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Abstract. Assisted living homes aim to deploy tools to promote bet-
ter living of elderly population. One of such tools is assistive robotics
to perform tasks a human carer would normally be required to perform.
For assistive robots to perform activities without explicit programming,
a major requirement is learning and classifying activities while it ob-
serves a human carry out the activities. This work proposes a human
activity learning and classification system from features obtained using
3D RGB-D data. Different classifiers are explored in this approach and
the system is evaluated on a publicly available data set, showing promis-
ing results which is capable of improving assistive robots performance in
living environments.
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1 Introduction

Assistive robots deployed in living environments for applications such as elderly
care should learn tasks by observing human carers performing routine duties. To
achieve this goal, the assistive robots must be equipped with abilities to learn
activities. This requires extracting descriptive information of the activities and
classify them while they are performed by a human.

Learning human activities by an assistive robot can be classified under two
methods [1]; Independent Learning which learn an activity from scratch or learn-
ing by making use of transferred knowledge and information which is referred
to as Transfer Learning. Independent learning is a method whereby an assistive
robot learns to perform an activity independently without any prior knowledge
of the activity. For example, an assistive robot learning an activity such as cook-
ing (chopping vegetables) or opening a pill container without prior information
of how a person would perform the activity. This requires more time in learning
and more cost in-cured which are limitations of the method. On the other hand,
transfer learning methodology allows information acquired from prior experience
to assist in learning an activity [3].

In the context of this paper, an assistive robot can learn to perform an activity
from knowledge acquired as it observes a person perform similar activity. This
enables faster learning of activities and allows collaboration and adaptation of
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robots within living environments. Regardless of the method applied to learning
an activity, the availability of descriptive information affects the understanding
of an activity. Variations in information and understanding about an activity
performed by a person and a robot performing similar activity can be defined as
contained within a knowledge gap and transfer learning helps to bridge this gap.

Human activities are diverse in nature with imprecision, vagueness, ambi-
guity and uncertainty in information about the way activities are performed.
Thus, variabilities are encountered when an assistive robot tries to learn activ-
ities. This affect correct classification of human activities which is relevant in
improving the amount of knowledge that can be used by a robot in learning.
To capture imprecisions and uncertainties, fuzzy logic has proven to be a suit-
able method which allows incorporation of imprecisions and uncertainty expres-
siveness within information [3][4] can be applied to classify human activities.
Combining this method with transfer learning would improve assistive robots
learning human activities from observing while activities are performed. Other
learning techniques applied to learning/classifying human activities are limited
in their ability to handle vagueness, imprecision and uncertainties in activities
when considering acquiring knowledge that can be transferred across different
learners.

In this paper, a method for learning and classifying activities carried out by
humans in the context of assistive robotics are presented. Set of features repre-
senting daily activities are extracted from human activities and these features
are used as input to a classifier to find relevant structures within the features.
Classification of activities is done by exploiting different classification techniques;
a multiclass Support Vector Machine (SVM), K-Nearest Neighbour (K-NN) and
also, Fuzzy C-means (FCM) clustering technique. A cross-validation test is per-
formed on the trained classifier to measure their performance in predicting ac-
tivities. The aim of the proposed work presented in this paper is to build a
human activity learning and classification system that can be incorporated in
an assistive robot to improve human-robot interaction in living environments.

The structure of this paper is as follows: In Section 2, a review of related
work in this area is presented. Section 3 gives details of the method applied to
our approach for feature extraction and classification of activities. Initial results
are presented in Section 5. Section 6 presents conclusions and future work to be
undertaken.

2 Related Work

Learning and classification of human activities is often referred to as Human
Activity Recognition (HAR) [9][10]. One of the main objectives is to extract de-
scriptive information (i.e. features) from human activities to be able to distinctly
characterize and classify one activity from another. An integral component of
learning an activity is how information of the activity is obtained (i.e. obser-
vation). For human activities, information obtained using visual and non-visual
sensors makes it a lot easier to understand and learn activities as they are per-
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formed. Visual sensors such as RGB cameras can be used to obtain descriptive
information of an activity in 2D. However, this information is limited in effec-
tively characterizing an activity [11]. Additional depth information using RGB-D
sensors provide several advantages as they are better suited for observing human
activities to detect human pose used to build activity recognition systems.

To effectively characterize activities from information obtained using RGB-
D sensors, machine learning and reasoning methods have been applied by many
researchers [12][13][14]. These methods provide an understanding of how activ-
ities are learned and relationships between activities. However, there is some
uncertainty that exist in how one actor performing an activity would differ from
another actor performing similar activity. This hinders HAR systems from going
mainstream.

Information obtained from RGB-D sensors gives very important information
relevant for a robot to understand an activity. By exploring human pose detec-
tion using RGB-D sensors, activity recognition has seen more advancement in
recent times [15][16]. Using RGB-D sensors extracts 3D skeleton data from depth
images and body silhouette for feature generation. In [15], the RGB-D sensor is
used to generate human 3D skeleton model with matching of body parts linked
by its joints. They extract positions of individual joints from the skeleton in
a 3D form x, y, z. Authors in [17] use similar RGB-D sensor to obtain depth
silhouette of human activities from which body points information are extracted
for the activity recognition system. Another approach is shown in the work in
[18] where the RGB-D sensor is used to obtain orientation-based human repre-
sentation of each joint to the human centroid in 3D space. Raw data obtained
from these sensors have to be preprocessed. This process is carried out to reduce
redundancy in data for better representation of features of an activity.

Classification of human activities is carried out by extracting relevant fea-
tures from data obtained using RGB-D sensors. In our previous work a method
for activity recognition using RGB-D data is proposed [19]. The 3D joint posi-
tion information extracted from the sensor are transformed feature vectors by
applying K-means clustering to group key postures of an activity. The posture
features are used as input to a neural network for classification of the human
activities. Authors in [15] proposed a combination of multiple classifiers to form
a Dynamic Bayesian Mixture Model (DBMM) to characterize activities using
features obtained from distances between different parts of the body. Also, [20]
applied statistical covariance of 3D joints (Cov3DJ) as features to encode the
skeleton data of joint positions. Another approach seen in [21] used a sequence
of joint trajectories and applied wavelets to encode each temporal sequence of
joints into features.

3 Activity Features

In the proposed system, the process starts by obtaining RGB-D sensor informa-
tion from the performed activities. The architecture of the proposed system is
shown in Figure 1. Incoming data is obtained using a Kinect RGB-D sensor [22]
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Fig. 1: Architecture of proposed system.

Fig. 2: Frames of human activities performed in a living environment extracted
using an RGB-D sensor [23].

which tracks human joint movements and their transitions over time. Data pre-
processing and 3D skeleton-based feature selection are performed before before
they are applied to the classifier. More details are provided below.

3.1 Data Pre-processing

Data is obtained from 3D {x, y, z} skeleton detection of an actor performing an
activity. The skeleton of the actor is tracked using an RGB-D sensor for obtaining
positions of joints of the human body. The data representing an activity consist
of N number of frames (observations). An example frames of human activities
obtained using the RGB-D sensor which shows the tracked skeleton of human
joints is shown in Figure 2 [23]. The Kinect RGD-D sensor considers the skeleton
frame of reference from the sensor. However, for better representation of the
features of an activity, the frame of reference for all joints relative to the torso
centroid coordinates is considered.

For a skeleton frame consisting of joints j, the torso centroid coordinate is
represented as jt. The distance between the ith joint ji and jt is given as di = ji
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- jt. This distance is computed for all joints in each frames of an activity. After
computing distances, each frame n is represented by a vector containing joints
distances relative to the torso Vn = {d1, d2, d3, ..., di}.

3.2 3D Skeleton-Based Features

Feature extraction is an important aspect of any activity recognition system as
raw data obtained from activities do not provide enough information to allow
implementing an activity recognition system. The joint distance vectors obtained
from the pre-processing stage is converted into a set of useful features that model
human activities.

Features obtained in human activity recognition systems can be computed
using human skeleton joint position coordinates obtained from an RGB-D sen-
sor. The features are often based on raw joint positions and displacement-based
representations when considering temporal and spatial data. In this work, dis-
placement features from skeleton joint coordinates are used. We exclude temporal
information to make the system independent of speed of joint movements.

The features used in this work are similar to the ones proposed by [15]. These
features are obtained from joint displacement positions of a person performing
an activity.

The features are based on distance between both left and right hands, as
a lot of attention is drawn towards the pose of the hands when performing an
activity. Distance between hands and head, between hip and feet, shoulder and
feet, between the initial hand (for both hands and elbows) position of the first
frame and the next frames. These are computed using the Euclidean distance
equation given as δ(jb1,jb2).

δ(jb1,jb2) =
√

(jxb1 − jxb2)2 + (jyb1 − j
y
b2)2 + (jzb1 − jzb2)2 (1)

where the joints of a human skeleton are represented by jb for b= {face, hand,
shoulder, hip, feet and torso}. Each joint coordinate is represented in 3D {x, y,
z}. The Euclidean distance computed represent features f of an activity

To classify different activities, each activity is represented by a set of feature
vectors which characterize the activity as explained above and classification is
done on this feature vector. Therefore, an activity A is characterized by features
A = {f1, f2, f3,..., fm}, where fm is the mth feature vector for the activity.

3.3 Features Normalization

Features extracted from an activity can be heterogeneous and this could intro-
duce problems during classification if one of the selected features varied more
than another. To avoid this problem, data normalization is performed on the
selected activity features and the normalized features are used as input to train
and validate the classifiers. In order to normalize our features, the mean and
standard deviation of each feature vector is determined and we create new fea-
ture set that has zero-mean and a unit standard deviation using equation 2.
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This is done to remove distortion due to data heterogeneity before classification
is done with the normalized features.

Normalized feature =
fm − µm

sm
, (2)

where, sm is the standard deviation and µm is the mean of an activity feature
fm.

4 Activity Classification

The final stage in learning human activities is classification of activities using
the extracted feature vectors. This step aims to associate feature vectors to the
correct activity. As stated in Section 1 different classification techniques are
used in order to classify activities. Support Vector Machine (SVM), K-Nearest
Neighbour (K-NN) and also, Fuzzy C-means (FCM) are frequently used in many
classification problems and they are also exploited here. However, the FCM
algorithm is not commonly used but poses to be a good method for classifying
activities. In this algorithm, several features which characterize an object are
assigned to different classes with different membership grades. A benefit of using
this method for classification is that an initial knowledge of the feature vectors is
not required as membership functions are formed automatically by the method.

4.1 Support Vector Machine (SVM)

Considering the application of SVM in classifying activities we apply a method
used in [24] where a multi-class SVM is applied to activity recognition. The multi-
class SVM is an extension of the SVM from binary classifier. A ”one against-one”
approach which is based on the construction of several binary SVM classifiers
is stated to be the most suitable for practical use. This method is necessary for
M classes dataset, where M > 2. A training phase is carried out during which
the activity features are given as input to the multi-class SVM together with
activity labels. In the test phase, activity labels are obtained from the classifier.

4.2 K-Nearest Neighbour (K-NN)

The K-NN is among one of the simplest machine learning algorithms and is a
method of classifying objects based on closest training points in the feature space.
An object is assigned to a class most common among its k nearest neighbours
(where k is a positive integer) by a majority of votes of its neighbours. In most
cases, Euclidean distance is used as the metrics in finding the nearest neighbours
to an object. Applying this method in the proposed approach, in the training
phase, the activity feature vectors and activity labels of the training set are
stored. During the classification phase, the user defined constant k and unlabelled
activity feature vectors are classified by assigning a label most frequent among
the k training samples.
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Fig. 3: Parallel coordinate plot showing selected 9 features (f1− f9) of 13 activ-
ities (A1 - A13) obtained from the CAD-60 human activity dataset.

4.3 Fuzzy C-means Algorithm

Fuzzy c-means (FCM) algorithm is a method of clustering which allows one
piece of data to belong to two or more clusters. It is frequently used in pattern
recognition. Although, FCM is primarily used to cluster data, it could also be
employed as a classifier to provide a measure of belonging to each cluster. This
is an interesting approach for activity recognition as it will provide a measure of
membership to each of the identified classes. Readers are referred to [2] for more
details about FCM.

5 Experimental Results

The proposed approach described in this paper is evaluated using publicly avail-
able human activity dataset, CAD-60 data set [16]. This data comprises RGB-D
sequence of human activities acquired using an RGB-D sensor. 12 activities and
an addition of a random + still activity performed by four different participants
in five different locations namely; bathroom, bedroom, kitchen, living room and
office environments. The activities are listed as follows, with the labels corre-
sponding to the labels shown in the results diagram.

A1 Rinsing mouth,
A2 Brushing teeth,
A3 Wearing Lens,
A4 Talking on the Phone,
A5 Drinking water,
A6 Opening pill container,
A7 Cooking (chopping),
A8 Cooking (stirring),
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Fig. 4: Confusion matrix plot showing the performance of SVM classifier for clas-
sification of 13 activities (A1 - A13) obtained from the CAD-60 human activity
dataset.

A9 Talking on the couch,
A10 Relaxing on couch,
A11 Writing on board,
A12 Working on computer and
A13 Random + still activity.

The first step is data pre-processing which is performed on the data set to
obtain each joint coordinate relative to the torso coordinate. Features are then
calculated from the pre-processed data using method described in Section 3.2
and 9 features are obtained for each activity. These features are used as input
to the classifiers. In Figure 3, a parallel coordinate plot showing the 9 features
selected across a sample of observations of the different activities is shown. This
shows how the features corresponding to different activities are appear to be
similar, thus making the process of classification complicated.

We present the classification results for SVM and K-NN classifiers in terms
of Precision, Recall shown in Table 1 and confusion matrices presented in Figure
4 and 5 for the overall classification of the activities. For testing of the trained
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Fig. 5: Confusion matrix plot showing the performance of K-NN classifier for
classification of 13 activities (A1 - A13) obtained from the CAD-60 human ac-
tivity dataset.

classifier, we use a method of leave-one-out cross-validation strategy in which
70% of the data set is used in training the classifier and the rest 30% is used for
testing and validation of the classifier.

It can be observed from the results presented in Table 1 that Using the SVM
classifier, we obtain classification accuracy of 97.02% on the test activities data.
In Figure 4, a confusion matrix for SVM classification results is shown, where
the last column of the matrix (i.e. column 13) has the random activity which is a
neutral activity performed by the participants (activities that were not classified
with high confidence). This is included to show the confidence of our approach.
In Figure 5, similar result is also shown when we use a K-NN classifier. However,
with the K-NN classifier we attain an accuracy of 99.73% on the test activities
data. Note that the results presented are for classification on ’have seen’ test
activities data after the classifiers are trained.

For the classification using the FCM algorithm, 13 clusters are selected which
represent the number of activities in the data set to be classified. The metrics
usually applied to clustering results analysis are; Purity- which is an external
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Table 1: Result of SVM and K-NN classifier used in overall classification of 13 hu-
man activities obtained from the CAD-60 data set. The table presents precision
and recall scores for both classifiers when 9 features are used for classification
on ’have seen’ person.

Activity
SVM Classifier K-NN Classifier

Prec Rec Prec Rec

Rinsing mouth 97.03 88.39 99.58 98.55
Brushing Teeth 92.96 98.69 99.04 99.49
Wearing Lens 98.61 76.69 98.83 97.70
Talking on the phone 97.29 97.78 99.66 99.84
Drinking water 97.05 97.86 99.75 99.77
Opening pill container 97.60 92.47 99.46 99.90
Cooking (chopping) 99.75 96.40 100.0 99.80
Cooking (stirring) 91.03 96.97 99.42 99.53
Talking on the couch 100.0 99.95 100.0 100.0
Relaxing on couch 100.0 99.89 99.94 100.0
Writing on board 97.77 98.95 99.75 99.80
Working on computer 100.0 100.0 99.94 100.0
Random + still activity 96.50 97.89 99.86 99.86

Average 97.35 97.02 99.63 99.73

evaluation criterion for cluster quality, Normalized Mutual Information (NMI)-
and Rand Index (RI). The best result for FCM classification is obtained when
we apply a fuzziness coefficient φ = 1.4. Higher values of φ result in more overlap
between clusters and lower values result in less overlap between clusters which
could result in hard clustering. After clustering we obtain the results shown in
Table 2.

Table 2: Fuzzy C-means classification result of 13 human activities obtained from
the CAD-60 data set. The table shows the metrics used in evaluating the results
when 9 features are used for classification

Evaluation metric Score

Purity 0.55

Normalized Mutual Information (NMI) 0.52

Rand Index (RI) 0.30

6 Conclusions

In this work, classification methods for human activities using 9 features ex-
tracted from human activities data collected using an RGB-D sensor is presented.
This is part of an on-going research for transfer learning of human activities using
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assistive robots. It can be observed from Figure 3, the complexity of human ac-
tivities using the selected features. This requires proper selection of informative
features which provide relevant information that could be used in distinctly char-
acterizing activities. Thus, future work will focus on feature extraction methods
for human activities.

The purpose of classifying human activities is to be able to build a system
to distinctly characterize activities as they are performed in living environments
in order to have assistive robots learn to perform the activities.
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