
Towards Energy-aware Scheduling of Scientific
Workflows

Mehul Warade
School of Information Technology

Deakin University
Geelong, Victoria, 3220, Australia

mehul.warade@research.deakin.edu.au

Jean-Guy Schneider
School of Information Technology

Deakin University
Geelong, Victoria, 3220, Australia
jeanguy.schneider@deakin.edu.au

Kevin Lee
School of Information Technology

Deakin University
Geelong, Victoria, 3220, Australia

kevin.lee@deakin.edu.au

Abstract—Contemporary scientific computation is increasingly
structured using scientific workflows that are executed on highly
scalable compute clusters. The execution of these workflows is
generally geared towards optimizing run-time performance with
the energy footprint of the execution being ignored. However,
there is evidence that minimizing both execution time as well
as energy consumption are not mutually exclusive. The aim of
the work presented in this paper is to highlight the benefits
of energy-aware scientific workflow execution. In this paper, we
propose a set of requirements for an energy-aware scheduling
and present an architecture for the implementation of an energy-
aware scheduler.

Index Terms—Energy-Aware Computing, Scientific workflows,
Scheduling

I. INTRODUCTION

A scientific workflow is defined as series of small tasks
being executed in a specific structure to achieve a certain
computation goal [1]. A trade off between run-time perfor-
mance and the energy consumption has been seen for multiple
workflows [2]. This often means that using more cluster
resources results in minimal computational improvements but
large energy overheads. Workflow engines are used to execute
the workflow and handle all the data, task dependencies,
logging and reporting [3]–[5], respectively.

Workflow engines have been developed that provide the
user with a lot of optimization and configuration options.
Most scientists do not manage their own cluster infrastructure
and rely on the workflow engine to handles the creation,
management and debugging of the cluster. This makes it
difficult for them to be able to understand the environmental
impact of their computation and to optimize their workflows or
the cluster for better performance and/or energy consumption.

Scientists have optimized the performance of different
workflows for timeliness [6], performance [7], or data prove-
nance [8]. These optimizations are particular to the specific
workflows and are achieved by modelling and analysing the
workflow [9], [10]. In existing workflow schedulers, energy
considerations are only marginally (if at all) taken into ac-
count. For example, current approaches focus on executing
individual jobs rather than analysing and understanding the
structure and execution characteristics of the workflow and
the individual jobs in the workflow [9], [11], [12].

The aim of this paper is to motivate the development of a
scheduler taking into consideration the energy consumption of
a scientific workflow and its underlying jobs. The scheduler
needs to be able to understand the workflow at job level or
computation level in order to make changes to the workflow
or the cluster to better accommodate the execution of the
workflow. A set of generic and workflow-specific requirements
and policies for the scheduler are also identified. The authors
anticipate that a scheduler built to address these requirements
will reduce the energy consumption of workflows.

The key contributions of this paper are as follows: (i) a
survey of the current state of energy aware workflow sched-
ulers; (ii) identification of requirements and challenges for an
energy aware schedulers; and (iii) a conceptual architecture
for an energy-aware scheduler for scientific workflows.

The remainder of this paper is as follows: Section II
provides an overview of the issues associated with workflow
execution and energy constraints. This section also provides an
analysis of popular scientific workflows. The requirements and
challenges for the development of an energy-aware scheduler
are documented in Section III. Section IV presents a con-
ceptual architecture for developing an energy-aware scheduler.
Finally, Section V provides conclusions and future work.

II. BACKGROUND

High Performance Computing (HPC) has led to an in-
crease in the global energy usage [13]. As we move towards
ExaFLOP performance in HPC, it is becoming more and
more challenging to cope with the increasing energy required
for the computation [2]. Monitoring the energy usage and
developing more energy efficient methods for computing is of
ever increasing importance [13], [14]. A number of hardware
and software methods have been proposed to tackle this issue.
The remainder of this section provides a background on (i)
scientific workflows, (ii) workflow schedulers, and iii) energy-
aware scheduling, respectively.

A. Scientific Workflows

Workflows are increasingly being used in High Performance
Computing (HPC) to accommodate for the growing complex-
ity of computation, simulations and analysis [15]. A workflow
comprises of a number of individual jobs that are executed

978-1-6654-8663-7/22/$31.00 ©2022 IEEE

GECOST 2022

93

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 G

re
en

 E
ne

rg
y,

 C
om

pu
tin

g
an

d
Su

st
ai

na
bl

e
Te

ch
no

lo
gy

 (G
EC

O
ST

) |
 9

78
-1

-6
65

4-
86

63
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

G
EC

O
ST

55
69

4.
20

22
.1

00
10

63
4

Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 11:12:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A Simple Montage Workflow.

in batches to complete a large computation. These jobs have
characteristics that are particular to individual workflow such
as data dependencies, bottlenecks, etc. The execution of such
jobs can be exploited to achieve improvement in performance
or energy consumption of the workflow. In this section, two
popular scientific workflows are described and the jobs that
can be exploited to achieve improvements are discussed.

1) Montage: Montage [16], [17] is a software toolkit used
in Astrophotography to combine Flexible Image Transport
System format (FITS) images of the sky into composite
images called mosaics. The toolkit preserves the calibration
and positional fidelity of the original input images. A Montage
workflow comprises of a number of tasks to develop a relevant
mosaic of the sky based on its input parameters. Montage
has been classified as an input/output-bound workflow [18]
compared to other scientific workflows. The Montage toolkit
can be used to generate workflows of varying size depending
on the requirements of a scientist. The varying size of a
Montage workflow is specified in (i) degrees of the sky and
(ii) the colour channels which the final images should be
generated from. Figure 1 illustrates the Montage workflow as a
directed acyclic graph (DAG). The Montage DAG has 8 levels
of jobs which are dependent on each other after the workflow
is submitted (Step 0).

2) Bioinformatics: The Bioinformatics workflow is based
on the data collected by the 1,000 Genomes Project [19], [20].
The purpose of this workflow is to analyze the data and cross-
match the whole datasets for mutations. The workflow also
identifies mutational overlaps in order to evaluate potential
disease-related mutations. The extracted data, along with the

Fig. 2. A Simple Bioinformatics Workflow.

mutation’s sift scores (calculated by the Variant Effect Predic-
tor [21]) can help researchers in discovering the exact mutation
which is the cause for a certain disease in a person. The
Bioinformatics workflow has many characteristics which are
specific to the workflow. In particular, there are two different
input variables that can be controlled by the user – the size of
workflow (the data to be computed) and the number of parallel
jobs. Figure 2 illustrates a directed acyclic graph (DAG) of a
Bioinformatics workflow.

Like any scientific workflow, both Montage and the Bioin-
formatics workflow have specific characteristics to their struc-
ture. Montage has some jobs, in particular mProject, that
are computationally more intensive than others and the bio-
informatics workflow have a bottleneck in its execution
(Individual_merge). The size and parameters of the
workflow dictate the number of jobs that are needed for
execution. The combination of the size of workflow and
the number of cluster nodes have a direct impact on the
queuing of jobs, execution time, and the energy consumption
of the workflow. Identifying such jobs and smartly executing
them can lead to improvements in energy consumption and
performance of the workflows.

B. Workflow Schedulers

Optimizing schedulers for workflows have always been an
area of interest for scientists. An adaptive workflow processing
and execution method is possible [22]–[24]. These methods
take into account the current progress of the workflow and the
load on the cluster to perform scheduling and load balancing.

Another approach for developing effective scheduling of
workflows was introduced in a cloud based distributed com-
puting systems [25]. Static Provisioning-Static Scheduling
under Energy and Budget Constraints (SPSS-EB) and Static
Provisioning-Static Scheduling under Energy and Deadline
Constraints (SPSS-ED) were two novel algorithms developed
and tested to show improvements in performance of workflows
in a cloud based distributed systems [26].

A system for dynamically allocating tasks based on the
available infrastructure and knowledge of the workflow have
been developed [27]. The system was able to achieve faster
job run-time along with improved cluster usage. Another
scheduler makes use of critical path analysis to find the optimal
execution of tasks to reduce the data transfer between the

94
Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 11:12:49 UTC from IEEE Xplore. Restrictions apply.

nodes [12]. This scheduler achieved reduction of 66% in
execution time over traditional schedulers. A hybrid algorithm
making use of Particle swarm optimization (PSO) algorithm
and processing bottleneck tasks on high priority have been
developed to achieve better execution time along with no loss
in cluster load [28]. Similar results have been obtained from
a scheduler developed by using genetic algorithm [29].

C. Energy Aware Workflow Schedulers

This section focuses on schedulers that have been devel-
oped by considering the cost and energy consumption of the
computation. In recent years, the focus has shifted from ‘faster
computation’ to ‘energy-efficient computation’. Due to this a
lot of researchers have developed systems that take the cost of
computation in consideration while scheduling the workflows.

Scheduling algorithms have also been introduced to meet
time deadlines of a computation while minimizing the energy
consumption [9], [30]. A scheduler based on polynomial time
algorithm is proposed to provide real-time dynamic resource
allocation in order to get good solutions in a particular
time [31]. Chebyshev scalarization function is used to de-
velop an energy-aware multi-objective reinforcement learning
(EnMORL) algorithm to reduce the makespan and energy
consumption of a workflow [32].

Cloud computing is one of the most researched area for HPC
and energy savings. Not everyone can afford huge data centers
and, cloud computing is go-to for any researcher looking for
computation. Inter-dependency of tasks leads to huge data
transfer and less computation tasks being executed in the
clouds. A scheduler to reduce the data transfer and inter-
dependency has been developed with the focus on reducing
the energy footprint of the workflow [33]. The scheduler was
able to achieve 22.7% reduction in energy at no cost to the
make span of the workflow.

An Energy-Efficient Task Offloading (EETO) policy has
been developed to schedule and offload real-time IoT applica-
tions [11]. The policy makes use of Lyapunov optimization
technique to minimize the queuing of tasks and achieves
energy consumption reduction of about 23.79% as compared
to the current techniques. Similarly, a dynamic offloading
and resource scheduling policy is developed to reduce energy
consumption and shorten application completion time [34].
This policy dynamically optimizes the CPU clock frequency
and the wireless transmission power to achieve reduction in
the energy-efficiency cost (EEC) of the workflow.

The current research in the domain of energy aware schedul-
ing are workflow specific and cannot be used for other
computations in the scientific community. These scheduler do
not take into account the optimizations that can be made on
workflow, job and cluster level. The schedulers try to reduce
the inter-dependencies, queuing, increase cluster usage, etc.
A workflow can be executed in a wide number of ways on
large configurations of clusters. A need for a generic scheduler
arises that can exploit all the different policies to help reduce
the energy footprint of the workflow. This scheduler should
take into account all the combinations of cluster configuration

and workflow executions to make the optimal scheduling
decision.

III. REQUIREMENTS AND CHALLENGES FOR AN
ENERGY-AWARE SCHEDULER

In this section, the requirements for an energy-aware sched-
uler are presented, followed by a discussion what challenges
must be overcome to implement these requirements.

A. Energy-Aware Scheduler Requirements

The primary aim of the scheduler is to reduce the energy
consumption of workflow executions. To achieve this, the
following requirements are identified that need to be met:
R1 The scheduler shall attempt to reduce the energy used

for executing a job, workflow or set of workflows, re-
spectively;

R2 The proposed scheduler shall not vary the output of the
workflow;

R3 The scheduler shall have a set of pre-defined resource
(number of nodes, memory, storage) usage thresholds per
job, workflow or set of workflows;

R4 The proposed scheduler shall allow a user to override
predefined thresholds;

R5 The proposed scheduler shall lead to auditable perfor-
mance changes while saving energy;

R6 The proposed scheduler shall be able to handle multiple
workflows in parallel;

R7 The proposed scheduler shall be fault tolerant and handle
workflow failure gracefully;

R8 All data generated by the scheduler shall be logged for
debugging;

R9 The proposed scheduler shall allow export of data;
R10 The proposed scheduler shall be compatible across dif-

ferent platforms.

B. Challenges for the development of an Energy-Aware Sched-
uler

The following challenges were identified during the lit-
erature review that affect the development of the proposed
scheduler.

• A workflow management is a complex process. Work-
flow Management Systems perform a number tasks such
as executing, logging, pausing, resuming, etc. of work-
flows. These are independent tasks that handle different
aspects of the workflow management. The scheduler
needs to be able to understand the workings and execution
of the workflows. It shall then take decisions based on
all the factors.

• Multiple Workflow Management Systems (WMS) are
available. Different workflow management systems like
Apache Airavata, Kepler, Apache Airflow and Pegasus
have been developed with different use cases and features.
The scheduler can be developed to work with one of the
management systems or can work independently.

• Different parallel message passing interfaces. Depend-
ing on the workflow, a number of different message

95
Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 11:12:49 UTC from IEEE Xplore. Restrictions apply.

passing interfaces such as mpich, MPI, mpi4py are used
for inter node communication. The scheduler can be
developed to work with one of them or can work in-
dependently.

• Collection of accurate energy data. Energy consump-
tion data collected from the sensors are not very precise
due to sensor error margins and accessibility issues.

• Multiple workflows with different parameters. Work-
flows with varying parameters and structure makes it
hard to develop a generic scheduler that can take into
consideration all of these parameters and take decisions
based on them.

• Resource Contention. Different workflows can be sched-
uled on a pool of resources. This is common practise now
a days and can lead to resource contention that can affect
the energy cost of a workflow. Attempting to reduce the
energy of a workflow in such scenario is a complex task
depending on number of external and internal factors of
the workflow and the computing resources.

IV. ENERGY-AWARE SCHEDULING

The previous sections presented the requirements and chal-
lenges for an energy aware scheduler. In this section, a generic
high level design for an energy aware scheduler is presented.
The design follows and aims to meet all the user requirements
outlined in Section III.

Fig. 3. Energy Aware Scheduler

The high level working of the scheduler can be described as
shown in Figure 3. The design presented works independently
to generate new energy aware workflows and configure cluster
according to a set of policies. This new workflow can then be
executed using the existing Workflow Management Systems
(WMS). The design requires minimal installation for its setup
and working.

In response to the requirements set out in Section III, the
core working of the scheduler can be categorised into three
main components as shown in Figure 4. The scheduler can
understand the workflow, it’s execution, dependencies, the
computing environment, etc. and can configure the workflow
and the cluster in order to maximise the cluster utilization and
reduce the energy consumption. The scheduler analyzes the
workflow and develops an energy efficient solution using this
three part process.

Fig. 4. Detailed breakdown of the energy aware scheduler.

A set of predefined thresholds are provided to the scheduler
which relate to the user’s need and workflow characteristics.
A user configuration file can be defined which over-rides the
default thresholds. These functionalities are in response to R3
and R4. As per R9 and R10, the scheduler is developed in
a platform-independent universal programming language that
and is capable of generating logs files which can be exported
for further analysis.

The scheduler does not change the workflow or the data
used for computation. Consequently, the scheduler does not
vary the output of the workflow during multiple execution of
the same workflow as outlined in R2. Also, in response to
R7, the scheduler generates a new energy efficient workflow
that is executed using a WMS. This workflow is tested for
breaks or faults before submitting it for execution. The three
part process shown in Figure 4 is further discussed in this
section.

A. Cluster energy-aware scheduling (e.g. parallel workflows)

This section presents the optimization that the scheduler can
perform on the cluster to make it more energy efficient and
optimal for a particular workflow. These optimizations act as
policies for the scheduler and the scheduler makes decisions
based on one or more of these policies.

• Switching off the nodes that may not be used. The
scheduler analyzes the workflow and decides the maxi-
mum number of nodes the workflow might use based on
the maximum number of parallel jobs. The nodes that
are known to be idle during the whole execution of the
workflow, i.e. surplus computing resources, can be shut
down to save energy. In certain cases, when the node
is initially used and then idle for long time, it can be
dynamically turned off to save energy.

• Turning on new nodes if the available resources are
less than required. During times of peak computation, if
the available resources are insufficient then the scheduler
can dynamically power a node on. This can only be

96
Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 11:12:49 UTC from IEEE Xplore. Restrictions apply.

done when the performance increase compensates for the
increase in energy consumption (R5).

• Specifying the number of threads to be used on
each node. According to the complexity of the jobs
in a workflow, the scheduler can specify the number
of threads to use on certain nodes depending on the
memory requirements. Computationally expensive tasks
can benefit from more CPU and memory usage.

• Optimizing the CPU frequency in the nodes. Over-
volting is performed to increase the energy consump-
tion of the CPU in order to increase the computing
power of CPU. This affects the energy consumption and
performance of a node substantially. Computationally
intensive tasks can benefit from over-volting as long
as the performance increase is greater than the energy
consumption. Similarly, under-volting is performed when
less computationally intensive tasks such as data transfer,
unzipping, zipping, etc are to be executed.

• Changing network settings. There are many different
cluster setups used for high performance computing.
They vary from one huge supercomputer to multiple
small distributed computer networks across the globe.
The scheduler can exploit the network settings to further
improve the energy consumption of the whole cluster.
For example, during network booting of nodes, changing
the NFS block size can affect how fast the changes are
synced. For distributed computing systems, different set-
tings such as connection medium, Ethernet links, switch
configurations, etc. can be altered to optimize the cluster
for inter-communication of nodes.

• Turning off non essential background processes and
components on the nodes. The scheduler can turn of all
non essential processes and components on the node that
consume energy and do not contribute to the computation.
Background processes such as system logs, redundant
processes from closed apps, etc. can consume a lot of
energy and CPU memory usage. Components such as
empty USB ports, LEDs, HDMI, AUX, etc. can be turned
off to save energy consumption of a node.

B. Energy-Aware job scheduling

This section presents the optimization that the scheduler
can perform on individual jobs in a workflow based on their
characteristics such as pre-processing, data, network usage,
CPU load, post-processing, etc. to make the workflow execute
more efficiently.

• Scheduling bottleneck jobs first. The job priority deter-
mines which job gets queued before the others. If multiple
jobs have same priorities then all the jobs get queued
and are executed as the resources become available.
Normally all same level jobs in a workflow are given
same priority and this is an issue as one job could be a
bottleneck and releasing it early can be beneficial for the
overall execution of the workflow (R8). The scheduler
understands the DAG of the workflow and identifies the

bottlenecks. It can then assign higher priorities to the jobs
that may benefit from executing early.

• Targeting jobs at specific nodes. In a hybrid cluster
environment with a different mixture of OS’s, processor
architectures, memory allocations, etc. it is beneficial to
target jobs to specific nodes based on their complexity.
Data intensive jobs can benefit from non distributed
cluster setups. Similarly, distributed nodes with huge
memory and CPU power can be used to schedule CPU
and memory intensive jobs. The scheduler makes use of
different aspects of the tasks and can find the optimal
scheduling technique to reduce the overall energy con-
sumption of the computation.

• Prioritise based on job size. CPU intensive jobs are
often paired with high memory requirement. This might
not be the case always and the scheduler can identify
these discrepancies. It can then edit the requirements of
the jobs to executed them specifically on nodes that can
execute the jobs effectively and with less energy usage.

C. Energy-Aware workflow scheduling

A workflow has many specific configurations that are spe-
cific to itself and can be exploited for an overall decrease in
energy consumption and increase in performance. This sec-
tions presents the optimization that the scheduler can perform
based on the workflow specific aspects.

• Using local binaries on the nodes. Many workflows
require installation of workflow specific binaries that
help in execution of the tasks. These binaries are plat-
form dependent and different binaries are transferred to
nodes with different architecture as a part of workflow
execution. This substantially increases the data transfer
overhead as these binaries are transferred every time a job
is scheduled. The scheduler can analyze the workflow and
decide to locally install the binaries on the nodes before-
hand, thus saving lot of communication overhead (R8).
This leads to huge performance gain and subsequently
reduce energy usage.

• Changing the scheduling algorithm. Depending on the
complexity of the workflow and bottlenecks, different
scheduling algorithms such as round-robin and grasshop-
per can be used for effective scheduling.

• Multiple workflow execution. Multiple workflows can
be executed in tandem on a resource pool. This can lead
to huge queuing and resource contention as different jobs
compete for the available resources. The scheduler can
identify the independent and bottleneck jobs in multiple
workflows and execute them first for smooth flow of the
workflow. It can also intelligently queue jobs on nodes
so as to reduce the idle time of the nodes while waiting
for job dependency to be fulfilled (R6).

V. CONCLUSION AND FUTURE WORK

Software development for scientific workflow execution on
clusters has mainly focused on improving run-time perfor-

97
Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 11:12:49 UTC from IEEE Xplore. Restrictions apply.

mance. In this paper, we argue for an energy-aware scheduler
for scientific computing to address this shortcoming.

This paper proposes a scheduler that utilises cluster re-
sources in an energy efficient way for executing workflows.
Three different aspects of optimizing computation are dis-
cussed which provide a structure on which the scheduler is to
be developed. The scheduler makes use of different policies to
optimize the workflow execution. It takes into consideration
all the aspects of a workflow execution, from optimizing
the cluster, to scheduling jobs on specific nodes, to reducing
resource contention among multiple workflow executions.

In future work, the approach and design is to be formalised
and the scheduler implementation evaluated on a number
of real-world scientific workflows. Energy-Aware workflow
execution will be evaluated against normal workflow execution
and the performance of the scheduler demonstrated.

REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields et al., Workflows for
e-Science: Scientific Workflows for Grids, 1st ed. Springer, London:
Springer, December 2007, vol. 1.

[2] M. Warade, J.-G. Schneider, and K. Lee, “Fepac: A framework for eval-
uating parallel algorithms on cluster architectures,” in 2021 Australasian
Computer Science Week Multiconference, 2021, pp. 1–10.

[3] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[4] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services,” Nucleic acids research, vol. 34, no. suppl 2, pp. W729–W732,
2006.

[5] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
kepler system,” Concurrency and computation: Practice and experience,
vol. 18, no. 10, pp. 1039–1065, 2006.

[6] J. C. Sloan, T. M. Khoshgoftaar, and V. Raghav, “Assuring timeliness
in an e-science service-oriented architecture,” Computer, vol. 41, no. 8,
pp. 56–62, 2008.

[7] Q. Wu and V. V. Datla, “On performance modeling and prediction
in support of scientific workflow optimization,” in 2011 IEEE World
Congress on Services. IEEE, 2011, pp. 161–168.

[8] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar, “Provenance
trails in the wings/pegasus system,” Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, pp. 587–597, 2008.

[9] J. Li, Y. Fan, and M. Zhou, “Performance modeling and analysis of
workflow,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 34, no. 2, pp. 229–242, 2004.

[10] M. Warade, J.-G. Schneider, and K. Lee, “Measuring the energy and
performance of scientific workflows on low-power clusters,” Electronics,
vol. 11, no. 11, p. 1801, 2022.

[11] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Joint compu-
tation offloading and scheduling optimization of iot applications in fog
networks,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 4, pp. 3266–3278, 2020.

[12] S. Giampà, L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio, “A
data-aware scheduling strategy for executing large-scale distributed
workflows,” IEEE Access, vol. 9, pp. 47 354–47 364, 2021.

[13] T. Saillant, J.-C. Weill, and M. Mougeot, “Predicting job power con-
sumption based on rjms submission data in hpc systems,” in Interna-
tional Conference on High Performance Computing. Springer, 2020,
pp. 63–82.

[14] M. F. Cloutier, C. Paradis, and V. M. Weaver, “A raspberry pi cluster
instrumented for fine-grained power measurement,” Electronics, vol. 5,
no. 4, p. 61, 2016.

[15] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[16] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz,
C. Kesselman, A. C. Laity, T. A. Prince, G. Singh, and M.-H. Su,
“Montage: a grid-enabled engine for delivering custom science-grade
mosaics on demand,” in Optimizing Scientific Return for Astronomy
through Information Technologies, vol. 5493, 2004, pp. 221–232.

[17] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. A. Prince et al.,
“Montage: An astronomical image mosaicking toolkit,” Astrophysics
Source Code Library, pp. ascl–1010, 2010.

[18] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling, “Scientific workflow applications on amazon ec2,” in
2009 5th IEEE international conference on e-science workshops. IEEE,
2009, pp. 59–66.

[19] L. Clarke, S. Fairley, X. Zheng-Bradley, I. Streeter, E. Perry, E. Lowy,
A.-M. Tassé, and P. Flicek, “The international Genome sample resource
(IGSR): A worldwide collection of genome variation incorporating the
1000 Genomes Project data,” Nucleic Acids Research, vol. 45, no. D1,
pp. D854–D859, 09 2016.

[20] 1000 Genomes Project Consortium, “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, p. 68, 2015.

[21] W. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. Ritchie, A. Thormann,
P. Flicek, and F. Cunningham, “The ensembl variant effect predictor,”
Genome biology, vol. 17, no. 1, pp. 1–14, 2016.

[22] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman, A. A. Fernandes, and
G. Mehta, “Adaptive workflow processing and execution in pegasus,”
Concurrency and Computation: Practice and Experience, vol. 21, no. 16,
pp. 1965–1981, 2009.

[23] K. Lee, N. W. Paton, R. Sakellariou, and A. A. Fernandes, “Utility driven
adaptive workflow execution,” in 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. IEEE, 2009, pp.
220–227.

[24] K. Lee, N. W. Paton, R. Sakellariou, and A. Fernandes, “Utility
functions for adaptively executing concurrent workflows,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 6, pp. 646–666,
2011.

[25] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and
R. Sakellariou, “Energy-constrained provisioning for scientific workflow
ensembles,” in 2013 International Conference on Cloud and Green
Computing. IEEE, 2013, pp. 34–41.

[26] T. Thanavanich and P. Uthayopas, “Efficient energy aware task schedul-
ing for parallel workflow tasks on hybrids cloud environment,” in 2013
International Computer Science and Engineering Conference (ICSEC).
IEEE, 2013, pp. 37–42.

[27] J. Bader, L. Thamsen, S. Kulagina, J. Will, H. Meyerhenke, and O. Kao,
“Tarema: Adaptive resource allocation for scalable scientific workflows
in heterogeneous clusters,” in 2021 IEEE International Conference on
Big Data (Big Data). IEEE, 2021, pp. 65–75.

[28] T. M. Sardaraz Muhammad, “A hybrid algorithm for scheduling scien-
tific workflows in cloud computing,” IEEE Access, vol. 7, pp. 186 137–
186 146, 2019.

[29] Sardaraz and Tahir, “A parallel multi-objective genetic algorithm for
scheduling scientific workflows in cloud computing,” International Jour-
nal of Distributed Sensor Networks, vol. 16, no. 8, 2020.

[30] I. Pietri and R. Sakellariou, “Energy-aware workflow scheduling using
frequency scaling,” in Proceedings of 43rd International Conference on
Parallel Processing Workshops. IEEE, 2014, pp. 104–113.

[31] F. Juarez, J. Ejarque, and R. M. Badia, “Dynamic energy-aware schedul-
ing for parallel task-based application in cloud computing,” Future
Generation Computer Systems, vol. 78, pp. 257–271, 2018.

[32] Y. Qin, H. Wang, S. Yi, X. Li, and L. Zhai, “An energy-aware scheduling
algorithm for budget-constrained scientific workflows based on multi-
objective reinforcement learning,” The Journal of Supercomputing,
vol. 76, no. 1, pp. 455–480, 2020.

[33] E. N. Watanabe, P. P. Campos, K. R. Braghetto, and D. M. Batista, “En-
ergy saving algorithms for workflow scheduling in cloud computing,”
in 2014 Brazilian Symposium on Computer Networks and Distributed
Systems. IEEE, 2014, pp. 9–16.

[34] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2,
pp. 319–333, 2018.

98
Authorized licensed use limited to: Deakin University. Downloaded on August 28,2023 at 11:12:49 UTC from IEEE Xplore. Restrictions apply.

