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Abstract—As Grid infrastructures become more widely used
by the academic and commercial world, the problem of
resource allocation increases in complexity. Resource trading
markets are one mechanism that allows many resource owners
and resource consumers to trade. To perform efficiently trading
markets for grids require approaches to match consumers
and producers. Solutions for optimal and non-optimal resource
trading exist, but fail to scale effectively to meet the challenges
of large numbers of traders. This paper first defines the
problem of scalable resource trading in grids before describing
and evaluating greedy approaches for scalability.
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I. INTRODUCTION

The vision of Grid computing emerged out of the need
from science for vast on-demand processing resources not
available at a single location [1]. As the underlying technol-
ogy matured added value of remote computational power
for industry was discovered [2]. Both, industry and science,
benefit form leveraging the economics of scale provided
by remotely accessible, aggregated computational resources.
Besides access to resources the infrastructure allows for
offering not utilized capacities to others. However these Grid
infrastructures, often loosely coupled, regionally distributed
and heterogeneous in nature require complex human and tool
interactions to unlock their resource power.

Recent advances in fundamental technologies enable a
seamless and more secure exchange of computational ser-
vices in Grids [3], [4], [5]. This has improved the Grid
platform as a whole, allowing system administrators to
integrate Grids into their IT resources easier. Improvements
to user tools, high level scientific support and application
development has enabled a larger group of technical and
non-technical users to use Grids.

Despite vast improvements in platform development, user
support and infrastructure investment there are still many
issues to be resolved. An open question is how to effi-
ciently share computational resources. In situations in which
resource demand exceeds resource supply, traditional man-
agement techniques based on the maximization of resource
utilization fail to provide a fair utility maximizing alloca-
tion [6]. Because of this resources are often inefficiently
utilized. Market based approaches can be used to allocate
resources more efficiently based on the buyers valuation of

the resources [6], [7]. An overview of approaches for market
based resource allocation in Grids is given in [8].

The focus of this paper is on the multi attribute combina-
torial exchange mechanism [9]. The mechanism allows for
simultaneous trading of buyers and sellers, the submission
of combinatorial, multi attributive bids and supports domain
specific constraints. The main drawback of the mechanism
is the NP-completeness of the underlying multi-attribute
winner determination problem (MWDP). The MWDP can
become computationally intractable for small instances with
less than hundred bidders [9]. However, the nature of Grids
requires a scalable allocation mechanism to increase the size
of the market for computational resources.

In the literature three options to tackle the winner determi-
nation problem (WDP) in combinatorial auctions have been
identified [10]:

1) The restriction of the expressiveness of the bidding
language

2) The design of specialized tree search algorithms that
provably find the optimal solution

3) The design of approximation algorithms
The restriction of the bidding language would sacrifice
the domain requirements. The application of tree search
algorithm was found to become computational intractable
for small scale scenarios. In this paper we investigate the ap-
plication of approximation algorithms in the form of greedy
algorithms to the MWDP. We present a formal definition
of the problem of resource trading and the requirements of
a market based solution. We introduce a representation of
the problem and further present and evaluate three greedy
approaches solving the problem in a scalable way.

The remainder of this paper is structured as follows. In
Section II we discuss related work in the field of heuristic
optimization approaches. Section III describes the MWDP
problem formally. In Section IV we introduce three greedy
algorithm-based solutions to the problem. Section V presents
the results of an experimental evaluation of the different
approaches. Section VI presents some conclusions.

II. RELATED WORK

The MWDP is formulated as a generalization of the NP-
complete combinatorial allocation problem (CAP) [11]. Ap-
proximation algorithms that provide bounds on the quality



of the solution are not considered because even the CAP as
well as the combinatorial exchange problem are found to
be inapproximable [12], [13]. For inapproximable problems
no reasonable bound can be provided for the quality of the
solution. Thus a scalable solution for many deals requires the
investigation of approaches that provide an approximately
efficient solution to the MWDP.

A survey of optimization approaches reveals no heuristic
approaches to the MWDP, although algorithms for the WDP
in combinatorial auctions exist. In [14], [15] greedy algo-
rithms are proposed to approximate the winner determination
problem in combinatorial auctions based on bid sorting with
the order determining the allocation order. The approach by
Lehmann et al [14] serves as input for a hill climbing and
simulated annealing [16] approach. Hoos and Boutilier [17]
propose an algorithm based on stochastic local search which
is based on scoring search states. [18] formulate WDP as a
multi dimensional knapsack problem. This problem has been
studied extensively in the domain of operations research [19]
including using genetic algorithms [20]. However all of these
approaches can not be applied directly to the MWDP as it
is formulated as a generalization of the WDP.

III. PROBLEM DESCRIPTION

To describe the problem of grid resource trading we
take the multi-attribute combinatorial exchange mechanism
described in [9]. This approach allows for trading multiple
resources which can be described as attributes. In this sce-
nario the unit of trade is computational resources including
CPU cycles, data storage and RAM denoted by g. The set
G = {g1, . . . , g|G|} specifies the computational resources
available in the exchange mechanisms where G denotes all
the goods to be traded in a trading market and a gk is a
specific resource. A bundle Si denotes a subset of all the
resources in G. Therefore the set S = {S1, . . . , S|S|} of
bundles covers all the possible subsets of G. A computa-
tional resource gk itself is defined by a set of cardinal quality
attributes Ak = {a1, . . . , a|Ak|}.

The trading market used in this paper for this scenario is
one in which sellers can sell resource bundles and buyers
can bid on resource bundles. Both sellers and buyers of
resources do this by placing blind orders in the market-
place; buyers specifying what resources are required, and
sellers specifying what resources are available. Potential
buyers n out of the set N = {n1, . . . , n|N |} of buyers
are allowed to submit an order of multiple bundle bids
Bn = {Bn,1(S1) ⊕ . . . ⊕ Bn,u(Si)}. The respective bundle
bids are XOR concatenated.

The submission of bundle bids allows for the expression
of complementarities among bundles of computational re-
sources. A buyer is allocated at maximum one complete
bundle out of the order she placed. A single buyer bundle
bid is of the form:

Bn,f (Si) ={〈vn(Si), sn(Si), en(Si), ln(Si),
qn(Si, g1, ag1,1), . . . , qn(Si, gG, agG,Aj ),
γn(Si, g1), . . . , γn(Si, gG),
ϕn(Si, g1, g2), . . . , ϕn(Si, gG, gG−1)〉}

The valuation vn(Si) is the amount the buyer is willing
to pay for the bundle Si per time slot. The number of slots
the resources are required for is given by sn(Si). A buyer
bid defines a period of time slots within which the required
slots have to be allocated. The period is given by en(Si)
for the earliest possible time slot and ln(Si) for the latest
possible time slot. The minimum quality of the resources
gk contained in a bundle bid Si is specified for each
resource attribute agk,Aj by qn(Si, gk, agk,Aj ). In addition
bundle bids may contain two types of fulfillment constraints.
A coupling constraint γn(Si, g1) specifies the maximum
number of sellers allowed to allocate a required resource gk.
The co-allocation ϕn(Si, gk, gj) constraint requires a pair of
resources gk, gj to be allocated from the same single seller.

Potential sellers m out of the set of M = {m1, . . . , m|M|}
may submit an order of multiple bundle bids Bm =
{Bm,1(Si) ∨ . . . ∨ Bm,u(Si)}. The bundle bids are OR
concatenated. Any number of seller orders may be part of
the final allocation. A single seller bundle bid is of the form:

Bm,f (Si) ={〈rm(Si), em(Si), lm(Si),
qm(Si, g1, ag1,1), . . . , qm(Si, gG, agG,Aj ), 〉}

The reservation price rm(Si) specifies the minimum price
a seller is willing to sell the specified bundle of resources
per time slot. It is assumed that a seller bid is valid for the
range of time slots given by em(Si) and lm(Si). The quality
of the resource services gk is given by qm(Si, gk, agk,Aj ).

Given a collection of buyer and seller bundle orders
the MWDP is to identify a set of winning bids out of
the total set of bids. An optimal set of winning buyer
and seller bids determines an allocation that maximizes the
overall surplus while meeting time, capacity, coupling and
co-allocation constraints. An allocation is described by the
variables xn,t(Si) ∈ {0, 1} and yn,m,t(Si) ∈ [0, 1]. The
binary variable xn,t = 1 if buyer n is allocated bundle Si

in time slot t. The real valued variable ym,n,t denotes the
percentage of bundle Si allocated from seller m to buyer n
in time slot t. The surplus of an allocation is given by:

(x, y) ∈ arg max

(∑
n∈N

∑
Si∈S

∑
t∈T

vn(Si)xn,t−
∑

m∈M

∑
n∈N

∑
Si∈S

∑
t∈T

rm(Si)ym,n,t

|(x, y) is a feasible allocation

)



This description includes free disposal (buyers do not care
about taking extra units, sellers do not care about keeping
units of winning bids) except when resources are coupled.

IV. GREEDY OPTIMIZATION APPROACHES

Construction heuristics are the fastest kind of heuristic to
identify a feasible solution to a given problem. The con-
struction process can be divided into several phases. After
an initialization phase the construction process is typically
continued by a selection and a placement phase until a
termination condition is met. In this paper we concentrate on
greedy construction heuristics. Greedy heuristics construct a
solution to a problem by making at each construction step a
locally optimal decision. The locally optimal decision must
not necessarily be optimal form a global point of view.

A problem instance is represented as depicted in Figure
1. The buyer orders are split up into the single bundle
bids Bn,f (Si). The single buyer bundle bids are stored in
a sequence. For each buyer bid Bn,f (Si) a list of possible
time slots t is kept. For each of these time slots the available
seller bundle bids Bm,f (Si) are listed. The overall idea is
to reduce the |n| : |m| allocation problem to be scheduled
to into a given number of time slots to a 1 : m allocation
problem to be solved for a single time slot t. The 1 : m
allocation problem for a given buyer bundle bid Bn,f (Si)
and a given time slot t can be formalized as follows:

y ∈ arg max

(
vn(Si) −

∑
m∈M

∑
Si∈S

rm(Si)ym,n

|y is a feasible allocation

)

In case of no coupling or collocation constraints the prob-
lem becomes a linear, continuous, optimization problem.
This type of problem can be solved efficiently by a linear
programming solver. If coupling or co-allocation constraints
are present the problem is of combinatorial nature with
complexity reduced significantly compared to the original
n : m allocation problem.

The problem representation is evaluated by passing
through the sequence of buyer bundle bids starting with the
first bundle bid. The time slots the buyer bid is valid for
(en(Si), ln(Si)) are checked in the given order. A check of
a time slot requires solving the, possibly constrained, 1 : m
allocation problem. As soon as the amount of computational
resources requested is available for a sufficient number of
time slots the buyer bid is included into the allocation and
the construction process is continued. A check of a time slot
is valid only if there is a valid solution to the 1 : m allocation
problem. Therefore no infeasible solution can be encoded
by the problem representation. In case the buyer is already
part of the allocation with another bid (XOR constraint) the
evaluation of the specific bid is skipped and the process is
continued with the next bid in the sequence.
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Figure 1. Problem representation

The greed algorithms proposed start with an empty
allocation. In the initialization phase buyer bundle bids and
the respective time slots are sorted according to a set of
criteria. The sorting of the buyer bundle bids is inspired by
the domain of knapsack problems [19, p. 257]. The basic
procedure is to sort the buyer bundle bids in a way that
the currently most promising buyer bundle bid is included
in each construction step of the greedy heuristic. Prior to
introducing the ordering procedures several concepts have
to be introduced. The factor flex = sn(Si)

ln(Si)−en(Si)
measures

the flexibility of a buyer bundle bid in a time scheduling
sense. A bundle bid is considered to be more flexible the
more options there are for time scheduling. The higher the
flexibility the closer flex is to zero. The factor
c(Si) =

(∑
Si�gk

maxagk,j∈Aj qn(Si, gk, agk,j)
)

measures
the average consumption of resources for a given bundle
bid Si by aggregating the maximum quality requirements
for each resource. The set Bsl is defined as the set of all
sellers m that offer the set or a subset of resources bundled
in the bundle Si in time slot t. The parameter

wac(Si) =

∑
Si�gk

∑ ln(Si)
en(Si)

maxagk,j∈Aj

qn(Si,gk,agk,j)∑
Bsl�Sj

qm(Sj,gk,agk,j)

ln(Si)−en(Si)
measures the weighted average consumption of resources
of resources per time slot in dependency of the amount of
resources offered.

The attractiveness of a buyer bundle bid can be assessed
by the descending order according to the following criteria:

1) vn(Si): The order of buyer bundle bids is determined
by the respective bundle valuations.

2) vn(Si)sn(Si)
flex∗c : The order of buyer bundle bids is based

on the scaled valuations. Valuations are scaled by
the flexibility of a bundle bid and by the average
consumption of resources.

3) vn(Si)sn(Si)
flex∗wac : The order of buyer bundle bids is based

on adjusted valuations. In comparison to the previous
ordering procedure the requested amount of resources
is weighted by the available supplies. In consequence
the demand for scarce resources is more significant in
reducing the attractiveness of a buyer bundle bid.



The options for sorting the slots of a buyer bundle bid
are:

1)
∑

Sj�Bsl

r(Sj)
|gk∈Sj |

|Bsl| : The time slots are sorted according
to the ascending average seller reservation price (asr)
for a single resource.

2) asr ∗ ∑
Si�gk

maxagk,j∈Aj

qn(Sj ,gk,agk,j)∑
Bsl�Sj

qm(Si,gk,agk,j)
:

The time slots are sorted according to the ascending
average seller reservation price for a single resource
weighted by the aggregated average resource demand
versus supply ratios. The demand versus supply
ratio for a single resource is defined as the sum of
maximum ratios between demand quality and the
aggregated supply qualities of all resources

3) optimal solution: Sorts the time slots according to the
result of the optimal solution to the 1 : m allocation
problem in a descending order.

Out of the nine possible combinations of bundle bid
and slot sorting procedures the combinations 1/1, 2/2, 3/3
are chosen for evaluation. The combinations are designed
according to the trade off of complexity of evaluation versus
the power of additional information included into the sorting
process. The goal is the analysis of the trade off described.
As a lower bound benchmark a greedy algorithm based
on random sorting procedures for buyer bids and slots is
used. To solve the 1 : m allocation problem optimally
a mixed integer linear programming solver is used. The
random combination is chosen as a benchmark.

V. EXPERIMENTAL EVALUATION

The three greedy heuristics presented in section III are
evaluated by means of stochastic simulation. The approaches
are compared according to the quality of the solution as well
as CPU time required. To assess whether the greedy heuris-
tics are superior to simply random they are benchmarked to a
random greedy solution. In addition the results are compared
to the results of a mixed integer linear programming solver
applied to the analytical benchmark problem [9].

The experiments performed are based on six bidding
scenarios each differing by the number of seller and buyer
bundle bids. For each problem instance the number of
seller bids matches the number of buyer bids. The scenarios
comprise 20, 40, 60, 80, 100 and 120 seller and buyer
bundle bids. The number of goods is set to five and are
characterized by three attributes each. A bundle may contain
any combination of goods. The earliest possible time slots
are of the interval [1, 5]. The latest possible time slots
are distributed between [1, 12]. The number of time slots
required is distributed in the interval of [1, 3]. No coupling
or co-allocation constraints are present. The time limit for
the calculation of a result was set to three minutes.

For each of the scenarios described 50 instances are
generated. To generate bids and valuations the combinatorial
auction test suite (CATS) is used [21], [22]. CATS was

designed to generate bids that are realistic in real world
scenarios. Meaningful bundle bids require for example that
certain goods are grouped more likely in a bundle than
others. CATS offers five different options for the generation
of bundle bids. For the paper at hand the arbitrary option
was chosen. This option models the domain of trading
computational resources best as arbitrary but constant com-
plementarities between goods are assumed. If for example a
service offering cpu-cyles is requested it is very likely that
a storage service is requested too. The quality attributes are
drawn from a normal distribution. The according mean and
variance values depend on the valuation or the respective
reservation price as well as the number of resources that are
present in the bundle. The time attributes are drawn form a
uniform distribution within the intervals introduced.

All experiments were performed on a Intel Core 2 CPU
1.86 Ghz with 1.49 GB RAM running Windows XP. The lp-
solve [23] mixed integer linear programming solver 5.5.0.14
was used. The solver was configured to present intermediary
results if the optimum was not found in time. The maximum
time to compute a solution was set to 180s.

Two types of experiments were performed. The exper-
iments differ in the number of buyers submitting bundle
bids. For type A of experiments the number of buyers
equals the number of bundle bids submitted. Type B of
experiments contains XOR concatenated bundle bids. The
scenarios of type B have only half the number of buyers,
submitting two bundle bids each. Therefor the number of
bundle bids is equal for the respective scenarios of both
experiments. For each of the experiments the solution to
the MWDP and the time needed to compute the solution
are recorded. Table I and table II show the results for the
runtime of the experiments. The tables summarize the mean
runtime (μ) and the standard deviation (σ) for each of the
scenarios processed with the different algorithms. For the
analytical benchmark solution an additional column shows
the number of KO. A KO indicates that the analytical
benchmark solution ran into the timeout of 180 seconds.
There is no guarantee that the solution found is the optimal
solution. A KO is differentiated into two subcategories.
The first categorize indicates that a timeout occurred but a
solution is returned. The second category indicates that the
solver was not able to compute any solution in the given time
frame. The Figures 2 and 3 summarize the mean solution
quality (surplus) for each of the experiments. The solution
quality is measured in comparison to analytical benchmark
solution (100 percent).

A. Experiment A

The runtime results of experiment A show that show that
within the time frame the optimal solution to the MWDP is
computable for all of the 10/10 instances only. Starting from
the number of 40 agents intermediary results are provided
for some of the problem instances. The number of not



Figure 2. Mean Solution Quality Experiment A

optimal solutions increases form the 20/20 scenarios to the
60/60 scenarios to nearly 47 which is 94 percent. For all
of these problem instances the execution of the solver has
been cut off after 180 seconds. In comparison none of
the greedy approaches required on average more than 4.6
seconds to compute a solution. The results for the solution
quality show that none of the greedy approaches matched the
solution of the analytical benchmark solution. In comparison
of the greedy approaches the 3/3 algorithm performed best
delivering on average 90 percent of the solution quality
of the analytical benchmark solution. The 2/2 approach
performs similar to the random strategy but requires more
computational effort. The 1/1 approach requires a higher
computational effort than the random algorithm delivering
a results of inferior quality.

Table I
RUNTIME RESULTS EXPERIMENT A

Analytical bench-
mark solution

Random 1/1 2/2 3/3

Num. Bids μ σ KO μ σ μ σ μ σ μ σ
10/10 2999 19856 0/0 40 17 38 14 44 15 232 47
20/20 49723 72929 11/0 103 27 109 29 129 27 664 120
30/30 133906 72121 33/0 197 42 203 42 239 35 1254 177
40/40 165324 45054 45/0 303 46 315 50 398 47 2065 223
50/50 172540 31068 47/0 460 78 488 103 627 88 3247 477
60/60 176740 23164 49/0 640 94 677 105 882 97 4601 621

B. Experiment B

Experiment B shows that the optimal solution to the
MWDP can not be computed within the given time frame
for 24 problem instances of 40 agents. The number of
non optimal solutions for problem instances of a category
increases to the 30/60 scenarios to 100 percent. Starting
from the 15/30 scenario there are problem instances no
solution is provided for. In comparison non of the greedy
approaches required on average more than 4.2 seconds to
compute a solution. The results for the solution quality
show that the 3/3 and 2/2 algorithms outperform the random
benchmark solution. The 1/1 algorithm performs equal to the

Figure 3. Mean Solution Quality Experiment B

random approach. All of the greedy approaches outperform
the analytical benchmark solution form different degrees
of scenario complexity on. In comparison of the greedy
algorithms the 3/3 approach is the best in terms of solution
quality. In terms of runtime the 2/2 approach is about the
factor 6.5 faster than the 3/3 algorithm reaching 94 percent
of its solution quality.

Table II
RUNTIME RESULTS EXPERIMENT B

Analytical bench-
mark solution

Random 11 22 33

Num. Bids μ σ KO μ σ μ σ μ σ μ σ
5/10 5253 24212 0/0 27 16 30 16 29 15 197 66
10/20 121401 71390 24/0 67 26 74 29 76 26 593 110
15/30 177898 14975 47/2 120 38 140 36 145 42 1164 176
20/40 180000 0 47/3 193 51 212 57 245 49 1899 276
25/50 173429 30719 45/3 259 58 296 62 355 58 2938 488
30/60 180000 0 47/3 373 92 405 98 480 89 4272 538

C. Summary

The results of both experiments clearly indicate that all
of the greedy solutions presented are less expensive in
terms of computational effort than solving the analytical
benchmark problem. An interesting observation comparing
type A and type B experiments is that the quality of the
greedy random solution highly depends on the type of
experiment. A possible explanation is that in case of XOR
bids the ordering of buyer bids (type B experiments), which
decides about the inclusion into the allocation, becomes
more important. Consequently the technique for ordering
buyer bundle bids matches the problem structure. In turn
the techniques used for ordering the slots may have to be
improved to better fit the problem domain. Comparing the
runtime of both experiments it is to be noted that type
B experiments require more computational effort for the
analytical benchmark solver. In contrast the greedy solutions
provide the results faster than in type A experiment. This is
because in the XOR case the check for inclusion into the
allocation can be skipped for half of the bids.



In summary the greedy algorithm that performed in terms
of solution quality best is the 3/3 algorithm. The algorithm
outperformed the random greedy algorithm for each of the
scenarios of type A and B experiments. The 2/2 greedy
algorithms outperform the random benchmark for each of the
type B scenarios while performing slightly worse for type
A experiments. The 11 approach is found to perform worse
than the random solution for type A experiments and slightly
superior for type B experiments. The approach turned out to
be not suitable for the approximation of the MWDP. In terms
of computational complexity the random solution requires
least effort followed by 1/1 and 2/2 which require about the
same effort. The runtime of the 3/3 approach was in mean
about the factor 6.5 higher than the one of 1/1 and 2/2.

VI. CONCLUSIONS

The core contribution of our paper is the design and eval-
uation of scalable greedy heuristics addressing the allocation
problem in Grids formulated as a MWDP. Three greedy al-
gorithms were defined and tested on specific instances of the
problem. In a quantitative comparison we have demonstrated
the effectiveness of the 3/3 greedy algorithm outperforming
the random benchmark solution and the results to the ana-
lytical benchmark solution for complex scenarios.

We plan to test the greedy algorithms on additional
problem instances to improve the sorting procedures fur-
ther. In a next step we plan to use the results of greedy
search as a starting point for a hill climbing approach or
more sophisticated heuristics as simulated annealing or tabu
search.
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