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Abstract—The emerging Cloud of Things (CoT) paradigm
promises to meet the diverse requirements of many real-world
applications, which previously could not be fulfilled by either
Cloud Computing or Internet of Things (IoT). Trading CoT
resources is a challenging aspect, particularly when managing
Quality of Service (QoS) as resource providers and application
developers have different priorities. This paper focuses on the
challenge of supporting QoS when trading CoT resources and
performing resource allocation. The contributions of this paper
are 1) the problem of managing QoS while trading CoT resources
is investigated as an optimisation problem 2) a QoS model is
proposed to solve the problem by optimising five different QoS
objectives 3) experimental evaluation of the proposed model using
three optimisation algorithms. The evaluation results show the ef-
ficiency and dynamism of the proposed model in optimising CoT
resource allocation based on diverse QoS objectives including
resource cost, energy consumption, response time, fault tolerance
and resource coverage.

Index Terms—Cloud Computing, Internet of Things, Cloud of
Things, QoS, Trading, Optimisation, Resource Allocation

I. INTRODUCTION

CLOUD Computing transforms computing resources into
a modern utility. However, the physical scope of Cloud

Computing is limited because it is focused on data-centres and
does not interact with the environment. IoT aims to intercon-
nect heterogeneous things that can interact with each other and
the surroundings. The interaction of Cloud Computing and IoT
overcomes the limited reach-ability of Cloud Computing and
limited computational capabilities of IoT. A new computing
paradigm called The Cloud of Things (CoT)[1], [2] extends
the limited scope of Cloud Computing and provides IoT with
virtually unlimited resources[3].

Despite the keen interest in integrating Cloud Computing
and IoT, there are still many open challenges [4]. One of
these is in supporting Quality of Service (QoS) for CoT
applications. All CoT applications focus on particular QoS
attributes, either explicitly or implicitly in the application
aims. For example, latency-sensitive applications (e.g. military,
emergency services) benefit from the larger number of IoT
sensing nodes. Less time-sensitive applications (e.g. market-
ing, planning) utilise the scalability and reliability of the Cloud
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to process big data generated from distributed IoT resources
and make decisions accordingly. Supporting QoS for these
applications means enabling these attributes to be prioritised.

Supporting QoS in CoT applications is particularly chal-
lenging in scenarios where there are many resource providers
and consumers such as in smart cities. Using market-based
mechanisms to commodify resources is an approach used in
similar large-scale computing infrastructures such as Grids and
federated Clouds. The commoditisation of CoT deployments
will prevent the slow down in the rate of IoT adoption [5]
caused by the considerable investment in hardware, software
and maintenance. In a CoT marketplace, resources can be
traded as commodities rather than as physical products and
priced using Cloud pay-per-use pricing model. The commodi-
tisation of CoT resources will reduce overall costs, enable
sharing and reusing of IoT resources, and motivate for new
services and applications. In this scenario, the use of resources
will be very dynamic and will require efficient market mech-
anisms to support QoS in CoT.

This research aims to support QoS in the integration of
Cloud and IoT. This is achieved by proposing an optimisation-
based approach for managing QoS in trading CoT resources.
The contributions of this paper are: 1) Investigating the
problem of managing QoS in CoT by considering resource
cost, response time, energy consumption, fault tolerance and
resource coverage. 2) Proposing a new QoS model to optimise
the QoS objectives as either a single-objective or multi-
objective optimisation problem. 3) Performing rigorous simu-
lations to evaluate the proposed model using three optimisation
algorithms.

The remainder of this paper is as follows. In Section II, a
review of the related work is presented. Section III describes
the proposed QoS model and defines the problem of supporting
QoS whilst trading resources in CoT. Evaluation results are
discussed in Section IV. Conclusions and future work are
presented in Section V.

II. RELATED WORK

Many resource management problems in large-scale com-
puting infrastructures are NP-hard [6]. This means there are
no best or exact solutions to such problems in a reasonable
time due to the complexity, scalability and uncertainty of
users’ requirements. Similarly, CoT is a large-scale computing
infrastructure by nature and its resource management aspects
are challenging [7], [8].
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A. Resource Allocation when Integrating Cloud and IoT

Resource allocation techniques in IoT environments are still
emerging as part of other systems (e.g. Cloud Computing,
CoT, WSNs). IoT Cloud approaches focus on integrating IoT
resources with Cloud to enable on-demand provisioning of
shared IoT resources via the Cloud of Things.

An early attempt to integrate wireless sensor networks
(WSNs) and Cloud Computing has been discussed and im-
plemented in [3]. The proposed architecture enables WSNs
tasks to be offloaded to the Cloud. A scalable CoT architecture
has been developed in [9] along with two algorithms to dis-
cover and virtualise IoT resources. The algorithms have been
proposed to minimise the number of deployed resources and
communication overhead. A three-tier CoT architecture has
been proposed along with the development of multi-objective
scheme to optimise task allocation in CoT [10]. The scheme
aims to minimise energy consumption and latency. Another
three-tier architecture is designed in [11] to enable sharing of
Cloud resources in vehicular networks. The proposed system
intends to reduce service dropping rate. Application-specific
architectures are also proposed. An architecture that integrates
sensors and Cloud Computing for military operations is pre-
sented in [12]. The proposed architecture allocates resources
based on user prioritises to improve the performance and
availability of resources.

Various models and algorithms also address resource al-
location in CoT. A device/Cloud framework has been pre-
sented in [13] to enable collaboration between smart devices
and Clouds. The framework uses real-world case studies to
elaborate on the benefits of integrating smart devices and
Cloud Computing. Another consensus-based framework has
been presented in [14] to improve the lifetime of the connected
resources when allocating them in the Cloud. A model for
integrating sensors and Cloud Computing has been proposed
in [15] to evaluate the cost-effectiveness and performance
of a CoT architecture. A resource allocation algorithm is
introduced in [16] to enable Cloud providers optimising the
throughput, occupancy and utilisation of the IoT requests.
A model has been developed in [17] to cooperate between
the airborne sensor network and back-end Cloud. The model
applies heuristics to minimise the drones travel time and
failures in meeting their deadlines.

B. Commoditisation of CoT Resources

A solution to the resource allocation problem in CoT is
to enable efficient resource sharing. An obstacle to this is
the lack of support in sharing CoT resources. An emerging
trend is for market mechanisms to trade resources in large-
scale infrastructures similar to CoT, such as Grids, Clouds,
and Vehicular Networks[18], [11].

A model is proposed in [5] to create a trading-based value
for IoT resources. It aims to enable sharing and reusing IoT
resources by trading them similarly as Cloud resources. A
marketplace architecture is designed in [19] to commodify
and trade CoT resources. The trading problem is described as a
multi-attribute combinatorial problem and vocabularies needed
for the trading process are introduced. The development and

implementation of a market-based model are presented in [20].
The three-tier model considers the Cloud as a broker for
IoT resources. Resource allocation has been formulated as a
multi-objective optimisation problem aiming to allocate traded
resources with the minimum response time, minimum energy
consumption and maximum profit for the broker.

A federation model for Cloud IoT providers is proposed in
[21] to support market mechanisms. The model aims to satisfy
providers’ requirements and improve the rate of resource
utilisation. An auction-based model is presented in [22] to
assign CoT computation resources to the consumers, which
targets performance improvement when allocating distributed
IoT resources. A reputation-based framework for CoT archi-
tectures is introduced in [23]. It employs an auction to select
physical resources for sensing tasks and payments for users.

Market-based algorithms for CoT commoditisation are also
investigated. A combinatorial auction algorithm is proposed
in [24] to maximise the providers’ profit and the rate of job
completion. Another auction-based algorithm is developed in
[25] to support resource allocation in CoT environments. The
proposed algorithm aims to maximise the providers’ profit
while maintaining their capacity constraints.

C. Quality of Service in Cloud of Things

QoS is a description of the perceived performance of a
particular service that can be tangible or non-tangible. To
measure QoS in CoT, some attributes are chosen for evaluating
the relative performance of a particular resource, service or
application.

To support QoS in a new application domain is to define
appropriate QoS attributes for that domain. In Cloud, there
are Service Level Agreements (SLAs) targeted at QoS [26].
There have also been attempts at QoS in Cloud, with a par-
ticular focus on supporting different workloads and capacities
[27]. Supporting QoS in virtualisation-based environments is
particularly challenging, especially in trust and security-related
issues [28].

For IoT, QoS-aware architecture presented in [29] with
the focus on information collection and analysis of QoS
aspects in the IoT system. QoS based service selection and
scheduling models are proposed in [30] and [31]. Both models
employ QoS metrics that consider relative QoS metrics to IoT
in addition to the traditional QoS performance-related ones.
Those include cost, power consumption, utilisation time, load
and reputation of IoT services. Further insights on QoS for
IoT are discussed in [32].

D. Gap Analysis

QoS-aware resource allocation techniques have been studied
for Cloud and IoT separately while they are still developing
for the CoT [1], [33]. CoT is complex, with heterogeneous
resources, which lends itself to the use of market-based
mechanisms for achieving QoS-aware resource allocation. The
approach is inspired by existing techniques used to allocate
resources by trading them in similar large-scale environments,
including Cloud Computing and WSNs [18].
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This paper intends to evaluate the use of optimisation
algorithms when managing QoS in CoT environments. The
approach of using optimisation algorithms to solve this trading
problem is justified due to their capabilities in finding optimal
solutions to similar problems in complexity and scalability. In
this case, the complexity resides here due to the heterogeneity
of Cloud and IoT resources that results in difficulties when
quantifying their value and leading to the involvement of
multifaceted variables and decisions.

III. QOS-BASED RESOURCE ALLOCATION MODEL FOR
COT APPLICATIONS

To support an efficient resource allocation for the emerging
CoT applications, a generic and dynamic QoS model is
needed. The QoS model is proposed here with the following
assumptions/considerations. 1) CoT resources are allocated to
the applications based on QoS attributes as part of a trading
process where QoS is vital. The CoT applications are indepen-
dent of each other. 2) The CoT application can simultaneously
utilise multiple physical resources from different providers
while maintaining the required QoS level collectively. 3) The
CoT application should maintain a certain QoS level to fulfil
consumers’ requirements even in a case of conflicting ones at
the same time (e.g. min. energy consumption, max. resource
coverage).

A. QoS Attributes for CoT Application

The complex nature of CoT applications requires a generic
QoS model to allocate the required resources optimally. The
complexity resides here for two reasons. The heterogeneity
of CoT resources makes it challenging to build a unified QoS
model with a broad scope of QoS attributes that can satisfy the
QoS requirements of all applications. CoT applications have
diverse QoS requirements that make it challenging to maintain
the required QoS levels.

To overcome the above-mentioned obstacles, using optimi-
sation strategies is considered to trade CoT resources while
satisfying the QoS requirements. This approach supports a
dynamic selection of QoS attributes based on the application
requirements. Thus, allowing a better measurability of individ-
ual QoS attributes as discussed in Section III-F or collectively
as presented in Section III-G. The main QoS attributes con-
sidered by this model are resource cost, resource coverage,
response time, energy consumption and fault tolerance. A
detailed description of each attribute is presented in Section
III-F.

B. Problem Formulation

The QoS model assumes a CoT marketplace system M , as
presented in Fig. 1 with multiple consumers C = (c1, ..., cd)
who request multiple set of resources R = (r1, ..., rj) from
multiple providers P = (p1, ..., pm) to develop multiple
concurrent applications A = (a1, ..., az). The marketplace
system has to find the optimal match between consumer re-
quests and provider resources. This mapping process considers
QoS requirements of the consumers taking into account that

Resource Providers

Resource Consumers (Applications)

Marketplace

Resources Description

QoS-aware Resources/Applications Mapping

Trading Objectives

Resource 
Submission

Resource 
Providing Application 

Requirements

Resource
Consumption

Pay Per Usage

Fig. 1. CoT Trading Model consists of a marketplace, resource providers and
consumers

each application has different QoS requirements. The decision
variables in this context are mainly derived from the resources
j whose values will be manipulated by the optimisation algo-
rithm in the search to find the optimal solutions.

The proposed model aims to optimally allocate resources to
various applications while satisfying their QoS requirements.
The resource allocation is considered optimal when it satisfies
two conditions. The allocated resources to each application
are sufficient to fulfil the minimal QoS requirements of the
application. The overall QoS objective for all participating
applications in the trading is maximised. This process can
be demonstrated by the binary variables as illustrated in
Equation 1. 1 represents a successful resource allocation while
0 indicates otherwise.

aij =

{
1, if rj is allocated to ai
0, otherwise

(1)

C. Problem Complexity

The resource allocation in large-scale computing infrastruc-
tures is described in the literature as NP-hard or NP-complete
problem [20]. The complexity of allocating CoT resources
with QoS constraints is described as follows.

The research space for the optimisation problem can be
formed by considering the total number of requests RQ, the
number of available resources to match these requests R and
the number of resources that violates the QoS constraints V .
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Fig. 2. High-level marketplace architecture

This can be formulated as RQR − V . To illustrate, if we
consider RQ = 10 and R = 10 without any constraints,
the search space is formed of 10 billion possible solutions
represented as 1010.

There are two conflicting considerations here. First, viola-
tions of constraints are expected to exist which limit the search
space and consequently the problem complexity. Second, the
violations of the QoS constraints are expected to reduce neither
the size of the search space nor the problem complexity due
to the heterogeneity of CoT resources and the scalability
of the problem. A CoT marketplace is expected to host a
large number of heterogeneous resources that increases the
search space exponentially. To relax this challenge, the QoS
attributes are considered as utility functions to be optimised
individually as a single objective problem or collectively as a
multi-objective problem. The following sections discuss each
utility in details.

D. Marketplace System Architecture

For efficient resource allocation with QoS support in CoT,
efficient commiditisation of CoT resources has to be enabled.
To achieve this goal, a marketplace system architecture is
depicted in Fig. 2. The system architecture and the process of
finding an optimal resource allocation solution are described
as follows.

Consumers submit their application requests and providers
submit their resource offerings to the marketplace. Requests
and resources are stored in different directories where the
mapper can generate candidate maps of mapped resources
to applications. The mapper transfers candidate maps to the
optimiser for QoS evaluation. In the optimiser component,
the evaluator assesses candidate maps based on the QoS
constraints available for each round of the optimisation cycle.
The evaluator terminates its cycle when the optimal map is
found. The resource allocator is responsible for the overall

resource allocation process. The scheduler maintains the re-
sources and applications schedules where it controls the lease-
time of resources and manages the allocated resources in the
Cloud. The allocator also orchestrates the process of joining
and dis-joining resources based on the proposed schedules.
The monitor component communicates the resource allocation
events with the system, consumers and providers.

The use of the optimisation component provides significant
flexibility to this approach. It can be implemented as a core
of system architecture or as complementary to other market-
based mechanisms. When used as part of system architecture,
it can be adopted as a substitute for the core component in
one of the following market structures. 1) broker system, 2)
monopoly market, 3) oligopoly market, 4) single-side auction
and 5) double-side auction. This marketplace system aims to
satisfy the market structure of the double-sided auction.

E. Illustrative Scenario

To elaborate, the following scenario presents a use case of
QoS-driven resource allocation using the marketplace system.
A high-density metropolitan area is considered a desirable
location for multiple public, private and academic organ-
isations to implement their IoT environmental monitoring
applications. Applications monitor various indicators including
light, pollution, temperature, pressure, humidity and wind.
Considering the existing IoT practice, each organisation is
required to deploy its infrastructure (e.g. various sensors,
dedicated network or gateways to the Internet, other computing
nodes) and develop its application. This may not be feasible
for all interested parties or expensive replication is created
otherwise.

The proposed optimisation-based approach separates infras-
tructure deployment and application development. Providers
can deploy their resources across the metropolitan area and
submit their offerings to the marketplace. Consumers also
submit their applications requirements to the marketplace to
match them with the required resources. The mapping process
is based on the QoS requirements of applications. As these
applications are financially constrained, public and academic
organisations can prioritise their requests with minimised
cost and energy consumption while private organisations can
prioritise their requests with maximised area coverage and
fault tolerance. Upon successful resource allocation, each
application can send a software component (e.g. Java applet or
Python script) to configure and utilise the acquired resources
based on their application and QoS requirements.

F. Single Objective Optimisation Problem

Objective 1: Minimising Cost. Consumers aim to have a
cost-efficient resource allocation. The cost of resources is an
important aspect to be considered while optimising QoS levels.
The importance comes from the balance enforced by the cost
when other QoS constraints exist. To elaborate, an application
requires a certain level of response time, energy consumption
and fault tolerance within a limited budget constraint of the
consumer. Without considering the cost as a constraint, there
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would be more resource allocation options for the application
where many of them are not feasible.

To minimise the cost of allocated resources, let csj be the
resource cost whereas the consumer bid is set to be bi. ti
donates the requested lease time of a resource that is specified
by consumers. TQij donates the estimated transmission and
delay time that can impact the total lease time. TQij consists
of Tij which is the latency between resource and application
while dli is the distance between a requested location of a
resource and its actual location. Considering the location of
resources is assumed to have a direct impact on latency as
some resources will require additional network hops based on
their location. This can increase transmission time and latency,
impacting the lease time as a sequence. TQij is measured
by TQij = Tij × dlij . Let rpj donates the reputation of the
provider based on the credibility measures of the marketplace.
rpj is assumed to determine the trust level of a provider at
providing high-quality resources. The higher the reputation,
the better the quality of the resources. To optimise the cost
utility, the following objective is formulated.

Minimise CS =

n∑
i=1

m∑
j=1

(bi − csj × rpj) × (ti + TQij)

(2)

subject to
n∑

i=1

rqi ≤ cpj , where j = 1, ...,m (3)

0 < csj ≤ bi (4)
0 < Eri ≤ Epj (5)
sei ≤ sej (6)
dli ≤ Cvj (7)
rpi ≤ rpj (8)
rai ≤ raj (9)

where i=1,...,n and j = 1,...,m for constraints 4, 5, 6, 7, 8, 9.
Optimisation constraints provide significant support to the

proposed model where additional measures can be formulated
to enforce the QoS requirements. Constraint 3 limits the
resource allocation to the capacity of providers and ensures
the fair distribution of resources from multiple providers. rqi
is set to the number of requests from consumers, whereas
cpj donates the capacity of a provider. Thus, the number
of requests does not exceed the capacity limit. Constraint 4
indicates whether both the cost of a resource csj and the bid
from a consumer bi are always positive and bi has to be always
greater than csj .

Constraint 5 presents an energy consumption constraint in
which the required energy Eri for an application does not
exceed the available resource energy Epj . Zero or negative
values of Epj indicates the unavailability of the resource due
to power lifetime. Constraint 6 ensures the security require-
ments of the application sei can be satisfied by the security
capabilities of the resource sej . Constraint 7 illustrates a
constraint to ensure the maximum acceptable distance between
the required coverage area of an application dli is within the
boundaries of the allocated resource coverage Cvj .

To address the challenges of provider credibility, Constraint
8 ensures that each provider maintains the minimal credibility
requirements to formulate a reputation rate rpj in the market-
place. The constraint also assures the minimal required repu-
tation level rpi of a consumer is met. Constraint 9 specifies
the bounds for any additional resource attributes. ra donates
some resource attributes that are not standard or common. rai
represents those attributes requested by consumers while raj is
donated to resource attributes offered by providers. It is intro-
duced to accommodate uncommon resource properties in some
IoT devices due to the heterogeneity of IoT resources. This
aims to identify the hardware properties of the physical CoT
resource that impact QoS directly or indirectly. This includes
specifications of the processing, storage, memory, actuating
and sensing components of the CoT nodes. Each property
can expand into a multilevel sub-properties to improve the
optimality of the resource allocation. For instance, the sensing
component(s) of a resource described by its properties [sen-
sorType = [footfall, environmental, light], sensingRange = [0:
poor, 1: good, 2: very good, 3: excellent], sensorAccuracy=
0: poor, 1: good, 2: very good, 3: excellent] and so on. The
resource attribute constraint offers the flexibility required for
trading heterogeneous resources where QoS would signifi-
cantly vary without a genuine approach of defining the QoS
requirements/levels.

Objective 2: Minimising Response Time. Response time
is an important QoS consideration, especially in large-scale
distributed systems. CoT can be very widely distributed across
a large geographical area where the response time is vital for
application QoS. Latency is one contributor to response time.
Variable Lij corresponds to the latency between a consumer
and a provider and it is measured by Lij = tack − tstart.
This measures the elapsed time from submitting the request by
consumer tstart to the time of receiving an acknowledgement
from a provider tack. The Rt utility also consider the estimated
queuing and transmitting delays tqd that is expected to be at its
minimal for many time-sensitive applications. It is calculated
as tqd =

(Lij)
dlij

where dlij is the distance between the consumer
and the provider. Rt utility can be optimised as follows.

Minimise Rt =
n∑

i=1

m∑
j=1

Lij + tqd (10)

subject to 3, 4, 5, 6, 7, 8, 9 (11)

Objective 3: Minimising Energy Consumption. The en-
ergy efficiency is a critical measurement for QoS in CoT appli-
cation. Many IoT physical resources are power-constrained in
which their performance are limited. The energy consumption
utility E aims to minimise the power consumption of allocated
resources while being utilised by consumers. This can be
presented by the difference between the initial power supply
of the resource Epj and the estimated power consumption
requested by the consumer Eri. This can be optimised as
follows.

Minimise E =
n∑

i=1

m∑
j=1

Epj − Eri (12)

subject to 3, 4, 5, 6, 7, 8, 9 (13)
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Objective 4: Maximising Fault Tolerance. Fault tolerance
in this context describes the ability of a set of allocated
resources to continue providing an acceptable service level
in case of a failure. The proposed QoS model in this study
considers both soft and hard faults for IoT resources.

The use of concurrent communication interfaces in a re-
source is donated by muj . This enables allocated resources
to reconfigure a different interface for the same application in
which resources were assigned to. In case of unavailability of
multiple interfaces in a resource muj = 0, the providers may
already have deployed a redundant or standby resources rrj
nearby with the similar QoS attributes of the failing resource.
Another important aspect that may impact the recovery of
a resource from failures is the difference in response time
of that resource during or after a failure. The variable ∆Rt
donates the difference between the current response time after
failure βRt and the average Rt where ∆Rt = βRt−avg(Rt).
In order to optimise the fault tolerance utility, the following
objective function is presented.

Maximise Ft =
n∑

i=1

m∑
j=1

muj + rrj − ∆Rt (14)

subject to 0 ≤ mui ≤ muj (15)
cri ≤ crj (16)
rri ≤ rrj (17)
3, 4, 5, 6, 7, 8, 9 (18)

where i=1,...,n and j = 1,...,m for constraints 16, 17 and 18.
Due to the vitality of fault tolerance for QoS requirements,

the following constraints are enforced. Constraint 16 indicates
whether a resource supports concurrent interfaces or not where
muj = 0 means the resource has one interface only. The
constraint also assures that the minimal number of requested
interfaces mui is satisfied. Constraint 17 is set to minimise
the impact of communication reliability during failures. Let
cri the required level of communication reliability for an
application while cri is the actual communication reliability of
the allocated resource to that application. Constraint 18 ensures
the required level of redundancy by an application rri can be
satisfied by the correspondent level of the provider rrj .

Objective 5: Maximising Resource Coverage. Many CoT
applications require a specific area coverage, especially for
sensing capabilities. Without certain coverage level, CoT
applications may not achieve their reach-ability goals. The
proposed QoS model considers the resource coverage as an in-
tegral QoS utility for CoT applications. The resource coverage
can be calculated using the sensing range sj of the resource
and the maximum transmission power Etmax available. The
distance dli between requested location and the actual location
of the resource is also considered. To optimise the resource
coverage, the following objective is formulated.

Maximise Cv =
n∑

i=1

m∑
j=1

sj × Etmax

dli
(19)

subject to 3, 4, 5, 6, 7, 8, 9 (20)

G. Multiobjective Optimisation Problem

In Section III-F, the QoS attributes are presented as indi-
vidual objectives. In a marketplace environment, consumers
are expected to have a multi-attribute QoS for their CoT
applications. This adds considerable complexity to the problem
due to the following reason. QoS attributes may conflict with
one another in which trade-offs between conflicting attributes
has to be taken into account. For instance, an application
requires a set of resources with minimum cost, response time
and the maximum possible area coverage. To overcome this
challenge, the proposed QoS utilities are re-defined as a multi-
objective optimisation problem as follows.

1) The weighted Sum Method: The five QoS utilities are
aggregated into a single-objective optimisation problem and
donated by So. The problem is formulated as follows.

Minimise

So =
{

(w1 × CS) + (w2 ×Rt) (21)

+ (w3 × E) − (w4 × Cv)

+ (w5 × Ft)

subject to 3, 4, 5, 6, 7, 8, 9, 16, 17, 18 (22)

where each wn is a weighting factor that determines the
priority of each objective. The sum of wn is set to one
(w1 + w2 + w3 + w4 + w5 = 1). Prioritising QoS objectives
is application-specific and it is very challenging to address in
CoT trading environment.

Prioritising QoS objectives in CoT environments is chal-
lenging due to the following reasons. QoS parameters are
application-specific and cannot be generalised for a wide range
of CoT applications. This means priorities will significantly
vary across applications. Prioritising QoS objectives using
this method requires some prior knowledge about the prob-
lem which may not always be available. Even with prior
knowledge, this method yields one solution only at a time.
To verify all possible weights, the optimisation algorithm
has to be run many times to evaluate all possible weights.
This is not feasible and it is impossible for many high-
dimensional problems. Due to these challenges, all weights
used for the evaluation in this study are equal to 0.2 to
maintain the balance among all objectives without prioritising
one objective over another. Although this method may benefit
specific applications with prior knowledge about the problem,
the multi-objective optimisation problem is presented using a
different approach as follows.

2) Multiobjective Optimisation:

Minimise CS =
n∑

i=1

m∑
j=1

(bi − csj × rpj) × (ti + TQij)

(23)

Minimise Rt =
n∑

i=1

m∑
j=1

Lij + tqd (24)

Minimise E =
n∑

i=1

m∑
j=1

Epj − Eri (25)
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Maximise Cv =
n∑

i=1

m∑
j=1

sj × Etmax

dli
(26)

Maximise Ft =
n∑

i=1

m∑
j=1

muj + crj + rrj − ∆Rt (27)

subject to 3, 4, 5, 6, 7, 8, 9, 16, 17, 18 (28)

To solve the problem of resource allocation with QoS con-
straints, the following optimisation algorithms are used. The
improved Strength Pareto Evolutionary Approach (SPEA2)
[34], A Multiobjective Evolutionary Algorithm Based on De-
composition (MOEA/D) [35] and Multi-Objective Indicator-
Based Evolutionary Algorithm (IBEA) [36]. These algorithms
are chosen for the following three reasons. First, they are
gradient-free strategies. This means derivatives calculation is
not required which can be computationally expensive. Sec-
ond, using derivative-free algorithms gives the advantage of
avoiding local optima solutions in many cases. Third, these
algorithms are known to solve problems similar to trading CoT
resources in complexity and scalability.

IV. EVALUATION

This section presents the experimental setup, analyses and
discusses the results of resource allocation with five different
QoS utilities.

A. Experimental Setup

The simulated marketplace system is assumed to use differ-
ent optimisation strategies to map the optimal resources that
satisfy the QoS requirements of multiple CoT applications.
The participants of this simulation are summarised in Table I
and described as follows. 10 consumers submit a total number
of 10K requests to the marketplace where a number of 20
providers offers 200K heterogeneous resources deployed in a
circle area of 2000 meter radius. Each consumer is assumed to
request a homogeneous type of resources to be allocated for
one application. Experiments presented in this section has the
following aims. First, to assess the feasibility and practicability
of the proposed QoS model for CoT applications. Second, to
evaluate the performance of different optimisation strategies
when optimising QoS-based utilities.

Experiments using a synthetic data-set in this study is
justified as follows. First, it is technically challenging and
financially unfeasible to build a real test-bed for this problem
with similar scalability to a real-world scenario. Second, to the
best of our knowledge, there is no available public meta-data
of IoT physical resources that can be used to implement the
proposed QoS model. To overcome both challenges, a large
set of meta-data for 200k resources is generated based on the
properties of IoT nodes surveyed from several IoT vendors,
including Amazon, Microsoft and Google.

The experimental environment is Python 3.6 for 64-bit Mac
OS with a 2.6 GHz Intel Core i7 processor and a 16 GB
RAM. The common parameters are the maximum number of
250 iterations with a population size of 250. The algorithm-
specific parameters are described in Table II.

B. Experimental Results

As discussed earlier in Section III-B, the problem of re-
source allocation with QoS constraints is defined as a single
objective optimisation problem where the QoS utility functions
are optimised individually and also defined as a multiobjective
optimisation problem where the QoS utility functions are
optimised collectively. In this section, two categories of results
are presented as follows.

1) Single Objective Problem: To evaluate the proposed QoS
objectives, each algorithm is run to optimise each QoS utility
individually. Fig. 3a, 3b and 3c illustrate the optimal resource
allocation solutions for the cost-utility, energy consumption
and the response time at the end of each iteration, respectively.
The results show that MOEAD outperforms SPEA2 and IBEA
in optimising energy consumption and response time while all
algorithms find similar optimal solutions for the cost objective.

Fig. 4a, 4b present illustrative comparisons of the algorithms
when maximising the fault tolerance and the resource coverage
utilities, respectively. Fig. 4a shows all algorithms converge
to an optimal solution while IBEA outperforms the others
significantly. Fig. 4b compares between the optimisers when
maximising the resource coverage utility. It is clear that the
performance of MOEAD and IBEA is better than SPEA2 that
may require further iterations to converge.

From results compared in the above-mentioned figures, the
following can be observed. There are at least two optimal
solutions for each QoS utility. MOEAD contributes to the
optimality of energy consumption and response time more than
SPEA2 and IBEA while IBEA contributes more to the rest of
the objectives. It is worth noting that the iterations are stopped
at 250 though there are still some changes in the solutions
axis (e.g. see Fig 3b). Based on the considerable performed
experiments, the maximum practical iteration is around 250
considering the trade-off between the solution produced and
the computational time required. The comparison made earlier,
therefore, is based on the experimental results obtained using
algorithms’ parameters stated in Table II without taking into

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Simulated Area Radius 2 Km
Number of Requests 10K
Number of Resources 200K
Number of Consumers 10
Number of Providers 20
Number of Applications 10

TABLE II
ALGORITHM-SPECIFIC PARAMETERS.

Algorithm Parameter
SPEA2 Indicator value K = 1, initial population

randomly generated between 1 and RQn

IBEA Initial population randomly generated
between 1 and RQn

MOEAD Neighbourhood size = 10, initial population
randomly generated between 1 and
RQn, wights randomly generated,
decomposition = Tchebycheff, δ = 0.8, η = 1
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(a) (b) (c)
Fig. 3. Results of minimising different utilities (a) Cost of resources (b) Energy Consumption (c) Response time.

(a)

(b)
Fig. 4. Results of maximising different utilities (a) Fault tolerance (b)
Resource coverage.

account any potential out-performance of the used algorithms
beyond iteration 250.

2) Multi-Objective Problem: As discussed earlier, perform-
ing a multiobjective optimisation is necessary to address the
QoS requirements of applications when trading CoT resources.
The first approach used in multiobjective optimisation is the
weighted sum approach. The five objectives are aggregated
into a single objective to optimise the overall QoS utility.
Aggregated functions rely heavily on weight values which are
challenging to assign. In this case, each weight value is set

Fig. 5. Results of optimising all objectives using weighted sum approach

to wn = 0.2 in order to maintain a balance among the five
utilities without prioritising one over another. The following
can be observed in Fig. 5. Every algorithm starts from a
utility value that is significantly different from the others. It
can also be noted that MOEAD and IBEA converge to an
optimal solution while SPEA2 is showing a trend of changing.
SPEA2 performance here is similar to its performance in
most individual objectives. This may imply its inefficiency for
global search in this CoT experimental setup.

The other approach in optimising multiobjective is where
multiple objectives are optimised collectively by the optimiser
to yield different optimal solutions rather than a single so-
lution. The optimal solutions are called a Pareto Front, and
a decision has to be made to select the best solution. In
CoT marketplace, it is assumed that the decision is made
autonomously by the marketplace system based on predefined
preferences of a consumer.

The results presented in Fig. 6, 8, 10, 12, 14, 16 show bi-
objective optimisation of the QoS objectives. This includes
minimising the cost while maximising the resource coverage,
minimising the cost while maximising the fault tolerance,
minimising the cost and the response time, minimising the
energy consumption while maximising the resource coverage,
minimising the energy and response time and maximising fault
tolerance and resource coverage, respectively. Additional re-
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(a)

(b)

(c)
Fig. 6. Pareto optimal results minimising the cost while maximising the
resource coverage (a) IBEA algorithm (b) SPEA2 algorithm (c) MOEAD
algorithm.

sults presented in Fig. 7, 9, 11, 13, 15, 17 illustrate optimising
the other three objectives of each bi-objective experiment. Fig.
6 illustrates the various optimal resource allocation maps that
minimise the costs and maximise the resource coverage. Fig.
6a, 6b and 6c show that all algorithms produce Pareto fronts.
IBEA and MOEAD produce less but better solutions when
compared to SPEA2.

Fig. 7 presents optimising energy consumption, response
time and fault tolerance. SPEA algorithm shown in Fig. 7b
yields the largest set of Pareto fronts for all objectives. All
algorithms compete to produce very similar response time but
vary when it comes to energy consumption and fault tolerance.

(a)

(b)

(c)
Fig. 7. Pareto optimal results minimising energy consumption and response
time while maximising fault tolerance (a) IBEA algorithm (b) SPEA2 algo-
rithm (c) MOEAD algorithm

For instance, MOEAD algorithm shown in Fig. 7c demon-
strates very similar response time to the other two algorithms
and competes with IBEA towards similar fault tolerance but
with more high energy consumption. SPEA2 illustrated in Fig.
7b show some solutions that are approximately %50 better
than the fault tolerance produced by the other two algorithms.
When compared with Fig. 6, the following can be observed.
SPEA2 algorithm as can be seen in Fig. 6b, produces the
largest set of Pareto fronts as well in this case. Considering the
five objectives collectively, IBEA algorithm contributes most
to the optimality of the resource coverage and the response
time. SPEA2 contributes most to the fault tolerance and fairly
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(a)

(b)

(c)
Fig. 8. Pareto fronts of minimising the cost while maximising the fault
tolerance (a) IBEA algorithm (b) SPEA2 algorithm (c) MOEAD algorithm.

to the resource coverage. MOEAD contributes most to the
resource cost and fairly to the response time. IBEA and SPEA2
have similar energy consumption Pareto fronts.

The Pareto fronts of minimising the cost while maximising
the fault tolerance are presented in Fig. 8. All algorithms
produce a similar number of Pareto solutions while IBEA
produces the best in terms of resource cost and fault tolerance
level.

In Fig. 9, the results of optimising energy consumption,
response time and resource coverage are depicted. Fig. 9a and
9b show that both IBEA and SPEA2 produce very similar
response time in terms of the quantity and quality. It can be
observed from Fig. 9c that MOEAD does not form a typical

(a)

(b)

(c)
Fig. 9. Pareto optimal results minimising the energy consumption and the
response time while maximising the resource coverage (a) IBEA algorithm
(b) SPEA2 algorithm (c) MOEAD algorithm.

Pareto front considering the energy consumption and the re-
sponse time but provides significantly better resource coverage
than IBEA and SPEA2. Considering the five objectives in
Fig. 8 and Fig. 9, all algorithms produce a similar number
of Pareto fronts but vary in the quality of the solutions. As
can be seen, IBEA contributes most to the optimality of the
cost, fault tolerance and to a greater extent of response time
and energy consumption. SPEA2 provides the most optimal
response time and considerably high fault tolerance. MOEAD
yields significantly higher resource coverage than the other two
algorithms and generates a set of low-cost Pareto solutions.

IBEA and MOEAD algorithms compete to minimise the
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(a)

(b)

(c)
Fig. 10. Pareto optimal results minimising the cost and the response time (a)
IBEA algorithm (b) SPEA2 algorithm (c) MOEAD algorithm.

cost and response time as demonstrated in Fig. 10. SPEA2
produces one optimal solution that optimises the response time
well but provides an unbalanced cost to response time fronts
which may not be attractive for consumers, especially with
time-sensitive applications.

Fig. 11 shows the results of optimising the energy con-
sumption, the fault tolerance and resource coverage. Although
all algorithms produce a large number of solutions, SPEA2
produces the largest set as can be seen in Fig. 11b. It can be
observed from Fig. 11a, Fig. 11b and Fig. 11c that the energy
consumption increases as the resource coverage increases.
SPEA2 achieves the highest resource coverage with lower en-
ergy consumption in comparison to the other two algorithms.

(a)

(b)

(c)
Fig. 11. Pareto optimal results minimising the energy consumption while
maximising the fault tolerance and resource coverage (a) IBEA algorithm (b)
SPEA2 algorithm (c) MOEAD algorithm.

IBEA produce the most optimal fault tolerance considering
correspondent energy consumption and resource coverage.
Considering the five objectives presented in Fig. 10 and Fig.
11, the following are observed. SPEA2 produces the largest
set of solutions in both cases. IBEA contributes most to the
optimality of fault tolerance. Although IBEA produces similar
resource coverage to SPEA2, it achieves that with higher
energy consumption. SPEA2 contributes most to resource
coverage and energy consumption. MOEAD contributes better
to the response time and the resource cost than the other two
algorithms.

In Fig. 12, Pareto solutions for minimising the energy con-
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(a)

(b)

(c)
Fig. 12. Pareto optimal results minimising the energy consumption and
maximising the resource coverage (a) IBEA algorithm (b) SPEA2 algorithm
(c) MOEAD algorithm.

sumption and maximising the resource coverage are presented.
IBEA produces the largest and best set of optimal solutions.
SPEA2 and MOEAD yield very similar fronts.

The results of optimising the cost, the response time and
fault tolerance are depicted in Fig. 13. SPEA2 produces the
largest set of Pareto fronts. IBEA produces fairly high fault
tolerance with low cost and response time as presented in
Fig. 13a. SPEA2 yields similar and better fault tolerance
than IBEA but with higher cost and response time as can
be seen in Fig. 13b. Fig. 13c shows MOEAD producing the
lowest response time but with a similar cost to IBEA and
SPEA2. Comparing Fig. 12 and Fig. 13, the following can

(a)

(b)

(c)
Fig. 13. Pareto optimal fronts minimising the cost and response time while
maximising the fault tolerance (a) IBEA algorithm (b) SPEA2 algorithm (c)
MOEAD algorithm.

be observed. IBEA contributes most to resource coverage and
energy consumption. The three algorithms have similar results
for the resource cost. SPEA2 and MOEAD have similar fault
tolerance levels.

Fig. 14 corresponds to applications that require minimising
energy and response time. All algorithms presented compete
well and minimise their fronts to the near-optimal solutions.
Fig. 14b shows SPEA2 with only one front that represents a
solution near zero for both axes. Two near-optimal solutions
are presented in Fig. 14c where response time and energy
consumption do not exceed 20. IBEA algorithm produces
the largest set of Pareto fronts in this scenario as shown in
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(a)

(b)

(c)
Fig. 14. Pareto optimal fronts minimising the energy consumption and
the response time (a) IBEA algorithm (b) SPEA2 algorithm (c) MOEAD
algorithm.

Fig. 14a. All fronts have a response time less than 20 with
reasonable energy consumption.

Fig. 15 presents the results of optimising the resource cost,
fault tolerance and resource coverage. MOEAD produces the
largest number of Pareto fronts. The results of the IBEA
algorithm shown in Fig. 15a and MOEAD algorithm shown in
Fig. 15c are similar for the cost and resource coverage while
MOEAD generates slightly better fault tolerance than IBEA.
Although SPEA2 yields similar results of fault tolerance and
cost, it produces lower resource coverage in comparison to
MOEAD. Considering the five objectives of Fig. 14 and Fig.
15 collectively, the following is observed. IBEA contributes

(a)

(b)

(c)
Fig. 15. Pareto optimal results minimising the resource cost while maximising
the fault tolerance and resource coverage (a) IBEA algorithm (b) SPEA2
algorithm (c) MOEAD algorithm

most to the response time and resource coverage. MOEAD
contributes most to energy consumption, the cost and the fault
tolerance.

In Fig. 16, Pareto optimal results maximising fault toler-
ance and maximising resource are illustrated. All algorithms
produce at least one or more optimal front near 100 for the
resource coverage and fault tolerance alike.

The results of optimising the cost, the response time and
energy consumption are illustrated in Fig. 17. SPEA2 as can be
seen in Fig. 17b produces the largest number of Pareto fronts.
IBEA results presented in Fig. 17a show significantly low
response time and cost but with higher energy consumption.
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(a)

(b)

(c)
Fig. 16. Pareto optimal results maximising fault tolerance and resource
coverage (a) IBEA algorithm (b) SPEA2 algorithm (c) MOEAD algorithm

SPEA2 results show insignificant higher response time than
IBEA but with similar cost and better energy consumption
than IBEA. MOEAD produces similar energy consumption
to SPEA2 but with higher resource cost. The following are
observations from considering the five objectives presented in
Fig. 16 and Fig. 17 collectively. SPEA2 produces the largest
set of Pareto solutions for the five objectives. IBEA contributes
most to the optimality of the response time and the cost.
SPEA2 contributes the most to resource coverage and fault
tolerance. MOEAD contributes to energy consumption.

Visualising Pareto optimal solutions of multiobjective prob-
lems is known to be challenging. To overcome this challenge,
Fig. 18 is a scatter plot matrix that shows the Pareto solutions

(a)

(b)

(c)
Fig. 17. Pareto optimal results minimising resource cost, response time and
energy consumption (a) IBEA algorithm (b) SPEA2 algorithm (c) MOEAD
algorithm

of the five objectives using IBEA algorithm. It can be observed
that IBEA produces a variety of optimal solutions except in
three cases. This may imply either the algorithm requires
more time to produce the Pareto fronts or Pareto solutions
cannot be generated in this complex formulation for all the
five objectives.

C. Discussion

Resource allocation in CoT marketplace is described as a
single-objective and multi-objective optimisation problem. The
simulation results show that the approach used in this study
is feasible for allocating resources to applications with QoS
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requirements in most cases. Results also show the ability of
optimisers to produce at least one optimal solution for each
utility tested and multiple solutions for the bi-objective and the
multiobjective. Results from SPEA2 demonstrate the ability of
the algorithm to produce a larger set of Pareto solutions than
the other algorithms. This provides the decision-maker with
flexibility when selecting from a range of available solutions.
This may also imply that optimisation strategies can be used
as a market mechanism for trading CoT resources instead of
using traditional auctioneers.

The proposed QoS model is architecture-independent and
can be implemented by any marketplace system. It can also
be implemented as a complementary trading mechanism to
support other trading mechanisms. This supports separating
the development of CoT applications from the deployment
of physical resources, making it easy to add any QoS objec-
tives. Utility functions used with vocabularies proposed show
their effectiveness in quantifying the value of various CoT
resources. This implies potential higher satisfaction for the
QoS requirements.

Implementation challenges are summarised as follows. 1)
Visualising the Pareto solutions for the multiobjective formu-
lation. 2) High CPU utilisation is observed during the run of
experiments.

V. CONCLUSIONS AND FUTURE WORK

Managing QoS in CoT environments is challenging. This
challenge is relaxed by defining the problem of resource
allocation in the CoT trading setup as a single objective and
multi-objective optimisation problem to satisfy several QoS
requirements. Using different optimisation algorithms as a
market mechanism is the approach considered to evaluate the
proposed QoS model. Three optimisation strategies are applied
to optimise QoS utilities including consumer cost, response
time, energy consumption, area coverage and fault tolerance.

Simulation results confirm the practicability of trading
heterogeneous CoT resources from multiple providers and
consumed by multiple consumers. Using QoS utilities and
proposed notations support quantifying the value of CoT
resources. Pareto fronts are used to provide different optimal
solutions for utility functions.

Future work will take into account the following. First,
assessing the scalability of this approach by optimising larger
sets of resources. Second, optimising more QoS utilities to
address application-specific requirements. Third, implement-
ing this approach using different optimisation strategies.
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