation of memory to new packet queing 

components, thread allocation for forwarders) and 
mapping of these resources to their constituent 
components. 

 
5.4 Issues with PC-based implementation 
While our conceptual modeling of the Router CF is in a 
fairly mature state, a lot of crucial factors have to be 
taken into consideration in a ‘real-world’ 
implementation. In particular, when concerning PC-
based routers: 
• We will certainly face the problem of untrusted 

components. Since our approach is a component-
based one, we expect to use third-party components 
to illustrate the flexibility of our system, which 
means we need to take safety and security into 
consideration. As such, we are thinking to manage 
these untrusted components remotely by the parent 
composite (in a different address space), or use 
techniques like sandboxing to prevent malicious 
tampering with the whole system. 

• the implementation will be running on the main 
processor and as such, it is crucial to decide which 
services/operations/processing should be given 
priority. Hence, this involves a good evaluation of 
how resource partitioning and thread management 
can be done, again in a componentized-way. 

• the implementation is being based on a Linux 
environment, and Linux being ‘open’, we intend to 
make full use of its networking capabilities 
available. As such, we are working towards having a 
stratum-1 support for the PC-based router, which 
would provide functionalities like thread 
management, scheduling, library loading and 
memory allocation. 

 
At the first stage, we have started implementation with an 
application-level gateway, with very basic functionality. 
It is being implemented in terms of Socket calls, just to 
illustrate a simple data-path, with a null forwarder i.e. a 
packet coming into the gateway and then going out 
without any processing done. And then, gradually, we 
plan to build on this prototype, to come up with more 
complicated forwarders (e.g. IP protocol processing, 
MPLS processing, etc…). Since our aim is to illustrate 
the configuration/reconfiguration/flexibility of the router 
in terms of components composition, basic IP 
functionality will be treated as services to the system, to 
make the system open for other protocols. At present, the 
interface to the Gateway prototype is socket-based packet 
delivery, and we hope to come up with a component 
which would interface transparently to the NIC hardware 
and even to the IXP1200 board in a later phase. 
 
The Router CF is in an early implementation phase, and 
the design might be subject to some slight change in the 
future. We hope to come up with a working 
implementation soon on a PC-based router, and to be 
able to validate its performance and flexibility. 
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5.5 Working with the IXP1200 
We are in the process of implementing the Router CF on 
the Intel IXP1200 network processor (see [12] for a more 
complete description).  Unlike the implementation of the 
Router CF on the PC-based platform which runs entirely 
on the main processor, the implementation of the Router 
CF on the IXP1200 can take advantage of the specialized 
hardware.  The main characteristic of the IXP1200 is the 
ability to perform packet processing on different parts of 
the IXP1200 architecture.  
 
 For example on our proposed PC-based router 
implementation, we plan to implement both the data 
plane and control plane on the host processor, whereas 
the IXP1200-based router implementation will have the 
data plane running on the Microengines while the control 
plane can run on the StrongARM processor and also the 
host PC’s processor.  This is illustrated in figure 6, which 
shows that fast-path processing occurs on the Micro-
engines whilst out-of-band processing like router-
changes or reconfiguration of the Router CF occurs on 
the StrongARM or host-PC processor. 
 
 
 
 
 
 
 
 
 
A second issue we are looking at is the need for support 
at Stratum-1 (figure 1) and the development of OS-
related CFs to support our higher level Router CF.   
These will take the form similar to those in THINK [25] 
and will allow OpenCOM like-facilities at the level of 
resource reconfiguration.  We perceive that taking this 
path will lead to increased performance, flexibility and 
robustness (security) of our architecture. 
 
6. Conclusion 
We believe that although there has been significant 
research in the field of programmable networking, the 
presence of a ubiquitously-applied component model at 
all levels of the strata, at any granularity and at any 
appropriate language is still missing. What we illustrated 
in this paper is our approach to a more integrated 
structuring of programmable networking software, and 
we intend to achieve our goal by making use of 
OpenCOM, which is a reflective lightweight language-
independent model. 
 
Most of our work so far has involved adapting 
OpenCOM to our needs for NETKIT and dealing with its 
omissions and restrictions. We have designed a CF for 
stratum-2 which is in the implementation phase at 
present, and we hope to come up with OS-like 

components and an appropriate CF at stratum-1 level 
very soon, in conjunction with the component placement 
on the IXP1200 processor.  
 
Our project is in quite an early phase, and our aim is to 
populate all the strata so as to illustrate that our generic 
approach works well, in terms of performance, flexibility 
and transparency, in the future.  
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