
Towards Higher-Level Abstractions forQuantum Computing
Adrian Cobb

Deakin University,
Geelong, VIC
Australia

alcobb@deakin.edu.au

Jean-Guy Schneider
Deakin University,

Geelong, VIC
Australia

jeanguy.schneider@deakin.edu.au

Kevin Lee
Deakin University,

Geelong, VIC
Australia

kevin.lee@deakin.edu.au

ABSTRACT
Quantum Computing (QC) has emerged as a field of ever-increasing
activity as it promises to revolutionize computation and enable the
solution of computational problems that we (realistically) cannot
solve with Classical Computing to date. However, existing quantum
programming environments mostly require an in-depth understand-
ing of the basic QC building blocks, that is, quantum states, super-
position, entanglement and measurement as well as the changing
of quantum states using basic quantum gates. The present state of
quantum programming reminds us of how Classical Computing
was 60+ years ago when computing machines such as the ENIAC
required significant effort to program solely using very basic digital
building blocks. Over the decades, though, increasingly higher-level
abstractions have been crated on top of the basic building blocks of
Classical Computing and made computation much more accessi-
ble and wide-spread. In order to make Quantum Computing more
accessible, we argue that Software Engineering for QC needs to
embark on a similar journey and create abstractions that shield
developers from the basic QC building blocks as much as possible
so that they can focus their attention on solving problems and less
on how to manipulate quantum sates using quantum cirquits. Based
on our experience of developing a scaling quantum n-queens solver,
this paper aims to formulate recommendations for raising the level
of abstraction in Quantum Software Engineering.

KEYWORDS
Quantum Computing, Quantum Software Engineering, Program-
ming Abstractions

ACM Reference Format:
Adrian Cobb, Jean-Guy Schneider, and Kevin Lee. 2021. Towards Higher-
Level Abstractions for Quantum Computing. In Australasian Computer
Science Week Multiconference (ACSW ’22), February 1–5, 2021, Virtual. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Quantum computing forms part of the larger field of quantum in-
formation sciences [15] and has been conjectured as the next major

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSW ’22, February 14–18, 2022, Virtual
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

breakthrough in computing [20]. By harnessing the collective prop-
erties of quantum states, such as superposition, interference, and en-
tanglement, it is conjectured that a new class of problems intractable
on a classical computer suddenly becomes within reach [17].

The current state of Software Engineering tools for Quantum
Computing requires a different level of knowledge compared to
today’s Classical Computing architectures [21]. Classically, informa-
tion is stored in Bits that are represented logically by either a 0 or 1
and software development tools support levels of abstraction where
a developer does not need to individually program state changes
for each Bit. Fundamental to many Software Engineering tasks is
that inspecting the state of a Bit does not affect its state, something
we fundamentally take for granted during program inspection.

In Quantum Computing, Bits are replaced by Quantum Bits
(or qubits) that have a certain probability of being |0⟩ or |1⟩, re-
spectively [15]. The main task of a developer creating a quantum
program is to understand how qubits interact with quantum gates
through superposition and entanglement in order to create quan-
tum circuits [27]. In contrast to Classical Computing, inspecting the
“state” of a qubit (aka measurement of a qubit) destroys its coher-
ence and irrevocably disturbs the superposition state the qubit was
in [25]. It is currently essential that these concepts are understood
by a software engineer when creating quantum circuits.

Like their digital counterparts, quantum circuits encode the solu-
tion to a very specific problem. As an example, consider the quantum
circuit presented by Jha et al. [17] that computes all possible solu-
tions to the 4 Queens puzzle, that is, placing 4 queens on a 4-by-4
chess board so that no two queens can attack each other [2]. This
circuit has to be substantially modified to solve a Queens puzzle
for a different number 𝑛 of queens/sizes of chessboards.

In order to address the scalability issue of the 4-queens solver, we
opted for a quantum code generation approach: using techniques
from Classical Computing, we developed a generator that, taking
the number of queens/sizes of chessboards 𝑛 as input, produced
the QASM code [9] for the resulting quantum circuit that we then
could execute on existing quantum simulators. The lessons learnt
during the development of the generator not only enhanced our
understanding of the basic quantum technology building blocks,
but also highlighted the need for higher-level abstractions to make
quantum programming more accessible.

To give a concrete example: the quantum circuit presented by
Jha et al. [17] relies on 4 qubits being entangled into a |𝑊 ⟩4 state [6].
Such an entanglement, although not uncommon in quantum cir-
cuits, has to be explicitly constructed using a composition of quan-
tum logic gates (Hadamard, Toffoli, CNOT and Not gates [15] – see
Figure 12). As the solution requires 4 such |𝑊 ⟩4 states, the same
composition of quantum logic gates has to be repeated 4 times.
From a programming perspective, it would be much easier if there

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACSW ’22, February 14–18, 2022, Virtual Adrian Cobb, Jean-Guy Schneider, and Kevin Lee

was an abstraction that allowed a developer to simply specify the
need for a |𝑊 ⟩ 𝑛 state, especially as the generalization of a |𝑊 ⟩
state to 𝑛 entangled qubits is not straightforward.

Our main motivation is to investigate that as classical program-
ming has raised to a level where developers no longer need to
understand digital gates, the same level of abstraction should be
made available for quantum software development. We do this by
describing our experience from solving the 4 Queens puzzle with
quantum code, and discussing the fundamentals of Quantum Com-
puting at a level that software engineers may understand more
easily than a quantum physics level that most documentation is
written in. This paper investigates issues with creating quantum
programs by discussing challenges and limitations faced by new
developers to the area. Our findings may also lead themselves for
future work to help simplify quantum computing for software en-
gineers and integrate quantum Software Engineering into standard
Software Engineering practices.

The remainder of this paper is organized as follows: the funda-
mentals of Quantum computing technology for software engineers
is reviewed in Section 2. Section 3 discusses the breakdown of the
4-queens solutions and the development of scaling quantum code.
Section 4 introduces the idea of a scalable quantum code genera-
tor. Section 5 has some discussion on the topic of simplification of
quantum coding. Finally, Section 6 presents some conclusions and
future work.

2 QUANTUM COMPUTING TECHNOLOGY
Quantum Computing is the use of quantummechanical phenomena
such as superposition and entanglement to perform computations
[23]. The fundamentals of QC and how quantum gates use quantum
phenomena are described in Section 2.1. This includes a descrip-
tion of qubits and gates and how superposition and entanglement
are used to formulate outputs. In Section 2.3 the current state of
quantum computers and simulators and the limitations this has on
quantum software development is discussed.

2.1 Fundamentals
As a new way of computing, Quantum Computing was first concep-
tualised in the early 1980’s [3] as Feynman suggested that quantum
systems could not be represented by classical computers [11]. The
physical realisation of the idea did not occur until 1988 [16]. In 1997,
Shor described an algorithm for factoring integers in polynomial
time [28] which ignited massive interest in QC’s potential.

A Quantum Bit is the fundamental unit of information within
a quantum computer, similar to what a binary digit (Bit) is to a
classical system [27]. Through superposition, a qubit is a two-state
system and can be in the state of |0⟩ and |1⟩ simultaneously. Upon
measurement or observation, the state collapses into one state and
will only ever be observed as either |0⟩ or |1⟩ [19], respectively.

A software developer may not be concerned with the physics
of superposition. However, they need to understand a qubit in
superposition has an equal probability of being |0⟩ or |1⟩ when a
circuit is executed (or shot). Depending on the size of the output, a
circuit needs to execute thousands of shots to increase the chance
of all combinations being calculated [30].

Figure 1: the 2 qubit Bell State – the simplest example of
quantum entanglement on a circuit.

In QC, a shot is a user defined value that refers to how many
executions of a circuit are run before termination. Because the
measurement of a qubit in a superposition state is random, the
outcome is sometimes |0⟩, sometimes |1⟩. The measurement must
be repeated multiple times to determine the likelihood that a qubit
is in a particular state.1 Even though the quantum phenomena
of superposition and entanglement are more concerned with the
physical behaviour of qubits, Quantum software engineers will
need to develop their understanding in these phenomena and how
code is written to take advantage of these phenomena.

The physical makeup of a qubit should not be much of a concern
for writing code and can be represented in many ways just like a
digital bit. Where the magnetisation of a hard disk or voltage in a
wire can determine a 0 or 1 for a Bit, some of the ways a qubit can
represent |0⟩ and |1⟩ are through the spin of electrons [14] or the
polarisation of photons [10].

For example, a 3 qubit register can represent all 23 = 8 combina-
tions of possible values at once. Quantum gates are hard coded in
a quantum circuit to control the outputs for a desired result. This
makes it difficult for people who write classical software to develop
code for quantum computing as it requires a developer to code each
entanglement at an assembly language level.

Gates used in quantum circuits can be categorised into quantum,
classical, phase and non-unitary. The Hadamard (H) quantum gate
creates superposition and is the fundamental quantum gate for most
quantum algorithms.1 A more detailed introduction of quantum
gates is given in Section 2.2.

Figure 1 shows a simple example of quantum entanglement with
a circuit using IBM Qiskit.1 The x-axis represents the order of gates
in the circuit and is generally read from left to right. The y-axis
show how many qubits (two) are in this circuit followed by the
c2 line which is interface between the qubits and classical Bits. In
IBM’s composer red gates are the quantum gates, blue gates are
classical and grey are the non-unitary operators.

A H(adamard) gate on q0 is entangled with a CNOT gate on q1
and both qubits are measured to provide an output. The output
of this circuit is refereed to as the Bell state, which is an even
distribution of 2 outputs being |00⟩ and |11⟩, respectively.

A quantum software developer does not need to understand
how qubits are physically entangled. However, how gates exploit
entanglement to create quantum circuits that provide output should
be understood.
1https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary

https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary

Towards Higher-Level Abstractions for Quantum Computing ACSW ’22, February 14–18, 2022, Virtual

Quantum computing is analogous to when developers needed to
understand the behaviour of binary gates and how they can be com-
posed to solve computational problems. A higher level of abstraction
in Quantum Software Engineering is required to provide QC with
its ENIAC moment. ENIAC which was the first operational pro-
grammable computer was the transition between mechanical and
electromechanical calculators and computers. This development
allowed for digital computers to become commercially available [8].

In 2018, John Preskill described the current state of QC as the
Noisy Intermediate Scale Quantum computing (NISQ) era [26]. This
era is the intermediate step between theorising QC concepts and
developing hardware that is superior to the most advanced classical
computing technology. The NISQ era is concerned with experi-
menting through the development of small working examples and
simulations that will form the knowledge base of QC.

The biggest hurdle that has to be overcome is the large amounts
of noise and errors generated as more qubits are added to a quantum
computer. Quantum noise can effect circuits and produce results
that do not occur in simulation [22].

As quantum computers can only output sequences of binary
values (1 value per qubit) there will always be a hybrid relationship
with classical computing to process results. Measurement gates are
required in a quantum circuit to measure qubit states after a shot
and return the values to a classical computer.

While operational quantum technology is readily available to
the general public current simulators can still be used to learn
quantum Software Engineering. Researching the issues that will be
faced by software engineers wanting to learn quantum software
development will go some way for developing technology that can
be deployed on real world problems.

QC technology has the potential to speed up the discovery of
optimal solutions of NP-hard problems in exponential or quadratic
time [13, 28]. However, it is debated if QC will ever be able to solve
NP-hard problems in polynomial time [1, 24]. NP-hard problems
are those that can be found in cryptography, data mining, vehicle
routing, scheduling/planning, and configuration management. But
for now Classical Computing and its probabilistic nature is still
the best way for finding optimal solutions, even though not all
possibilities would be calculated in a feasible time.

2.2 Quantum Gates
In QC, a quantum logic gate (or simply quantum gate) is a basic
quantum circuit operating on a small number of qubits. Quantum
gates are the building blocks of quantum circuits similar to how
classical logic gates form the basis for conventional digital circuits.
Unlike many classical logic gates, quantum logic gates are reversible,
that is, the output of a logic gate can be use to restore the corre-
sponding input [15].

It is possible to perform classical computing using only reversible
gates. For example, the Toffoli gate (see below) can implement all
Boolean functions, often at the cost of having to use auxiliary
qubits. The Toffoli gate has a direct quantum equivalent, showing
that quantum circuits can perform all operations performed by
classical digital circuits.

Described below are some of the basic quantum gates that a
developer will need to understand to build quantum circuits and

are used throughout examples used in this paper. This list is not
exhaustive and an introduction of more complex gates has been
omitted due to space constraints.

The Hadamard (H) gate is the most basic of the quantum gates
that exploit quantum mechanics. It puts a qubit into superposition
with an equal probability of returning a |0⟩ or |1⟩. Exploiting this
ability is fundamental to most quantum algorithms1. This gate
ensures that both |0⟩ and |1⟩ can be tested over a number of shots.
Entangled with other H gates increases the combinations of outputs
that can be returned.

The NOT/CNOT gates are classic gates that are used within a
quantum circuit. The state of a qubit will be flipped from |0⟩ to
|1⟩ and vice versa. The controlled-NOT (CNOT) gate means that 2
qubits are entangled and the state of control qubit will change the
target qubit. Even though the control qubit acts as an input to the
target qubit its value continues along the circuit and can be further
used by other gates.

Toffoli (or CCNOT) gates are used extensively through the n-
queens solution. They are also known as the double controlled-NOT
gate (CCX) and have three inputs made of two control qubits and
one target. It only applies a NOT to the target when both controls
are in an excited state (|1⟩.) As Toffoli gates are universal they can
build systems that can perform Boolean functions.

To rotate a qubit state on the y axis by a given angle an R𝑦

gate is used. The R𝑦 gate changes the probability of measuring the
qubit as either 0 or 1. R𝑥 and R𝑧 gates do similar rotations for their
respective axes. These gates provide simple rotations and do not
introduce complex amplitudes.

To convert quantum output into a vector of readable, binary
sequences, Measurement gates are placed in a circuit on each
qubit. After each shot you get a sequence of ’0’ or ’1’ where each
0 and 1 represents the measurement of a specific qubit. These are
essentially the interface between quantum and classical computing
and the sequences can then be interpreted on a classical computer.

2.3 Quantum Simulators
To investigate how to create quantum software, we have famil-
iarised ourselves with quantum software simulators as they are
easily accessible and can run code that closely resemble quantum
circuits. The complexities of the issues with operational quantum
computers are outside the scope of this research.

Quantum software simulators differ from true quantum comput-
ers by simulating quantum phenomena on classical hardware. The
benefits of simulators is quantum code can be trialled on online
simulators or personal computers. However, simulators are limited
by the amount of RAM available and, therefore, only circuits for
solving “small” problems can be executed. This is because the value
of each qubit and gate is stored in a Hilbert space and the values
within a quantum computer are represented by the tensor product
of all the components’ Hilbert spaces [7]. As more qubits and quan-
tum gates are added, an exponentially increasing amount of RAM
is needed.

There are a number of different QC software simulators2 where
developers can build and test formulations on a small scale. Simu-
lators from IBM, Microsoft and Silq were trialed for our research

2https://quantiki.org/wiki/list-qc-simulators/

https://quantiki.org/wiki/list-qc-simulators/

ACSW ’22, February 14–18, 2022, Virtual Adrian Cobb, Jean-Guy Schneider, and Kevin Lee

Qubits 5 10 20 30 40 50
RAM 512B 16KB 16MB 16GB 16TB 16PB

Table 1: Quantum Simulation RAM Requirements for in-
creasing number of qubits.

to understand their capabilities. IBM’s Quantum Experience is the
most accessible and capable as it provides a downloadable soft-
ware package and access to an online portal to run larger quantum
circuits on their more powerful quantum simulators. Circuits and
results are also more easily visualised on the online portal.

IBM’s simulators with larger numbers of qubits have restric-
tions on the types of gates used and a 10,000 second time limit
on executions. Due to the properties of the Hilbert space in quan-
tum systems, adding qubits to a quantum simulator running on
classical hardware exponentially increases (16×2n) the memory
required [18]. Table 1 shows how much RAM is needed for the
simulation of circuits with certain numbers of qubits.

This does not mean that actual quantum computers will need
that much RAM, it is only a calculation for simulating on classical
hardware. These calculations explain why we could not run any-
thing greater than a 4x4 n-queens puzzle on one circuit as discussed
in Section 4. With these limitations we experimented with quan-
tum batch processing. This involved keeping the core “chessboard”
qubits and |𝑊 ⟩ states intact for each batch, then cycling through
each of the ancillary qubit checks. Keeping the number of qubits
low allowed us to process the quantum circcuit within the time
limit. Such an approach may not be universally applicable, though.

Microsoft Q# is available to download as an extension for MS
Studio Code and Python.3 The code is similar to C# and F# and
lets users experiment with quantum phenomena on a small scale.
Microsoft provides some libraries for experimentation. Although
the code provides higher-level abstractions compared to IBM’s
Quantum Assembly Language (QASM), a user still has to familiarise
themselves with qubits and entanglement. Microsoft also provide
online simulators through Azure Quantum but are only free for the
first hour of computing time.

Silq is a quantum programming language developed by ETH in
Zurich that is similar to Q#. It can either be accessed via MS Studio
Code or Silq’s VSCodium which is a modified version of VSCode.4
Their tool does simplify some coding compared to Q#, however, it
still requires the user to understand qubits and entanglement. No
simulator accessible online is available for Silq and hence all code
must be run from a local computer [4].

3 WRITING SCALABLE QUANTUM CODE
To investigate the current level of abstraction of quantum software
development, we investigated the quantum solution to the n-queens
problem as described by Jha et al. [17]. The n-queens problem was
chosen because its a well known classic backtracking coding ex-
ercise with many published solutions. Backtracking is useful for
finding optimal results for combinatorial optimization problems.

3https://azure.microsoft.com/en-us/resources/development-kit/quantum-
computing/
4https://silq.ethz.ch/

However, for large problems it is not feasible to test all combina-
tions [12]. QC theory suggests it could run all combinations in a
much shorter time frame. By expanding on Jha et al.’s code, we
developed a quantum code generator that scales the quantum code
for different values of n. In this section, we describe the 4 Queens
solver, how the code for the scaling generator was created, and the
lessons learned from developing the solution.

3.1 Problem Description
The n-queens puzzle places n chess queens on a n-by-n chessboard
so that no two queens threaten each other. This is a well known com-
puting problem that many Software Engineering students would
have solved during their studies. Backtracking or branch-and-bound
can be used to solve the problem classically, but to solve this prob-
lem with QC requires a different approach.

While many classical solutions have been developed, only a few
quantum solutions have been documented. Besides the solution
presented by Jha et al. [17], Torggler et al. [29] discuss a solution
on the physical level using atoms in an optical lattice altered by
lasers but is purely concerned with quantum mechanics.

Where classic methods step through each combination and crite-
ria, the quantum method requires the code to find all the answers
at once. Solving the n-queens puzzle with QC is about decreasing
the search space, exhibits how the correct answer will not be the
only output, and that quantum noise and incorrect answers will
need to be dealt with via classical means.

Jha et al.’s approach to the problem was to have one qubit for
each square on a chessboard and a number of ancillary qubits to
indicate if the necessary criteria checks passed or failed. The 3
criteria to satisfy for this approach:

• there is always one queen in each row;
• 2 or more queens are not in the same row;
• no 2 queens face each other diagonally.

The aim of the experiment was to take the existing solution and
generate the QASM code for an arbitrary value of n. On investiga-
tion Jha et al.’s 4 queens solution could not be scaled directly and
required a redesign of the |𝑊 ⟩ state. Once we had a scalable |𝑊 ⟩
state, the remainder of the solution worked as described by Jha et
al..

3.2 Solution Description
As the number of qubits are fixed for each quantum circuit, we
needed to determine the amount of qubits to be used in advance.
After this we can proceed how the circuit is entangled. The solution
can be broken down into 2 different sections, the chessboard and
ancillary qubits. The representation of the chessboard squares is
equal to 𝑛2. The number of ancillary qubits 𝑄𝐴 is calculated with
equation (1.)

𝑄𝐴 =
𝑛2

2
+ 𝑛

2
− 1 (1)

When 𝑛 = 4 there are 16 qubits for each square on the board
and 9 ancillary qubits are required. The first 4 qubits, therefore,
represent the first row of a 4x4 board and the pattern is repeated
with qubits 5 to 8, 9 to 12, and 13 to 16, respectively. The 9 ancillary

https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://silq.ethz.ch/

Towards Higher-Level Abstractions for Quantum Computing ACSW ’22, February 14–18, 2022, Virtual

qubits for 𝑛 = 4 can be broken down to 𝑛 − 1 = 3 for the column
check indicators and 𝑛2−𝑛

2 = 6 for the diagonal indicators.
Once the number of qubits has been determined for the circuit,

it is time to place the quantum gates that represent the queens and
perform the criteria checks. The representation of the queens use
an n qubit-|𝑊 ⟩ state.

A |𝑊 ⟩ state is an entangled quantum state of three or more
qubits which has a distribution of 1 qubit being in the excited state
of |1⟩ and the remainder in the ground state of |0⟩ [6]. Figure 2
shows the circuit for a singular |𝑊 ⟩4 state. An R𝑦 gate, 2 controlled
Hadamards, 3 controlled-NOT gates and a singular NOT gate create
the entanglement for the |𝑊 ⟩4 state. At the end there are the grey
measurement gates which detect the state of the qubit and map it
to a classical bit.

Figure 2: W4 Circuit and Sample Output Generated in IBM
Quantum Composer.

The output in the same figure shows the distribution of results
after the circuit has performed 8,192 shots. The 4 outcomes are the
only outputs ever returned by the circuit. The output of this circuit
can be used to represent a queen appearing on one square of a row
for one shot.

The |𝑊 ⟩4 state is then repeated for each group of 4 qubits (Figure
3) to get the possibility of every combination of 1 queen always
being in each row. That ensures there is never less than or more
than 4 queens on the board.Without using a |𝑊 ⟩ state the algorithm
would output every possible combination of 0 and 1; with 𝑛 = 4
that is 65,536 combinations. The |𝑊 ⟩ 4 State brings this down to a
manageable 256 combinations, making the algorithm better than
brute force.

Figure 3: Start of 4 Queens Circuit. Showing 4 x |𝑊 ⟩ states
and Ancillary qubit Groups.

Figure 4 shows the squares in the first column entangled with
q16 using controlled U gates to form part of the column check
criteria. The U gates placed like this will return a |0⟩ in q16 if there
are no or 2 or more queens in a column, and in turn a |1⟩ if there is
only one queen the whole column.

There is no need to check the nth column as the |𝑊 ⟩ state ensures
there is always 1 queen in each row and if the column criteria is
met then it is always true that the nth queen will be in the correct
position.

The final criteria to meet is that no 2 queens meet each other
diagonally. Figure 6 shows the example for 1 diagonal check en-
tangled with Toffoli gates to q19. The first qubit for the diagonal
indicators is a classic NOT gate (see Figure 3) meaning that they
change the ground state of |0⟩ to only ever equal |1⟩ at that point
of the circuit.

Toffoli gates return |0⟩ if the first two control inputs equal |1⟩.
Therefore, if there were a queen on squares 0 and 5 then the Toffoli
gate would change q19 to |0⟩ and if only |1⟩ were present q19 would
remain as |1⟩.

ACSW ’22, February 14–18, 2022, Virtual Adrian Cobb, Jean-Guy Schneider, and Kevin Lee

Figure 4: Example Column Check

Figure 5: Pseudo Code for Column Check

The diagonal fragments works because only 2 queens are ever
checked in a shot. Therefore, it can only ever fail once. When
combined with the |𝑊 ⟩ state there will never be a combination of
queens that would make it fail twice or more.

The design of this circuit will only ever output 𝑛𝑛 measurement
outcomes, which represent all the combinations of only one queen
appearing in each row in every position of that row. When the
circuit is run for 𝑛 = 4, we will possibly get 256 different outputs. If
we only set the number of shots to execute at around 256, due to the
random nature of qubits not every combinationwill have the chance
to be tested in the circuit. The limit of IBM Quantum Experience is
8,192 and this increases the possibility that each combination gets
run through more than once.

To find the sequences of 0’s and 1’s that are correct solutions,
each sequence needs to be read on a classical computer. The correct
sequences are those that have all nine ancillary bits in the “excited
state.”

QC output size is determined by the amount of qubits in a circuit.
If we have 25 qubits in a circuit then the sequence of 0’s and 1’s

Figure 6: Example Diagonal Check.

Figure 7: Pseudo Code for Diagonal Check.

returned is precisely 25. The order of the output matches the posi-
tion of the qubit. So q0 will be the first character in the sequence
and q25 will be the last.

Figure 8 shows an example of a correct and incorrect solution
found among the 256 outputs from the 𝑛-queens circuit. The first 16
characters represent the queens on the board and the final 9 show
whether each criteria check was successful or not.

In the correct solution, all ancillary Bits equal to 1 and as illus-
trated, we can see that the criteria has been met. For the incorrect
solution we can see the |𝑊 ⟩ states working by only having 4 queens
in the board and 1 on each row. However, there is a queen in po-
sition 2 and 6 in turn this causes qubits q18 and q22 to return a 0
value.

Good circuit design is critical to limit the amount of outputs
created and so the correct solutions can be found by classical means
more easily. As some of the gates used to create a |𝑊 ⟩ state can
cause an imbalance in values, it is important to understand how
the parameters are tuned to achieve an even distribution of outputs.
When there are finite amount of shots to run before termination it
is possible for some correct solutions to be completely missed.

Towards Higher-Level Abstractions for Quantum Computing ACSW ’22, February 14–18, 2022, Virtual

Figure 8: Example output showing a correct and incorrect
solution

4 QUANTUM CODE GENERATION
Section 3 described the process of creating scalable quantum so-
lutions from the point of view of the quantum code programmer.
In particular, it highlighted the extensive skills required from a
quantum code programmer. The programmer needs to know i) the
complete details of the problem they are trying to solve, ii) how to
write quantum code, iii) how to write solutions to their problem
in quantum code, and iv) depending on the use case, how to write
scalable quantum solutions. For non-quantum programming the
developer generally doesn’t have to worry about a lot of this de-
tail as there is a lot of tool support to generate code. A desirable
aim of software engineering for quantum computing should be to
raise the level of abstraction to enable more rapid quantum code
creation. One method of raising the level of abstraction to simplify
the Software Engineering process for Quantum programming is
through Automatic code generation using design patterns [5].

To be able to automatically generate quantum code a code gener-
ator needs to be created. This is a challenging problem, especially in
quantum computing, so the focus of this paper is to create a quan-
tum code generator for the n-queens problem as proof-of-content
that this is viable. Applying this approach more generally will re-
quire domain knowledge for each specific problem. Through the
development of a quantum n-queens solver this paper investigates
if there should be similar automatic code generation tools available
for all quantum computing problems.

Manuallywriting the code for each qubit and gate is time consum-
ing and as the number of qubits in a system increases the chances of
writing erroneous code also increases. Another issue with quantum
code is each problem is solved with its own particular fixed circuit.
Not only does the code need to change for each problem; even
scaling a circuit for a problem needs major changes. Raising the
level of abstraction from dealing with individual quantum gates
and the sheer size required to achieve quantum supremacy is an
important area of focus for the QC community.

The approach used in this paper was to create a Python program
that will generate quantum code compatible for IBM’s Qiskit toolkit
specifically for the n-Queens problem. This allows the user to enter
a value for n at the start, have the QASM code written to a file,

De f ine number o f queens
nQ = inpu t (' I n t e g e r g r e a t e r than 1 ')

Chessboard S i z e
nS = nQ ∗ ∗ 2

To t a l Qub i t s Requ i r ed
nQbs = i n t ((3 / 2) ∗nQ ∗ ∗ 2 + nQ/2 −1)

Diagona l A n c i l l a r i e s
daQbs = i n t (((nQ ∗ ∗ 2) −nQ) / 2)

Column A n c i l l a r i e s
co lQbs = nQbs − daQbs − nS

Bu i l d l i s t s o f comb ina t i on s
Hadamards r e q u i r e d f o r p r e p a r a t i o n o f W− s t a t e s
De f ine l e f t and r i g h t column edge squa r e s
whLst = squa r e s in r i g h t and l e f t columns

I n i t i a l i z e the a n c i l l a s r e q u i r e d f o r
d i a gona l checks
dcwLst = daQbs + whLst

C i r c u i t f o r pe r fo rming column check
us ing a n c i l l a r y q u b i t s
colQbsChk = co lQbs + co lumn_pos i t i on

Crea t e Tab l e f o r a l l d i a g ona l comb ina t i on s
and a s s i gn ed a n c i l l a r y qub i t
d i a g L s t = Q1 to Q2 p o s i t i o n s + daQbs

#Write Code to QASM F i l e
t o _ f i l e (' Nqueens .QASM ' , \
[whLst , dcwLst , colQbsChk , d i a g L s t])

Figure 9: Pseudocode for the n-Queens quantum code gen-
erator

execute the circuit then process and visualise the successful results.
The aim of this is to allow a user with knowledge of the n-Queens
problem to generate quantum code in the specific format to be
executed on IBM Qiskit compatible simulators and hardware.

Our experience with creating quantum code for the 4-Queens
problem, led the creation of a quantum code generator to solve
the puzzle for any value of n>2. This quantum code generator is
publicly available 5. Figure 9 illustrates pseudocode for the quantum
code generator.

To create this involved an understanding how the QASM code
for the 4 Queens problem was constructed and how it should look
for different values of n. Figures 10 and 11 illustrate the generated
n-queens quantum code for 4-queens and 5-queens respectively.

As with Classical Computing, the complexity of the computation
can be observed in terms of the resources it uses. For quantum

5https://www.qcse.net/n-queens-solver

https://www.qcse.net/n-queens-solver

ACSW ’22, February 14–18, 2022, Virtual Adrian Cobb, Jean-Guy Schneider, and Kevin Lee

Figure 10: Visualisation of a Generated 4-Queens solver Quantum Circuit

Figure 11: Visualisation of a Generated 5-Queens solver Quantum Circuit

computing code, this is generally measured in qubits. The total
number of qubits for a circuit to solve for or any value is represented
in the equation 2. As stated in Section 3, 𝑛2 are reserved for the
squares on the board, 𝑛 − 1 for the column criteria indicators and
the remainder 𝑛2−𝑛

2 for the diagonal criteria indicators.

𝑄𝑡 =
3
2
𝑛2 + 𝑛

2
− 1 (2)

The placement of the queens on the board requires a |𝑊 ⟩ state
that can scale to ensure the right number of queens and tomake sure
each is placed somewhere along 1 row only, therefore decreasing
the search space. Figure 12 are different configurations of |𝑊 ⟩ states.
On the very right is Jha’s |𝑊 ⟩ 4 state that works for n=4, however
this doesn’t easily scale for other values of n. There was more
success with the |𝑊 ⟩ state in IBM’s documentation 6 by adding
extra controlled Hadamards and CNOT gates for each increment of
n. Further improvements of this circuit can be made by balancing
the distribution of results.

The column checks increase linearly with n, all but the last
column gets checked. A controlled U gate is placed in each square
of a particular column then entangled with an ancillary qubit. The
diagonal checks are more complex with each combination where
2 queens could face each other diagonally needing to be checked.
There is a polynomial increase of Toffoli gates to use as n increases.

Figure 6 illustrates a group of diagonal checks for one ancillary.
These are the squares on the first row checking against those diag-
onals 1 square away. Figure 13 are the diagonal checks for those 2
6https://quantum-computing.ibm.com/composer/docs/iqx/example-circuits/w-state

Figure 12: Left |𝑊 ⟩4 State, Centre |𝑊 ⟩5 State, Right Jha’s |𝑊 ⟩4
State

squares away. This will check to see if there is a queen in squares 0
and 10, but it is not checking for square 5 which is in between.

Figure 13: Diagonal Check

When the code generator worked as expected for n=4 the focus
wasmoved onto trialling the 5 queens puzzle on both a PC and IBM’s
simulators. This is where limitations of Qiskit on both platforms
become obvious. Due to these limitations, the 5 queens solution
has to be performed in batches.

https://quantum-computing.ibm.com/composer/docs/iqx/example-circuits/w-state

Towards Higher-Level Abstractions for Quantum Computing ACSW ’22, February 14–18, 2022, Virtual

𝑛 Qubits Gates Diagonal Outputs Total Solutions
3 14 54 10 27 0
4 25 105 28 256 2
5 39 182 60 3,125 10
8 99 569 280 16,777,216 92
27 1,106 16,044 12,402 4.43 × 1038 2.349 × 1017

Table 2: N Queens Circuit Statistics.

Solving the 4x4 puzzle is trivial for Classical Computing but is
at the upper limits for current publicly available QC simulators.
Its important to note that adding qubits to a quantum simulator
running on classical hardware exponentially increases the memory
required [18]. The 4x4 puzzle requires 25 qubits to solve and requires
about 512MB RAM to simulate, whereas a 5x5 puzzle requires 39
qubits and approximately 8TB RAM to simulate, making it out of
reach of most researchers. When trying to run the 5 queens code
on the IBM simulator a a timeout error was received after 10,000
seconds.

As the probabilistic nature of quantum shots is random, through-
out the run of the generated batched circuits not all combinations
of the |𝑊 ⟩ state had the chance to be executed. For n=5 that is
3,125 and the limit of shots on IBM’s servers is 8,192. There are also
differences between the batches. Not all |𝑊 ⟩ state combinations
occur in each batch and the combinations observed in each batch
were also different. This means there was a decreased amount of
|𝑊 ⟩ state combinations that had managed to complete all ancillary
checks.

To ensure we were to observe all |𝑊 ⟩ state combinations, each
batch would need to be run multiple times and the observations
merged. Batch processing is not ideal, but it suggests that it could
be a process used when the limits of a quantum simulator cannot
process a circuit all at once. The classical computation costs would
be greater as it is needed to process results while it waits for the
results of each batch to run; but its possible to be able to calculate
the more complex parts of a problem much quicker with QC.

Table 2 shows the statistics for the QASM code for selected values
of n. The number of qubits and gates give an indication to how
the lines of code need to increase for different values of n and is
not just a case of reparametrisation of the a circuit. The diagonal
column represents every way 2 queens could meet and is equal to
the amount of Toffoli gates required. The outputs column shows the
total number of combinations that each circuit generates if given
enough “shots.” This is the output a classical computer will have to
sort through. Total solutions indicated the number correct solutions
available for that value.

The selected values were chosen to highlight quantum comput-
ing processes and outputs and the difficulties with simulating the
n-queens solution. n=3 was chosen because there is no correct solu-
tion but 27 output sequences will still be returned from the circuit.
n=4 because its the first problem attempted and it was the largest
circuit simulatable. n=5 is the next step up and where issues with
simulation occurred. n=8 as it highlights what is required to solve
the puzzle on a standard chessboard.

Thanks to the Q27 Project in 2016 7 which was a massive parallel
computation project that enumerated and counted all the valid
solutions of the 27-Queens Puzzle.8 We know how many total
solutions are possible for up to n=27. The project took over a year to
run to find all solutions and would be difficult to perform a quantum
simulation of this size because of the inconceivable amounts of RAM
required to produce results.

5 DISCUSSION
The current level of abstraction for writing quantum code takes us
back to the 1940s-50s where computers needed to be hardwired to
solve one specific task and changed again to scale or solve a com-
pletely different problem. Quantum programs now are essentially
hardwired for a specific problem and require changes to scale or
solve a different problem. When creating the quantum n-queens
code generator we came to the conclusion that the level of under-
standing required by a quantum software engineer is much more
complex than writing classical code.

As the number of qubits and gates required to solve a problem
increases it will become impractical for a developer to manually
write thousands of lines without error. Having a coding tool that
could generate the required gates and entanglements from higher-
level descriptions would provide a level of simplification that would
allow an engineer to write code more efficiently. For example a
developer should not have to create an evenly distributed |𝑊 ⟩ state
with qubits and entanglement from scratch every time. A higher
level quantum software development tool should deal with the
QASM in the background.

Debugging tools for quantum computers is an area for further
research. Due to the measurement issue it is difficult to debug a
quantum circuit. It is possible to to debug on a simulator. However,
if the problem is too big for a simulator more efficient simulators
and debugging tools and techniques will need to be developed.

A higher level quantum development tool will also be necessary
when the numbers of qubits in a computer increase to sizes that
would be too time consuming to type individually while simultane-
ously trying to determine a program’s outputs. Quantum program
debugging is also an area that is underdeveloped and still being
discussed. A higher level tool should provide some solutions for
debugging a circuit that is far too large for a quantum simulator to
inspect.

The n-queens solution could possibly be created with not so
many ancillary qubits needed to confirm a result. Decreasing the
search of correct solutions will be essential when dealing with
potentially quadrillions of outputs.

Batch processing of quantum programs should be considered
to process circuits which require more qubits than are available
on a quantum device. When creating a solution for the 5 queens
problem we found that IBM’s simulators were not able to process
the number of qubits and gates within their set time limit. We were
able to find some correct solutions by running the circuit in batches
and using classical means to concatenate the outputs. It is not ideal
to run in batches but it can overcome some limitations in quantum
hardware.

7https://github.com/preusser/q27.2016.TheQ27Project
8https://en.wikipedia.org/wiki/Eight_queens_puzzle#Counting_solutions

https://github.com/preusser/q27. 2016. The Q27 Project
https://en.wikipedia.org/wiki/Eight_queens_puzzle##Counting_solutions

ACSW ’22, February 14–18, 2022, Virtual Adrian Cobb, Jean-Guy Schneider, and Kevin Lee

6 CONCLUSIONS AND FUTUREWORK
Software Engineering for quantum computing requires a vastly
different approach to current classical Software Engineering. Us-
ing an existing solution developed for the 4 queens puzzle and its
generalised scaling technique. We built a quantum code generator
capable of writing and executing for values where n>2. During
the development of the code we were able to identify some of the
areas of quantum computing that need to be addressed for quantum
Software Engineering to be accessible by more people.

If quantum computing hardware achieves its potential power,
quantum Software Engineering cannot remain at the level of ab-
straction it is currently at. The quantum coding tools (IBM Qiskit,
Q# and Silq) we trialled in our research require an engineer to
code each qubit and its entanglements. As these tools require an
understanding of complex quantum concepts they could prohibit
the amount of people that can create quantum code and those that
are capable would need to spend a lot of time potentially coding
millions of individual qubits and gates.

For the foreseeable future there will be a need for quantum
simulators as getting access time to quantum computers will be
limited. Simulators are a great way to test out coding concepts
before scaling them to more qubits on a real quantum computer.

As we discovered trying to solve the relatively small 5 queens
puzzle on a simulator it would take 8TB RAM to solve on one circuit.
Because of the limitations of current quantum simulators extending
the number of qubits and gates mean that non-trivial problems
cannot be simulated. Quantum simulators will need to improve on
current capabilities for circuits to be tested more thoroughly.

When millions of qubits are required to solve a problem like
the much smaller 27 queens problem, even 272 qubits with gates
restricting outcomes will still output 4.43 × 1038 strings of data and
Classical Computing will need to sort through those to find correct
solutions.

Extending that logic to millions of qubits means efficient quan-
tum algorithm development will be essential. Also any imbalances
in the quantum code could see combinations not run, which may
hinder finding all correct solutions.

Even though currently QC is still in its infancy and not yet capa-
ble of out performing Classical Computing. Researching quantum
Software Engineering gaps and building tools and processes to
make the field accessible for more people should be of high impor-
tance. When the time comes for commercially available quantum
computers; having a well researched body of knowledge in place
will provide those utilising the new technology an advantage.

REFERENCES
[1] Scott Aaronson. 2008. The limits of quantum. Scientific American 298, 3 (2008),

62–69.
[2] Jordan Bell and Brett Stevens. 2009. A survey of known results and research

areas for n-queens. Discrete Mathematics 309, 1 (Jan. 2009), 1–31.
[3] Paul Benioff. 1980. The computer as a physical system: A microscopic quan-

tum mechanical Hamiltonian model of computers as represented by Turing
machines. Journal of Statistical Physics 22, 5 (1980), 563–591. https://doi.org/10.
1007/BF01011339

[4] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. [n. d.].
Silq: A high-level quantum language with safe uncomputation and intuitive
semantics. Association for Computing Machinery, 286–300.

[5] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and Patsy S. Yu. 1996.
Automatic code generation from design patterns. IBM Systems Journal 35, 2
(1996), 151–171.

[6] Adán Cabello. 2002. Bell’s theorem with and without inequalities for the three-
qubit Greenberger-Horne-Zeilinger and W states. Physical Review A 65 (March
2002), 032108. Issue 3. https://doi.org/10.1103/PhysRevA.65.032108

[7] Gabriele Carcassi, Lorenzo Maccone, and Christine A Aidala. 2021. Four Postu-
lates of Quantum Mechanics Are Three. Physical Review Letters 126, 11 (2021).

[8] James W. Cortada. 2006. The ENIAC’s influence on business computing, 1940s-
1950s. IEEE Annals of the History of Computing 28, 2 (2006), 26–28.

[9] Andrew W. Cross, Lev Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open
Quantum Assembly Language. arXiv: Quantum Physics (2017).

[10] Daniel Barbosa de Brito, José Cláudio Nascimento, and Rubens Viana Ramos. 2008.
Quantum Communication With Polarization-Encoded Qubit Using Quantum
Error Correction. IEEE Journal of Quantum Electronics 44, 2 (2008), 113–118.

[11] Richard P Feynman. 1981. Simulating physics with computers. International
Journal of Theoretical Physics 21 (1981), 474. Issue 6/7. https://doi.org/10.1007/
BF02650179

[12] Martin Grotschel and László Lovász. 1995. Combinatorial optimization. Handbook
of combinatorics 2, 1541–1597 (1995), 4.

[13] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing. Association for Computing Machinery, 212–219.

[14] Ronald Hanson, J. M. Elzerman, Laurens H. Willems van Beveren, Lieven M. K.
Vandersypen, and Leo P. Kouwenhoven. 2004. Electron spin qubits in quantum
dots. In IEDM Technical Digest. IEEE International Electron Devices Meeting. 533–
536.

[15] Jack D. Hidary. 2019. Quantum Computing: An Applied Approach. Springer.
[16] Kazuhiro Igeta and Yoshihisa Yamamoto. [n. d.]. Quantum mechanical computers

with single atom and photon fields. In International Conference on Quantum
Electronics (OSA Technical Digest), H. Yajima T. Inaba and T. Ikegami (Eds.).
Optical Society of America, TuI4. http://www.osapublishing.org/abstract.cfm?
URI=IQEC-1988-TuI4

[17] Rounak Jha, Debaiudh Das, Avinash Dash, Sandhya Jayaraman, Bikash K Behera,
and Prasanta K J arXiv preprint arXiv:.10221 Panigrahi. 2018. A novel quan-
tum N-Queens solver algorithm and its simulation and application to satellite
communication using IBM quantum experience. (2018).

[18] Tyson Jones, Anna Brown, Ian Bush, and Simon C. Benjamin. 2019. QuEST and
High Performance Simulation of Quantum Computers. Scientific Reports 9, 1
(2019), 10736. https://doi.org/10.1038/s41598-019-47174-9

[19] Jacob R Mandel. 2021. Quantum Computing: Resolving Myths, From Physics to
Metaphysics. Digital Commons Calpoly (Mar 2021).

[20] Dan C. Marinescu. 2005. The promise of quantum computing and quantum infor-
mation theory – quantum parallelism. In Proceedings of 19th IEEE International
Parallel and Distributed Processing Symposium. https://doi.org/10.1109/IPDPS.
2005.430

[21] David Matthews. 2021. How to get started in quantum computing. Nature 591,
7848 (2021), 166–167. https://www.nature.com/articles/d41586-021-00533-x

[22] Benjamin Nachman, Miroslav Urbanek, Wibe A. de Jong, and Christian W. Bauer.
2020. Unfolding quantum computer readout noise. npj Quantum Information 6, 1
(2020), 84. https://doi.org/10.1038/s41534-020-00309-7

[23] Engineering National Academies of Sciences and Medicine. 2019. Quantum
Computing: Progress and Prospects. The National Academies Press, Washington,
DC. 272 pages.

[24] Michael A. Nielsen and Isaac Chuang. 2002. Quantum computation and quantum
information. American Journal of Physics 70 (2002), 558.

[25] P. Pearle and A. Valentini. 2006. Quantum Mechanics: Generalizations. In
Encyclopedia of Mathematical Physics, Jean-Pierre Françoise, Gregory L. Naber,
and Tsou Sheung Tsun (Eds.). Academic Press, Oxford, 265–276.

[26] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (Aug 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[27] Benjamin Schumacher. 1995. Quantum coding. Physical Review A 51, 4 (1995),
2738–2747. https://doi.org/10.1103/PhysRevA.51.2738

[28] Peter W. Shor. 1997. Polynomial-Time Algorithms For Prime Factorization And
Discrete Logarithms On A Quantum Computer. SIAM J. Comput. 26, 5 (Oct 1997),
1484.

[29] Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang J Quantum
Lechner. 2019. A quantum n-queens solver. Quantum 3 (Jun 2019), 149.

[30] Ken X. Wei, Isaac Lauer, Srikanth. Srinivasan, Neereja Sundaresan, Douglas T.
McClure, David Toyli, David C. McKay, Jay M. Gambetta, and Sarah Sheldon.
2020. Verifying multipartite entangled Greenberger-Horne-Zeilinger states via
multiple quantum coherences. Physical Review A 101, 3 (2020).

https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1103/PhysRevA.65.032108
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
http://www.osapublishing.org/abstract.cfm?URI=IQEC-1988-TuI4
http://www.osapublishing.org/abstract.cfm?URI=IQEC-1988-TuI4
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1109/IPDPS.2005.430
https://doi.org/10.1109/IPDPS.2005.430
https://www.nature.com/articles/d41586-021-00533-x
https://doi.org/10.1038/s41534-020-00309-7
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.51.2738

	Abstract
	1 Introduction
	2 Quantum Computing Technology
	2.1 Fundamentals
	2.2 Quantum Gates
	2.3 Quantum Simulators

	3 Writing Scalable Quantum Code
	3.1 Problem Description
	3.2 Solution Description

	4 Quantum Code Generation
	5 Discussion
	6 Conclusions and Future Work
	References

