An Infrastructure for Adaptive Systems Development

Kevin Lee, Norman W. Paton, Alvaro A. A. Fernandes, Rizos Sakellariou
School of Computer Science, University of Manchester
Oxford Road, Manchester, M13 9PL, U.K.
{klee, rizos, norm, alvaro}@cs.man.ac.uk

Jim Smith, Paul Watson
School of Computing Science, Newcastle University
Claremont Road, Newcastle upon Tyne, NE1 7RU, U.K.
{Jim.Smith, Paul.Watson}@ncl.ac.uk

Objectives
- Create an infrastructure to support the Systematic Development of Adaptive Systems
- Ease the development of adaptive systems.
- Support the development of better adaptive systems
- Investigate the use of the infrastructure in a number of different domains
- Use the infrastructure to improve the general understanding of adaptive systems

Foundation
- Many systems nowadays face such complex and varying demands that a static configuration is very likely to be wasteful, through over-provisioning of resources.
- Building adaptive systems is hard, and has often been done in an ad-hoc way for a specific purpose.
- The inevitably brittle result from such an approach gives strong motivation for seeking more generic ways to build such systems.
- To this end, adaptive systems are often seen in the Autonomic Systems Community as functionally decomposable into the components:
 - Monitor
 - Analyse
 - Plan
 - Execute

Methodology
- Implementation of MAPE as loosely coupled publish-subscribe components to allow flexible composition of adaptive systems
- Definition of managed element interfaces for Monitoring and Execution
- Existing technologies can contribute:
 - Monitoring: Distributed Monitoring Packages, Log parsing, Event streams
 - Analysis: Stream processing, Constraint Satisfaction, Composite Temporal Events
 - Planning: Automated planning, Scheduling
 - Execution: Deployment protocols
- Using high-level declarative descriptions of adaptive behaviour to enable automated generation of the adaptive infrastructure

Adaptive Infrastructure

Case Studies

Distributed Query Processing

- Description: DQP provides many opportunities where adaptation could be beneficial including dealing with load imbalance and bottlenecks. Adaptations include swapping operators and increasing operator parallelism.

- Description: Commercial workflows often run in the context of Service Level Agreements (SLAs), detailing non-functional requirements. Dynamic resource management at multiple levels can benefit both provider and user.

- Description: Directed Acyclic Graphs (DAGs) are often used to organise long-running and CPU intensive computation for execution on distributed clusters. Dynamically adapting to changes in resource availability can reduce the overall execution time.