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ABSTRACT
Assistive living has gained increased focus in recent years with the
increase in elderly population. �is has led to a desire for technical
solutions to reduce cost. Learning to perform human activities
of daily living through the use of assistive technology (especially
assistive robots) becomes more important in areas like elderly care.
�is paper proposes an approach to learning to perform human
activities using a method of activity recognition from information
obtained from an RGB-D sensor. Key features obtained from cluster-
ing and classi�cation of relevant aspects of an activity will be used
for learning. Existing approaches to activity recognition still have
limitations preventing them from going mainstream. �is is part of
a project directed towards transfer learning of human activities to
enhance human-robot interaction. For test and validation of our
method, the CAD-60 human activity data set is used.

CCS CONCEPTS
•Computing methodologies ! Activity recognition and un-
derstanding; Supervised learning by classi�cation; Feature selection;
Vision for robotics; Image representations;
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1 INTRODUCTION
With the increase in the ageing population in developed societies,
Ambient Assisted Living (AAL) technology helps to reduce cost of
elderly care. One means of achieving this is by deploying assistive
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robotics in an AAL environment. �is requires the robot to learn
tasks that human carers will perform as part of routine duties.

Human Activity Recognition (HAR) has gained a lot of inter-
est in recent years [9][10][11]. In applications involving human-
computer interactions (for example, gaming and assisted living
environments), HAR enables elaborate explanation/interpretation
of activities performed by humans. �is is key to understanding
how these activities are learned and how one experience relates to
another. �is improves the collaboration and adaptation of assistive
robots.

Prior to assistive robots performing a human activity, they need
to learn these activities to e�ectively perform them. �is requires
grouping human movements with their descriptive semantics. Ob-
serving activities as they are performed through the use of visual
or non-visual sensors makes it a lot easier to obtain information
of human activities in an environment[4][19][20]. It would be ex-
tremely hard to understand and interpret activities using a normal
visual sensor such as RGB cameras which provide 2D visual data
[6]. �ese sensors provide limited information for an activity per-
formed in a real world environment. However, recent development
in RGB-D sensors show that they are be�er devices for observing
human activities. �ese sensors provide a means of be�er observing
the world to detect human pose used to build activity recognition
systems [4][20]. �ey also provide a platform for exploiting depth
maps, body shape and skeleton joint detection of humans in 3D
space which are used in developing sophisticated recognition algo-
rithms.

�is paper proposes a supervised learning method to human ac-
tivities recognition by exploiting 3D human skeleton data provided
by an RGB-D sensor. �e proposed method shows the observation
of activities as they are performed and how features are extracted
a�er a clustering method is applied. �us, providing a means of
classifying di�erent activities. �e features extracted simplify the
process of learning the activities. �e work presented here is part
of a research project directed towards improving human-robot or
robot-robot interaction through Transfer Learning [12]. �is will
enable more adaptable robots learn to perform human activities of
daily living from transferred knowledge. For example, in Figure
1, two robots are shown performing an activity in which one acts
as the teacher while the other acts as a learner using transferred
knowledge gained from visual observation as the teacher robot
performs the activity. �e goal of our research is to develop a state



Figure 1: An example of robot-robot interaction through
learning from activity recognition.

of the art system which will have HAR and learning performance
comparable to that of humans.

�is paper is organized as follows: In section 2, a review of
related work in this area is presented. Section 3 gives details of
the method applied to our approach and some initial results are
presented in Section 4. Section 5 presents conclusions and future
work to be undertaken.

2 RELATEDWORK
For an assistive robot to perform an Activity of Daily Living (ADL),
an understanding of the activity is required which is the process
of learning. An important aspect in the process of learning is the
recognition of activities as they are performed by human actors.
�is creates the need for proper observation of the environment by
the robot to rightly interpret the activity.

HAR from information obtained from RGB-D sensors gives very
important information relevant for a robot to understand an activity.
By exploring human pose detection using RGB-D sensors, activity
recognition has seen more advancement in recent times [4][19].
Using RGB-D sensors extracts 3D skeleton data from depth images
and body silhoue�e for feature generation. In [4], the RGB-D sensor
is used to generate human 3D skeleton model with matching of
body parts linked by its joints. �ey extract positions of individual
joints from the skeleton in a 3D form x, y, z. Authors in [10] use
similar RGB-D sensor to obtain depth silhoue�e of human activities
from which body points information are extracted for the activity
recognition system. Another approach is shown in the work in [5]
where the RGB-D sensor is used to obtain orientation-based human
representation of each joint to the human centroid in 3D space.
Raw data obtained from these sensors have to be preprocessed.
�is process is carried out to reduce redundancy in data for be�er
representation of features of an activity.

HAR from video camera sensors can be broken down into two
aspects [18]; feature-based and model-based. Feature-based tech-
niques such as Histogram of Oriented Gradients (HOG)[21], sub-
space clustering based approach (SCAR)[25] are used to extract

features for recognizing human activity from data acquired using
sensors. Model-based approach has to do with construction of a
human model for recognition either as a 2D, 3D or skeletal model.
Authors in [1][23] construct models using kinematic approach that
extract features from frame sequences for human structure repre-
sentations. A combination of both feature-based and model-based
approaches is seen in [20] where a maximum entropy Markov
Model (MEMM) for classi�cation of activities using features from
skeleton tracking combined HOG. Authors in [3] also used neural
network technique to propose an end-to-end hierarchical recurrent
neural network (RNN) for representing skeleton based construction.
�ey make use of the raw positions of human joints as input to the
RNN.

All methods reported above are using feature extraction tech-
niques to obtain feature vectors which describe the activity per-
formed. HAR approaches which utilize human 3D joint positions
information extracted from RGB-D sensors transform joint posi-
tions of individual frames into column vectors. A matrix is then
formed to encode the sequence of frames at speci�c time inter-
vals. 14 features obtained from distances between di�erent body
parts are used to characterize 12 activities[4]. �is was used with
a combination of multiple classi�ers to form a Dynamic Bayesian
Mixture Model (DBMM). Similarly, [8] applied statistical covariance
of 3D joints (Cov3DJ) as features to encode the skeleton data of
raw joint positions. Another approach seen in [24] used a sequence
of joint trajectories and applied wavelets to encode each temporal
sequence of joints into features. Since not all joints of a person
provide substantial information for interpreting an activity per-
formed, di�erent methods are proposed to select key joints which
are more descriptive [2][7][14][16] and they will be investigated
for an optimal method to be used in this research.

In the next section, the proposed methodology for feature extrac-
tion and activity recognition from raw joint positions of skeleton
data obtained from an RGB-D sensor will be explained.

3 ACTIVITY RECOGNITION SYSTEM
To recognize activities from RGB-D sensors, the �rst stage is to
recognize skeleton raw joint positions. �is is done by obtaining
recorded frames of annotated data for activities performed by a
human actor. �e data captured includes a hierarchical nature of
activities, human skeletal features and their transitions over time.
�e system can be set up in a living environment. An example
of RGB and depth image frame extracted from an RGB-D sensor
is shown in Figure 2. Once the raw joints positions information
is obtained, important features from this data must be extracted
before they are classi�ed into di�erent activities. �e proposed
system architecture is shown in Figure 3. �e following key steps
are identi�ed;

• Posture feature extraction: Posture feature vectors repre-
senting key human poses that describe an activity are ex-
tracted by obtaining centroids of clusters using K-means
clustering technique.

• Activity classi�cation: Classi�cation of activities from the
extracted posture features.

Details of each step is brie�y explained in the following sections.
2



Figure 2: Frame of RGB and Depth image showing tracked human skeleton.

Figure 3: Overall system architecture of proposed system.

Figure 4: Steps to activity recognition in the proposed method.

3.1 Posture Feature Extraction
Posture feature extraction is a key step in our system for recognizing
activities. Features obtained in activity recognition systems can be
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computed using joint position coordinates extracted from RGB-D
sensor skeleton data. �is approach is one of the simplest employed
by researchers. Two methods can be applied, these are based on
raw joint positions and displacement-based representations- when
considering temporal and spatial data.

�e proposed system adopts a method which exploits displace-
ment features from the skeleton joint coordinates. However, tempo-
ral information will be excluded to make the system independent
of speed of movement. �is method was introduced by [2]. For
each skeleton frame, a vector FN is used to represent the posture
for joints ji in 3D where N is the frame (or observation) number
for an activity as shown in Figure 4. �e Kinect RGB-D sensor con-
siders the skeleton frame of reference to be the sensor. However,
in order to compensate the position of the skeleton, the frame of
reference will be considered for all joints relative to the torso joint
coordinates.

Consider a skeleton which has i joints with jx representing the
torso coordinates. �e distance vector di between the ith joint and
the torso (reference) is given by:

di = ji � jx (1)
A�er computing the distance di for all the joints in a frame of an
activity, a vector V representing the set of joints position distance
relative to the torso is obtained. Each vectorV represents a posture
for a skeleton frame. A set of VN vectors for all frames obtained
represent an activity. �is process is illustrated in Figure 4.

VN = (d1,d2,d3, ...,di ) (2)
�e proposed approach applies K-means clustering technique

for selection of key human pose that represent an activity thereby
reducing the complexity in large activity data sets. �is technique is
used for representation of an activity by a subset of poses, without
having to use all observations. VN vectors representing frames of
an activity are grouped inK clusters based on the squared Euclidean
distance as a metric.

For an activity consisting ofVN vectors, K clusters are de�ned to
represent key postures for the activity. A cluster CK is a grouping
of closely related joints positions component (joint coordinates)
within frames of the activity. A�er computing, an output of K
clusters [C1,C2,C3, ...,CK ] are obtained. Each cluster is a vector
containing centroids for all joints that de�ne a key posture within
an activity. Once the clusters are formed, they are sorted out fol-
lowing the order the cluster elements occur during the activity.
�e clustering algorithm provides the ID of the cluster which an
observation within the activity belongs. �e sequence of the cluster
vectors obtained represent the sequence of observations that consti-
tute the performed activity. �e centroids of each cluster represent
key postures which are the most important features of an activity.
�ese features form the activity features vector A.

A = [C1,C2,C3, ...,CK ] (3)
For example, considering an activity represented with 10 observa-
tions and 3 clusters, one of the outputs a�er applying K �means
clustering would be a sequence of cluster IDs representing the activ-
ity: [2, 2, 1, 1, 1, 1, 3, 3, 3, 1], this means the �rst two observations are
within cluster 2, the third - sixth observation in cluster 1, seventh -

Figure 5: Arti�cial Neural Network classi�cation structure.

Figure 7: Confusionmatrix showing the performance of our
system for 6 activities.

ninth observation in cluster 3 and the tenth observation in cluster 1.
�erefore, the activity features vector will be A = [C2,C1,C3,C1].

One of the challenge of using K-means clustering algorithm
in the proposed method is obtaining the optimal number of clus-
ters that can e�ectively represent the posture features of an ac-
tivity. Considering that, we use di�erent number of clusters CK
for K = (5, 10, 15, 20, 25, 30) and compare the results. �e result
is evaluated by minimizing the error Z which is the sum of the
deviations between the centroids of the clusters and the actual joint
positions through the sequence of frames for an activity.

Z =
n’
i=1

(Ck,n � �i,n ) (4)

where i is the ith joint, Ck,n is the centroid of the cluster k at the
nth observation/frame and �i,n is the ith joint at n.
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Figure 6: Selected frames of human actor performing activities in a living environment from CAD-60 dataset.

3.2 Activity Classi�cation
Classi�cation of the activity feature vector is computed to associate
each extracted feature vector with the correct activity performed.
To achieve the task of human activity classi�cation, machine learn-
ing classi�cation algorithms may be applied. One of such algorithm
is an Arti�cial Neural Network (ANN) trained classi�er.

�e proposed system employs an ANN algorithm consisting of
a hidden layer for classi�cation of human activities. Details of the
ANN algorithm for classi�cation which is adopted in this work can
be found in [15]. In training the classi�er, feature vectors obtained
from clustering which describe a performed activity are passed
as inputs and the activity labels as targeted outputs of the ANN.
An iterative learning process which is a key feature of ANN’s is
performed during which the weights of all neurons are adjusted to
predict the correct activity label from input activity feature vectors.
�e structure of the ANN classi�cation is given in Figure 5.

�e input to the hidden layer neurons is the sum of the extracted
activity feature vectors A and weightswi passed through an acti-
vation function. For the initial iteration, weights are selected at
random and subsequently, they are modi�ed through successive
iterations during training of the network based on the error propa-
gated from each iteration. �e error is the di�erence between the
actual output label for the activity and the predicted value from
each iteration and is calculated for each iteration.

4 EXPERIMENTAL RESULTS AND
DISCUSSION

�e proposed method of learning from activity recognition is tested
on a well known human activity data set, CAD-60 data set [22]. �e
data had been extracted using a Microso� Kinect RGB-D sensor
[13]. It contains RGB frames as well as depth for sequence of human
activities performed.

�e data is collected at a frame rate of 15fps which is o�ered by
the sensor and comprises of 12 activities performed by four people.
However, for testing the proposed system, 6 activities out of 12
activities are selected which are;

(1) Brushing teeth
(2) Cooking-chopping
(3) Cooking-stirring
(4) Open pill container
(5) Talk on phone
(6) Write on board

�e activities are selected based on the type of application of the
proposed system for learning using an assistive robot capable of
performing these activities. �erefore, only activities which require
more participation of the arms when performed are chosen for tests.
Selected frames for these activities are shown in Figure 6.

For posture feature extraction, the joint positions are extracted
following the process as described in Section 3.1. However, in
computing the optimal number of clusters which best represent
activity feature vectors di�erent number of clusters ranging from
5 to 30 are tested. �e best results are obtained using 25 and 30
clusters. To illustrate this, a plot of cluster centroids and joint
positions through a sequence of brushing teeth activity for one joint
component (Right hand x-coordinate) is presented in Figure 8. �e
joint position is particularly selected because it is one of the most
signi�cant components in performing the activity.

A�er clustering, the activity features vectors are associated with
their corresponding activity through a training process using an
ANN classi�cation algorithm with 10 hidden neurons. For evalua-
tion of our classi�er, we adopt a cross validation method of testing
using a new person data which was not used in training the classi-
�er. Test data from a new person consisting of 1416 observations of
di�erent activities is introduced to the trained network and results
obtained achieve a recognition accuracy of 85.3% as shown in the
confusion matrix plot of Figure 7. �e confusion matrix shows the
number/percentages of true positives, true negatives, false positives
and false negatives of observations from the new person test data
set. �e axes represent the 6 activities chosen for this test.

A�er training and validation of the classi�er using the extracted
activity features vector, each frame of a new person test data is
classi�ed to the closest posture feature within the activity features
vector. �e features vector which represent centroids of closely
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Figure 8: Result of di�erent number of clusters in an activity for one of the key joints in performing an activity of brushing
teeth from CAD-60 dataset.

related joint components for a pose and therefore an input frame
vector of joints positions can be associated to a corresponding
feature vector for the activity. �e system does not have to wait
for a complete sequence of a new person activity before classifying
the activity performed. Considering that, the proposed system
should be capable of ful�lling real-time performance which will be
explored in subsequent research work.

5 CONCLUSION AND FUTUREWORK
�e work in this paper presented a method of learning human ac-
tivities via computing activity features vector by clustering raw
joint positions extracted from human skeleton representation from
an RGB-D sensor. �e method can be applied to a human assistive
robot which would be capable of performing these activities when-
ever the activity is detected. �e robot can perform the activity
via coordinate mapping of its joints to the human skeleton joints.
However, this is beyond the scope of this paper.
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�e classi�cation of activities result show that some observations
from the test data are classi�ed wrongly. �is could be as a result
of a feature vector representing a particular pose in the activity
similar to that of another activity. �erefore, part of the future
work is to investigate the degree of membership to which a feature
vector belongs to di�erent activities in order to distinctly classify
the activity using more sophisticated computational intelligence
method.

Another aspect not considered in this work is temporal infor-
mation of performed human activities which could be very useful
in di�erentiating similar joint coordinates position of di�ering ac-
tivities. Also, in selection of the best amount of clusters K given a
speci�c activity, other approaches could be explored for example
Bayesian Information Criterion (BIC) [17] as a way to score and
select an optimal value for K. �is will be considered in further
research.

�is method can be used in assisted living/elderly care to have
assistive robots used in performing most ADLs for elderly or people
incapable of performing activities within a living environment
e�ectively. �e results show a very promising outcome in the area
of assistive robots’ coexistence in human living environments.
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Stéphane Aulagnier. 1997. Arti�cial neural networks as a classi�cation method
in the behavioural sciences. Behavioural processes 40, 1 (1997), 35–43.

[16] Miguel Reyes, Gabriel Domı́nguez, and Sergio Escalera. 2011. Featureweighting
in dynamic timewarping for gesture recognition in depth data. In Computer
Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE,
1182–1188.

[17] Gideon Schwarz. 1978. Estimating the Dimension of a Model. �e Annals of
Statistics 6, 2 (1978), 461–464.

[18] T Subetha and S Chitrakala. 2016. A Survey on human activity recognition
from videos. In 2016 International Conference on Information Communication and
Embedded Systems (ICICES). IEEE, 1–7.

[19] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. 2011. Human
Activity Detection from RGBD Images. In Proceedings of the 16th AAAI Conference
on Plan, Activity, and Intent Recognition (AAAIWS’11-16). AAAI Press, 47–55.

[20] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. 2012. Unstruc-
tured human activity detection from RGBD images. In 2012 IEEE International
Conference on Robotics and Automation. IEEE, 842–849.

[21] Sabanadesan Umakanthan, Simon Denman, Clinton Fookes, and Sridha Srid-
haran. 2014. Multiple instance dictionary learning for activity representation.
In 2014 22nd International Conference on Pa�ern Recognition (ICPR). IEEE, 1377–
1382.

[22] Cornell University. 2009. Cornell activity datasets CAD-60. h�p://pr.cs.cornell.
edu/humanactivities/data.php. (2009). Accessed: 2017-02-28.

[23] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. 2014. Human Action
Recognition by Representing 3D Skeletons As Points in a Lie Group. In Pro-
ceedings of the 2014 IEEE Conference on Computer Vision and Pa�ern Recognition
(CVPR’14). IEEE Computer Society, Washington, DC, USA, 588–595.

[24] Ping Wei, Nanning Zheng, Yibiao Zhao, and Song-Chun Zhu. 2013. Concurrent
action detectionwith structural prediction. In Proceedings of the IEEE International
Conference on Computer Vision. IEEE, 3136–3143.

[25] Huiquan Zhang and Osamu Yoshie. 2012. Improving human activity recognition
using subspace clustering. In Machine Learning and Cybernetics (ICMLC), 2012
International Conference on, Vol. 3. IEEE, 1058–1063.

7

View publication statsView publication stats


