
NETKIT: A Software Component-Based Approach to
Programmable Networking

Geoff Coulson, Gordon Blair,
David Hutchison, Ackbar Joolia,

Kevin Lee, Jo Ueyama,
Antonio Gomes, Yimin Ye

Computing Dept.,
Lancaster University

Lancaster LA1 4YR, UK
+44 1524 593054

geoff@comp.lancs.ac.uk
ABSTRACT
While there has already been significant research in support of
openness and programmability in networks, this paper argues
that there remains a need for generic support for the integrated
development, deployment and management of programmable
networking software. We further argue that this support should
explicitly address the management of run-time reconfiguration
of systems, and should be independent of any particular
programming paradigm (e.g. active networking or open
signaling), programming language, or hardware/ operating
system platform. In line with these aims, we outline an
approach to the structuring of programmable networking
software in terms of a ubiquitously applied software
component model that can accommodate all levels of a
programmable networking system from low-level system
support, to in-band packet handling, to active networking
execution environments to signaling and coordination.

General Terms
Management, Design, Reliability, Experimentation,
Standardization.

Keywords
Programmable networking, components, reflection,
middleware.

1. INTRODUCTION
There are steadily increasing demands for openness and
programmability in today’s networks. In particular, both
network operators and users want to be able to dynamically
introduce new mechanisms into the network with ease and
convenience. Examples of such mechanisms are quality of
service (QoS) elements like intserv/ diffserv/ MPLS/ RSVP/
RED/ ECN; in-band media-stream filters; network address
translators; firewalls and other security mechanisms; and
application-level routers (e.g. for multicast or peer-to-peer

networking).

The requirement for openness and programmability is further
underlined by the desire to dynamically deploy emerging
services like ubiquitous computing, ad-hoc networking,
dynamic private virtual networks, and e-Science Grids.
Furthermore, there is an associated requirement for
manageability of such mechanisms and services so that they
can be flexibly configured (including deployment,
instantiation and initialisation) and reconfigured (including
run-time adaptation, extension, evolution and removal) with
ease and convenience.

The view expressed in this paper is that, while there has
already been significant research in support of such
requirements, there remains a need for generic programming
model support to facilitate programmable networking. Ideally,
this support should be programming language-, platform-, and
even paradigm-independent (see below) and should explicitly
facilitate the management of both configuration and
reconfiguration as defined above.

The approach we are pursuing is to apply the notion of
software components [39] to the programmable networking
environment. According to Szyperski [39], software
components i) have formally specified interfaces, ii) are
packaged and distributed in binary form, and iii) can be
dynamically deployed in address spaces. Unlike other research
that advocates a component-based approach (e.g. [28] and
[37]) we envisage components being uniformly applied at all
levels of the programmable networking environment from
fine-grained, low-level, in-band packet processing functions,
to high-level signaling and coordination functions. In outline,
we envisage on-demand component loading/ unloading and
binding/ unbinding services as the basis of both
configuration and reconfiguration.

The remainder of this paper is structured as follows. First, §2
provides an overview and analysis of the field of
programmable networks. Next, §3 presents our generic
component-based approach to programmable networking
together with a discussion of the potential benefits of the
approach. Then, in §4, we discuss current design and
implementation work in our recently initiated NETKIT project
that follows the component-based approach. As the project is
at a relatively early stage, the discussion is in terms of work-
in-progress rather than definitive results. Finally, §5 discusses
some related work (in addition to that surveyed in §2), and §6
presents our conclusions.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200355

2. PROGRAMMABLE NETWORKING
RESEARCH
2.1 The Design Space of Programmable
Networking
The design space of programmable networking can be broadly
represented in terms of the (highly abstract) reference
architecture depicted in Figure 1.

Figure 1: A reference architecture for programmable
networking.

In this architecture, a hardware abstraction stratum (we use
the term ‘stratum’ rather than ‘layer’ to avoid confusion with
layered protocol architectures) contains the minimal operating
system (OS) functionality (e.g. threads, memory allocation,
and access to network hardware) that must be available on any
participating node (e.g. router) to support higher-level
network programmability. Services in this stratum typically
try to mask underlying hardware heterogeneity so that, say, a
standard PC-based router and a specialised programmable
router (e.g. a router based on the Intel IXP1200 [23] network
processor which provides multiple processors and distributed/
hierarchical memory arrays) will look as similar as possible to
the higher strata. Furthermore, the nature of the stratum 1
services largely determines the QoS (e.g. predictability,
throughput and latency) capabilities of programmable
networking software in the higher strata.

Second, an in-band functions stratum comprises packet
processing functions (e.g. packet filters, checksum validators,
classifiers, diffserv schedulers, shapers, etc.) that touch all or
most packets. As these functions are inherently low-level, in-
band, and fine-grained, this is a highly performance critical
area in which machine instructions must be counted with care.

Third, an application services stratum comprises coarser-
grained ‘programs’—in the active networking execution-
environment sense [1]—that are less performance critical and
act on pre-selected packet flows in application specific ways
(e.g. per-flow media filters).

Finally, a coordination stratum includes or supports out-of-
band signaling protocols that perform distributed
coordination (e.g. configuration, reconfiguration) of the lower
strata. Examples are RSVP, or protocols that coordinate
resource allocation on a set of routers participating in a
dynamic private virtual network, as employed by systems like
Genesis [6], Draco [24] or Darwin [10].

2.2 Current Paradigms
Historically, there have been two main paradigmatic
approaches to the provision of openness and programmability
in networks: First, in the active networking paradigm (see, e.g.,

[1], [15], [34], [16], [17], [18], [19]) ‘active packets’ called
carry programs that execute on ‘active nodes’, often in a Java-
based execution-environment. Second, in the open signaling
paradigm (see, e.g., [6], [10], [24]), routers export ‘control
interfaces’ through which they can be remotely (re)configured
by out-of-band, application specific, signaling protocols.
More recently, a third approach—we’ll call it out-of-band
active—has become popular (see, e.g. [7], [11], [13], [22], [28]).
In this approach, downloadable modules are dynamically
installed onto routers through some (often unspecified) out-
of-band mechanism. These systems vary in their support for
kernel vs. user space modules, and whether or not in-band
functions can be reconfigured.

Overall, active networking is the most dynamic of the three
approaches and can operate on the finest time scales. However,
it is not as easy to deploy as the other approaches, is perceived
as more prone to security threats, and tends to be language
specific (often Java). While being coarser grained and less
dynamic, the open signaling approach is typically easier to
deploy (especially for complex services like dynamic private
virtual networks), easier to secure, and typically performs
better than Java-based active networking systems (especially
at the level of fundamental QoS elements like intserv or
diffserv). The out-of-band active approach is between the two
classic approaches in terms of both deployability and security
vulnerability.

Combining the above analysis with that of §2.1, it i s
interesting to observe that much programmable networking
research addresses only a subset of the concerns implied in
Figure 1. In particular:

• active networking research tends to focus on stratum 1
(e.g. the Scout implementation of NodeOS [34], [35]) and
stratum 3 (the performance requirements of stratum 2
typically cannot be met in a Java-based execution-
environment, and stratum 4 coordination is typically left
to the ‘application’)1;

• open signaling approaches focus mostly on strata 2 and 4
(typically, router control interfaces enable stratum 2
configurability but do not support stratum 3 functions
and completely hide stratum 1);

It can also be observed that most out-of-band active systems
address only stratum 2 and/ or stratum 3 concerns (sometimes
stratum 1 is partially addressed as well). For example, the
Click modular router [28], the NetBind component binding
system [7], Washington University’s pluggable router
framework [13], and the IEEE P1520 router component model
[22] are all targeted at stratum 2. (Click employs a fine grained
C++-based component model with flexible support for the
configuration of packet scheduling, route lookup and queue
drop modules etc.; NetBind is similar in concept but is lower-

1 Some active networking implementations (e.g., the Scout

NodeOS implementation reported in [35], and the Lancaster work on
LARA++ [11]) do address stratum 2 as well as strata 1 and 3.
However, there is typically a distinction drawn between an in-kernel
‘fast path’ environment for ‘default’ packet handling, and a less
efficient, user-space, environment for configurable/ extensible packet
handling code. While the performance deficit is not so great as in
Java-based execution environments, it remains true that the custom
path suffers in terms of performance while the fast path suffers in
terms of flexibility. It is not so necessary to face this trade-off in the
open signalling approaches discussed next.

4: coordination

3: application services

2: in-band functions

1: hardware abstraction

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200356

level and targeted at network processors; the Washington work
is a framework for pluggable per-flow modules in the NetBSD
environment; P1520 is working towards a standardised,
language-independent, component model for modular routers.)
Slightly more generally, the Knit system [37] supports stratum
2 (and stratum 1 also) in the form of a component model that
has been used for both OS and in-band packet handling
functions. However, Knit is supported only on conventional
workstation architectures, not on specialised programmable
routers. The VERA extensible router architecture [27] supports
stratum 1 and stratum 2 on a wider range of router architectures
but offers a far less general and flexible component model.

Overall, what appears to be missing from the state-of-the-art i s
a generic framework that is both paradigm-independent and
equally applicable to all strata of the reference architecture.

2.3 Run-time Reconfiguration
It can also be strongly argued that support for run-time
reconfiguration is inadequately addressed by current research.
For example, while the above-cited component models support
the initial configuration of components, none of them
explicitly support the subsequent reconfiguration of a
running system (e.g. to accommodate newly discovered
services in a ubiquitous computing environment; to
reconfigure an ad-hoc network; or to adjust the resources
allocated to a dynamic private virtual network). Furthermore,
systems that do allow reconfigurability (e.g. most active
networking systems) still fail to adequately support the
management of system in tegr i t y over reconfiguration
operations (e.g. ensuring that firewall updates are applied
universally and consistently; or that a change in a source
media-filter type is accompanied by a compatible change at the
sink; or that allocating more resources to one dynamic private
virtual network does not lead to starvation in another).

There has been some work on the use of reflection to address
such management related issues. For example, [21] describes
reflective support for checking the integrity of coordination/
control code being downloaded into an execution
environment, and [40] further supports some degree of
dynamic reconfiguration of downloaded control code. More
recently, [46] supports reconfiguration through dynamic
linking, but not in the context of a principled reflective
component model. On the other hand, [47] provides a
reflective component model but focuses on a flexible
deployment architecture rather than on fine-grained
reconfiguration.

However, this work is again partial; it typically addresses
only execution environment and coordination strata concerns
(i.e. strata 3 and 4 in the reference architecture), and i s
programming language specific (Java).

2.4 Summary
Overall, we argue that while there has been significant research
in programmable networking, most work to date has focused
on specific and limited areas of the overall design space. This
lack of recognition of the ‘big picture’ has led to a
proliferation of programmable networking solutions that are
on the one hand partial and on the other hand incapable of
being easily combined to produce more comprehensive
solutions. More specifically, there has been insufficient
attention paid to the development of ‘integrated’ solutions
that are capable of offering:

• a language-, platform- and paradigm-independent
programming model that can be uniformly applied in all
four strata of the reference architecture without
unacceptable compromise (e.g. in terms of performance),
and

• flexible support for both the configuration (e.g.
deployment, instantiation, initialisation) and run-time
reconfiguration (e.g., adaptation, extension, evolution,
removal) of mechanisms and services in all strata.

Our approach to the provision of such an integrated solution
is detailed in the rest of this paper.

3. TOWARDS A COMPONENT-BASED
APPROACH TO PROGRAMMABLE
NETWORKING
3.1 Support for Components

3.1.1 A Component-Based Computational Model
To realise the software component concept in the
programmable networking environment, we first need a
component-based computational model that satisfies the
particular demands of that environment. As the basis of
NETKIT, we employ an abstract, minimal, generic, language-
independent, component-based computational model that i s
derived from our previous work on component-based
middleware [8].

The key concepts embodied by the computational model are:
component, interface, receptacle, binding, and capsule. These
are illustrated in Figure 2 which shows two components inside
a capsule (dotted lines). The component at the top left
supports two interfaces (small circles) and one receptacle
(small cup). This receptacle is bound to one of the interfaces of
the bottom right component.

Figure 2: The component-based computational model.

Components can support any number of interfaces and
receptacles. Interfaces are strongly typed and consist of a set of
datatype definitions and operation signatures; they are
defined in a programming-language-independent interface
definition language such as OMG IDL or Microsoft IDL (we use
OMG IDL). Receptacles are ‘anti-interfaces’: whereas an
interface expresses a unit of service provision, a receptacle
expresses a unit of service requirement. (The term ‘receptacle’
is also employed by the CORBA Component Model [36]. The
concept itself appears in various other component models
under various names.) Receptacles are used to make explicit a
dependency of one component on another. For example, if a
component relies on a service of type S, it would declare a
receptacle of type S’ that would be bound at run-time to an
interface instance of type S (which would be provided by some
other component). The fact that dependencies are explicitly
represented means that when a component is dynamically
loaded it is possible to determine what other components and

generic
capsule
services

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200357

interfaces must be present for it to work correctly. This is a
crucial enabler for ‘third-party’ configuration and dynamic
reconfiguration of component topologies.

Bindings are associations between receptacles and interfaces
that reside in the same capsule (and are type compatible). They
are assumed to be implemented minimally and with negligible
or low overhead. The viability of the component model at fine
granularities, particularly in demanding areas like in-band
packet processing, is heavily dependent on the degree of this
overhead which must be comparable to, or less than, the
overhead of a function call in a language like C. It is important
to note that, as bindings are abstract, there is no prescription
of a particular underlying implementation. This fact is heavily
exploited in our current implementation work, as discussed in
§4.2, which employs multiple alternative implementations of
binding.

Finally, capsules provide a run-time environment for a set of
component instances that are mutually participating in
bindings. Capsules are typically, but not necessarily (see
section §4.2 below), implemented as address spaces. The
central role of capsules is to provide generic services for
dynamically loading and unloading components, and for
creating and destroying bindings. As well as being available
from within the capsule in a third-party manner, these services
can be made available from outside the capsule to support
external third-party loading and binding2. This is useful to
enable bootstrapping and third-party management of capsules
(possibly from a remote site). In the programmable networking
environment, it must additionally be possible to render the
(un)loading and (un)binding of components subject to
security constraints (i.e. to constrain who has rights to
deploy, use, bind, reconfigure, etc.) and safety constraints (i.e.
limits on what components can do to their host node). While
policy in these areas is clearly application dependent, basic
security and safety mechanisms should be built into the
component model itself (e.g., the capsule) wherever possible
and appropriate.

Although they may appear superficially similar, capsules are
very different from active networking ‘execution
environments’ (e.g. [ANTS,01]). Capsules are a minimal
bootstrapping facility and are neutral with respect to
programming language and API (beyond the very minimal
load/ unload, bind/ unbind ‘meta-API’ outlined above).
Capsules form the basis of a generic component model that, in
turn, serves as the basis for any desired programmable
networking functionality (including the construction of
execution environments, which in our architecture would be
implemented as component frameworks—see §3.3).

3.1.2 Portability Considerations
Portability is a crucial issue for us; we need to deploy the
component model on a wide range of hardware platforms, from
standard PCs to a variety of specialised programmable router
platforms.

2 This implies that the capsule’s loader must include simple

protocol support for remote access. We provide a ‘bootstrapping’
TCP/IP implementation on each NETKIT enabled router for this
purpose. To provide more comprehensive remote access, our
approach, based on our previous work [8], would be to deploy CFs in
the capsule that provide appropriate middleware functionality.

The obvious approach to portability is to define a single
‘standard’ OS-level API that all hardware platforms must
support. Unfortunately, this simple approach has major
drawbacks. First, some platforms will suffer sub-optimal
performance because the abstractions employed by a
necessarily ‘lowest common denominator’ API will tend to
map better to some platforms than others (e.g. abstractions that
implicitly assume shared memory may be hard to implement
efficiently in a distributed memory environment). Second, a
standard API precludes the exploitation of specialised
platform-specific hardware (e.g. the availability of
‘microengine’ processors—as on the Intel IXP1200—or direct
access to I/O ports). And, third, the work involved in porting a
comprehensive API is likely to be significant in itself.

To avoid these difficulties, we adopt an approach to
portability that is strongly influenced by radical micro-kernel
architectures like L2 [30] and Think [41]. More specifically, we
define two levels of portability. The first level comprises the
component model itself; this is kept as simple as possible, and
relies on an absolute minimum of system support so that it can
be readily ported. Essentially, all that is needed is a sufficient
implementation of capsules, including the capability to load/
unload executables and make/break bindings. The second
level, which comprises all further system-oriented and
hardware specific functionality (stratum 1) is then
implemented in terms of the component model itself. This
includes platform specifics like network card APIs, as well as
generic OS-oriented APIs for threads, buffers, inter-capsule
communication, etc.

A key benefit of this approach, apart from facilitating porting,
is that only those stratum 1 services that are actually required
on any particular platform need be ported and deployed. At the
same time, thanks to the component model’s explicit
representation of dependencies, services that are not initially
needed can be brought in later if requirements change/ evolve.

3.2 Reflection: Basic Support for
Reconfiguration
Beyond the capability to construct component configurations
(as provided by the basic component model outlined above),
there is the further requirement, identified in §2.3, to support
run-time reconfiguration of components in a generic and
principled way. This breaks down into two areas: adaptation
(to change behaviour along dimensions that are foreseen at
deployment time), and extension (to add new behaviour
unforeseen at deployment time). Furthermore, there is an
associated requirement to first be able to inspect current
configurations as the basis of subsequent adaptation and
extension.

We employ the notion of reflection [31] to support such
inspection, adaptation, and extension. Essentially, reflection
is a pattern for opening up ‘black box’ systems to inspection,
adaptation and extension. In abstract terms, this is achieved by
invoking a so-called meta-interface on the system (see figure
3) to yield one or more meta-models of the system that can be
inspected, adapted and extended. A defining feature of
reflection is that these meta-models (which are said to reside at
the meta-level) relate to the underlying system (referred to as
the base-level) in a causally connected manner. This means
that a change made to a meta-model implicitly causes a
corresponding change in the underlying system, and vice
versa. As an example, a topological graph-like meta-model (as
in figure 3) could be used to explicitly represent the implicit

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200358

topology of a composition of components—e.g. a fine-grained
component-based packet forwarder à la Click [28]. Thanks to
causal connection, when the graph is manipulated, e.g. by
deleting or redirecting an arc, the underlying configuration i s
changed correspondingly (e.g. in terms of bindings).

Figure 3: The concept of reflection.

Examples of reflective meta-models that we employ in our
current work are as follows:

• an architecture meta-model which provides inspection,
adaptation and extension of component compositions (as
above),

• an interception meta-model which supports pre- and post-
method call interception of invocations being made
across bindings,

• an interface meta-model which supports the navigation of
interfaces and receptacles on a component (cf. MS COM’s
‘IUnknown’ convention), and inspection of interface/
receptacle signatures (cf. standard Java reflection in which
interfaces can be discovered and inspected at run-time),
and

• a resources meta-model that represent types and
quantities of resource dedicated to various components or
sets of components].

Detailed discussions of the first three of these meta models can
be found in [2]. Detail on the resources meta-model i s
available in [3].

3.3 Component Frameworks: Constraining
Reconfiguration and Providing Structure
Although n e c e s s a r y , the component model’s explicit
representation of dependencies and its reflective meta-models
are not in themselves suf f ic ient for the management of
reconfiguration. In particular, their genericity precludes
specific competencies in imposing and policing domain-
imposed constraints on reconfiguration. For example, they
cannot prevent the nonsensical replacement of an H.263
encoder with an MPEG encoder, or mandate that a packet
scheduler must always receive its input from a packet
classifier. Such constraints are essential if we are to ensure
meaningful configuration and reconfiguration, and therefore
the system must provide support for their expression and
enforcement.

To add the necessary dimension of specificity and constraint,
and also to provide structure for domain-specific component
configurations, we apply the notion of component frameworks.
These were originally defined by Szyperski [39] as
“ collections of rules and interfaces that govern the

interaction of a set of components ‘plugged into’ them” (see
figure 4). More concretely, component frameworks (hereafter,
CFs) are targeted at a specific domain and embody ‘rules and
interfaces’ that make sense in that domain. For example, we
might employ a protocol CF that embodies knowledge, in the
form of appropriate rules and interfaces, about the
configuration (and reconfiguration) of the ‘plugged-in’
protocols that it hosts (e.g. “you may not place an IP
component on top of a TCP component”). Similarly, a packet-
forwarding CF might accept packet-scheduler plug-ins; or a
media-stream filtering CF might accept various media codecs
as plug-ins.

Essentially, CFs serve as ‘life-support environments’ for
components in a particular domain or application area. They
contain arbitrary CF-specific state, embody shared services for
plug-ins, and actively police their plug-ins to ensure that they
conform to their domain-specific rules and interfaces (e.g.
interfaces can be inspected at run-time using reflection). CFs
can support multiple instances of multiple types of plug-in,
and plug-ins can either be independent of each other or can be
bound together in arbitrary configurations (as long as these
conform to the rules imposed by the host CF).

Figure 4: The concept of component frameworks.

CFs themselves are packaged as components. One implication
of this is that, like any other component, CFs can be loaded/
unloaded dynamically. Another implication is that we can nest
CFs to gain the benefits of hierarchical composition. For
example, we have previously built a whole middleware
infrastructure as a nested set of CFs [8].

To support reconfigurability that is consistent with domain-
specific constraints, CFs can also provide CF-specific
reflective meta-models that embody domain specific
semantics. These are typically layered on top of one or more of
the generic meta-models mentioned at the end of §3.2. For
example, a protocol CF could constrain an architecture meta-
model to accept only linear topologies. In addition, CFs often
require their plug-ins to support pre- and post-
reconfiguration operations so that the host CF can ensure that
they are in a dormant state before being reconfigured and can
secure their state over reconfiguration operations.

3.4 Potential Benefits
The most obvious potential benefit of the proposed approach
is that its ubiquitously-applied component model promises a
uniform environment for the development, configuration, and
reconfiguration of programmable networking software at all
levels of the system and at any appropriate granularity and
using any appropriate programming language. For example,
functions as diverse as in-band packet handling and signaling
can be developed, deployed, configured and reconfigured in a
common manner and can rely on common support (such as
dynamic remote instantiation, reflective services, and generic
mechanism level security and safety support). In addition, the
approach is, in principle, sufficiently general to accommodate
any of the currently popular programmable networking
paradigms (active networking, open signaling or application-

plug-in components

c

component
framework

?base level

meta level

meta-interface

meta-
model

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200359

level active networking). Essentially, all of these (e.g. an active
networking EE) can be implemented in terms of CFs. Also,
because components are language independent, portable, and
(hopefully) can be applied at a wide range of granularities,
they offer a solid basis for the incremental deployment of
existing programmable networking software into a common
component-based environment.

At a more detailed level, the fact that they are explicitly aware
of their dependencies means that components can be
(automatically) loaded on demand by their host CF so that
only functionality that is actually needed at any given time
need be resident on each node. Thus, a JVM instance (wrapped
as a component) need only be loaded when the first Java
component is deployed in a given address space; or a stratum
1 threading component need only be loaded if some
component requires threads. This conserves resources and
enables routers with limited capabilities to participate more
effectively in programmable networking environments.

In general, the approach facilitates bespoke software
configurations—by selecting appropriate CFs in each stratum,
desired functionality can be achieved while minimising
memory footprint; trade-offs will vary for different system
types (e.g. embedded, wireless devices; large-scale core
routers).

The approach also facilitates analysing and operating on per-
node software as a single composite—e.g. we can use the
architecture meta-model to check consistency, integrity,
security, etc; and can uniformly reconfigure and evolve the
node’s software base as needed (e.g. to load new functionality
on demand, or unload functionality when no longer required;
or juggle node resources between different activities); we can
also instrument any part of the system in a uniform manner
(using interceptors).

Furthermore, the approach helps organise ad-hoc interaction
between layers—as all software is structured in terms of a
uniform component model, any part of the system has the
basic capability to talk to any other part (barring access
control, and security etc. concerns) in a principled way (cf.
[48])—e.g. application or transport layer components can
straightforwardly obtain ‘layer-violating’ information from,
e.g., the link layer (this is increasingly recognised as
indispensable in mobile environments); furthermore, such
links can be established in an ad-hoc, dynamic, manner.

Finally, reflection and CFs together promise significant
benefits in terms of the management of configuration and
reconfiguration. Generic meta-models can provide multiple
views of component configurations and support ‘principled’
runtime inspection and reconfiguration along multiple
alternative ‘dimensions’. And where it is important to temper
this power to honour domain-specific constraints, CF-specific
meta-models can be used to appropriately constrain
reconfiguration operations. Additionally, CFs simplify
component development and assembly through design reuse
and guidance to developers, encourage lightweight
components (plug-ins), and increase the understandability and
maintainability of systems. Most crucially, because CFs
embody semantics and impose constraints relating to their
area, they can play a leading role in maintaining integrity in
the face of reconfiguration.

4. IMPLEMENTATION
4.1 Overview
Our implementation and evaluation of the NETKIT approach to
programmable networking is still at an early stage. In this
section, we describe our implementation work to date. §4.2
discusses work on deploying the component model, while
§4.3 discusses a prototype stratum 2/3 CF.

To evaluate its claimed support for heterogeneity, we are
currently working to deploy the NETKIT approach not only in
standard PC-router environments, but also in Intel IXP1200
network processors-based routers [23], and in embedded,
wireless and mobile devices [42]. This heterogeneity is crucial
in validating the claimed generality of our approach. In all
cases, the challenge is to maintain as much commonality as
possible without compromising either (re)configurability or
performance.

Figure 5: Schematic architecture of an IXP1200-based
router.

In this paper, we focus mainly on the Intel IXP1200
implementation environment. As sketched in figure 5, the
IXP1200 features an exotic hardware architecture comprising
multiple processors—both a StrongARM control processor
a n d p r i m i t i v e I n t e l - p r o p r i e t a r y ‘microengine’
processors—together with various distributed/ hierarchical
memory arrays.

4.2 Component Model Implementation
Our component model implementation, called Maya , i s
currently built on top of a subset of the Mozilla’s XPCOM
component model [45]. However, we are progressively moving
away from the XPCOM dependency by applying the
portability principles outlined in §3.1.2. For example, we are
wrapping the stratum 1 level support provided by XPCOM
into independent CFs. More importantly, we are structuring
the component model run-time itself in terms of a number of
CFs as follows:

• a multi-address-space capsule CF,

• a plug-in loader CF,

• a plug-in binder CF.

The multi-address-space capsule CF takes address spaces as
plug-ins, resulting in a per-capsule run-time environment that
comprehends multiple address spaces. For example, a capsule
could encapsulate both a Linux process on the IXP1200’s
control processor, and one or more microengines (each
microengine is associated with a single address space).
Encapsulating multiple address spaces in capsules offers a
powerful and general means of abstracting over tightly-
coupled but heterogeneous hardware: the components within
the capsule do not need to know that their execution
environment differs from that of their peers, and they can

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200360

uniformly operate on their peer components, and be operated
on, using a common set of meta-models.

Building on multi-address-space capsules, the plug-in loader
and plug-in binder CFs support (as plug-ins) multiple
alternative implementations of component loading and
binding respectively. In particular, these plug-ins can provide
third-party loading/ binding in (intra-capsule) address spaces
other than the one from which they were invoked. This builds
on the transparency offered by the multi-address-space capsule
concept and makes such a capsule a truly unified component
support environment. For example, a component running in a
Linux address space can initiate the loading of a component
onto a microengine—without necessarily knowing that the
component will be placed on a microengine—and then bind
itself to the newly-loaded component without being aware that
the latter is in any way different from itself. Happily, this
transparency entails no change to the component model: i t
simply leverages its existing third-party loading/ binding
concept.

Figure 6: Multi-address-space capsules, loaders and binders

Figure 6 illustrates the multi-address-space capsule and plug-
in loader/ binder concepts in the IXP1200 environment: i t
shows a multi-address-space capsule that encapsulates a Linux
process address space and six microengine address spaces.
Within this capsule are a number of components that are
loaded and bound using in-capsule plug-in loaders and
binders. The figure also shows a capsule in the PC
environment that encapsulates three Windows address spaces,
each of which contains a number of communicating
components (this latter will be revisited in §4.3).

Transparency of loader/ binder selection is achieved by
providing a standard set of polymorphic capsule APIs (i.e.,
load(), unload(), bind() and unbind()). On each call of these
APIs, an appropriate plug-in is chosen on the basis of runtime
configuration information. The choice of a loader, for example,
might be based on attributes attached to the to-be-loaded
component, such as target processor-type, target OS-type etc.
Similarly, a binder might be selected on the basis of the
hosting address spaces of the to-be-bound interface and
receptacle. For example, to bind two components on separate
microengines, a binding implementation based on shared
scratch memory might be (transparently) selected. Where more
control is required, and where multiple possibilities exist (e.g.,
where there is a choice of multiple microengines on which to
load a component), transparency of plug-in selection can be
foregone by means of a CF-specific meta-interface.

As well as providing a simple and consistent programming
model, implementing loading and binding as plug-ins
considerably simplifies the task of porting the Maya runtime
to exotic architectures such as network processors. Returning
to the above StrongARM/ microengines example, we simply
employ a standard, generic, Linux capsule implementation. It
is only the architecture-specific plug-in functionality (loaders
and binders) that need to be microengine-aware. We expect the
following to be a common deployment pattern: a ‘primary’
address space hosts the Maya runtime and ‘secondary’ address
spaces present limited functionality to their hosted
components. For example, a component hosted in a
(‘secondary’) microengine address space will typically not
have access to loaders and binders (i.e. the functionality
underlying load(), bind() etc. will, for such components, be
null). The approach also means, of course, that the dedicated
fast-path packet-processing parts of the architecture are free of
the performance and memory burden of the runtime. We
emphasise again, though, that all this (i.e. notions of ‘primary’
and secondary’ address spaces etc.) is entirely transparent to
the Maya programmer.

As well as the default intra-capsule vtable-based bindings (we
inherited these from Maya’s XPCOM implementation base), we
are currently developing a range of IXP1200-specific plug-in
binding types. These are based on i) register transfers; ii)
modifying branch instructions (cf. NetBind [7]); iii) shared
memory mediated links involving either scratch memory or
the additional static or dynamic RAM provided by the
IXP1200; iv) paths over the various buses provided by the
IXP1200.

We have not yet carried out a comprehensive performance
evaluation of the IXP1200-specific loaders and binders. We
observe, however, that the overhead of establishing and
reconfiguring bindings is entirely ‘out-of-band’ and does not
impact data flowing between components. The major factor
impacting the overhead of in-band inter-component
communication is the choice of binding mechanism involved.
As we are using essentially the same mechanisms as other well-
evaluated systems (i.e. Netbind [7] and Intel’s MicroACE [23])
there is no reason to expect that performance should suffer.
The one Maya-specific feature that might significantly impact
performance is the number of inter-component bindings
involved—which is a function of the granularity of
components. Again, based on evaluations of previous fine-
grained systems such as Click [28] we have no a-priori reason
to believe that fine-grained componentisation is necessarily
problematic.

4.3 Component Framework Developments
Our initial focus in the CF area has been on the design of a
simple, but non-trivial, programmable networking-oriented CF
that exercises many of Maya’s configuration and dynamic
reconfiguration features (including: multi-address-space
capsules, plug-in loaders and binders, dynamic insertion of
components based on the architecture meta-model; run-time
type checking and interface discovery; the resources CF; and
interceptors). Specifically, we have designed a stratum 2 and 3
‘Router CF’ which accepts, as plug-ins, Maya components that
perform arbitrary user-defined packet-forwarding functions.
Figure 7 illustrates one possible instantiation of the CF;
however, the CF is capable of instantiating a very wide and
general range of router configurations as long as these
conform to a minimal set of CF-imposed rules.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200361

In particular, the following set of rules, enforced at component
load time by the CF using Maya’s architecture and interface
meta-models, must be adhered to by plugged-in components:

• plugged-in components must support specific packet-
passing interfaces/ receptacles (called IPacketPush and
IPacketPull: these respectively enable push- and pull-
oriented inter-component communication [28]);

• plugged-in components may (optionally) support an
IClass i f i e r interface which exports an operation
register_filter() that is used to install packet-filters; the
intended semantic is that an installed packet-filter directs
outgoing packets to particular outgoing IPacketPush or
IPacketPull interface(s) that are named in the packet-filter
specification; installing packet-filters may entail creating
additional instances of these interfaces, which is possible
using the standard Maya programming model;

• plugged-in components may be composite, in which case
all their internal constituents must (recursively) conform
to the CF’s rules; additionally, composite components are
expected to contain a so-called controller component that
manages and configures the other internal components
(see figure 7).

Figure 7: A composite that conforms to the Router CF

The CF also supports the definition of ‘structural rules’,
expressed in terms of a simple XML schema, that constrain the
reconfiguration of, and thus the internal topology of,
composite components. Furthermore, these rules can be added
or removed dynamically. Addition/ removal of rules is policed
by an ACL managed by the composite’s controller; the rules
themselves are interpreted and enforced within an interceptor
that is attached to calls of Maya’s bind() primitive.

The Router CF also addresses safety/ security issues. To
prevent untrusted plugged-in components (e.g. per-
application components that act on a particular preselected
packet flow) from maliciously tampering with the code/ data of
other components in the same capsule, or from accidentally
taking down the whole of the router capsule by crashing, we
exploit Maya’s support for multi-address-space capsules (see
figure 6). In particular, a specialised plug-in loader is used
which, if it determines that a to-be-loaded component i s
potentially malicious or otherwise dangerous, instantiates a
new ‘secondary’ address space and loads the component into
that (alternatively, if such an address space is already in place

from a prior load, then this may be used) [43]. Such
‘secondary’ address spaces are barred from themselves
accessing loading and binding services so that components
loaded into them cannot initiate any such activities. When
these untrusted components need to be bound to others in the
‘primary’ address space, a companion plug-in binder (having
validated the legality of the binding) transparently deploys
the appropriate inter-process communication mechanisms as
discussed above.

Finally, the Router CF heavily exploits Maya’s resources
meta-model so that composites (subject to access constraints)
can control the resourcing of designated tasks (e.g. packet
forwarding, route lookup), especially in terms of threads, and
map these flexibly to their constituent components.

The design of the Router CF is now fairly mature and we are
implementing it in both PC-based and IXP1200-based routers.
We hope to be able to validate its performance and flexibility
in the near future. Interestingly, the IXP1200 implementation
will bring to the fore the issue of component ‘placement’: in
the PC implementation, we already, as described above, choose
to place components in different address spaces according to
security/ safety considerations; in the IXP environment we
additionally need to situate components (whether on the
control processor or on some specific microengine) according
to performance, memory availability, and load-balancing
considerations. We consider that the CF itself should embody
the ‘intelligence’ to transparently manage this placement, but
with the possibility to control/ override this via a ‘placement’
CF built into a microengine loader.

5. FURTHER RELATED WORK
§2.2 has already discussed related work in the various
programmable networking paradigms. That section also
discussed stratum 2 component models for programmable
networking. In this section we round off these discussions by
briefly surveying related work in the area of software
components in general and component based middleware in
particular.

MMLite [20] is a component-based operating system built
using MS COM components. It offers limited support for
dynamic reconfiguration through a ‘mutation’ mechanism
which enables the replacement of a component implementation
at run-time. However it has no framework (e.g. in terms of
reflection and CFs) to support and facilitate this replacement.
Think [41] is another lightweight component model that is
targeted at the construction of system software. It is close to
Maya in its goals but has so far only been used in operating
system implementation.

In the middleware environment, other researchers have
investigated l ightweight and flexible component
architectures—like us, they aim to build the middleware itself
in terms of components as opposed to merely supporting
components on top of monolithic middleware. Prime examples
are the University of Illinois’ DynamicTAO [29] and LegORB
[38]. These are flexible ORBs that employ a dependency
management architecture that relies on a set of ‘configurators’
that maintain dependencies among components and provide
hooks at which components can be attached or detached
dynamically. Maya supports a similar capability but as an
integrated part of the component model. Another example i s
work at Syddansk University on building real-time control
middleware in terms of JavaBeans [26]. Again, none of this

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200362

work has yet been applied in the programmable networking
environment.

Finally, the OMG’s CORBA Component Model (CCM) [36] i s
aimed at facilitating the deployment of distributed
applications in an enterprise environment. Its central aim is to
reduce the time to market for server-side code by providing a
configurable server-side container architecture that supports
generic non-functional concerns like transactions, persistence
and lifecycle management. Other related solutions are
Microsoft’s DCOM and .NET [33], and Sun’s Enterprise Java
Beans. Although these technologies hold significant promise
in the enterprise environment, they are not directly applicable
to programmable networking environments because their
container architectures carry significant overhead in terms of
performance and memory footprint. In addition, some of them
(i.e. EJB and .NET) operate only in a bytecode execution
environment.

6. CONCLUSIONS AND FUTURE WORK
We believe that a fine-grained, reflective, language-
independent component model, as discussed here, offers
significant potential as the basis of an ‘integrated’ approach to
the structuring of programmable networking software.

Apart from the potential benefits outlined in §3.4, we see our
work as having potentially great applicability in the specific
area of programming support for network processors. It i s
widely acknowledged that these architectures are difficult to
program and that there is little or no commonality in
programming environments across these machines due to their
extreme architectural heterogeneity [44]. We believe that our
component-based approach is a promising way of providing at
least a degree of design portability across these architectures.
A components- and bindings-based model seems to fit many
such architectures, and the approach discussed in §4 of
implementing loading and binding functionality as
architecture-specific plug-ins to a generic component model
runtime seems to have potential in exploiting and unifying a
wide diversity of processing environments and internal
communication mechanisms (the latter by means of plug-in
binders). Furthermore, it is easy to see how network processor-
specific hardware assists can be presented to the programmer
as components. For example, a hardware checksummer can be
presented as just another component to plumb in; the fact that
it is implemented in hardware just means that the component
implementation is effectively null (additionally, a binding to
the checksummer ‘component’ could transparently map to
whatever hardware-specific mechanism is needed to invoke the
physical checksummer).

Finally, in addition to the IXP1200-related future work
mentioned in §5, we are currently working with Columbia
University to re-engineering their Genesis system [6]. This is a
distributed service layer that supports the creation of dynamic
private virtual networks, each potentially with its own
semantics (addressing, routing, QoS, etc.). Apart from the
opportunity to investigate the componentisation of an
existing programmable networking system with a view to
enhancing its deployability and (re)configurability, this i s
also particularly interesting to us as an exemplar of a richly-
functioned stratum 4 system to complement our existing work
in the other three strata.

7. REFERENCES
[1] The ANTS Toolkit,

http://www.cs.utah.edu/flux/janos/ants.html .

[2] Blair G.S., Coulson G., Robin P. and Papathomas, M., “An
Architecture for Next Generation Middleware”, Proc. IFIP
International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware’98), Davies N.A.J., Raymond K. & Seitz J.
(Eds.), The Lake District, UK, pp. 191-206, 15-18
September 1998.

[3] Blair, G.S., Costa, F., Coulson, G., Duran, H., Parlavantzas,
N., Delpiano, F., Dumant, B., Horn, F., and Stefani, J.B.,
“The Design of a Resource-Aware Reflective Middleware
Architecture”, Proceedings of the 2nd International
Conference on Meta-Level Architectures and Reflection
(Reflection’99), St-Malo, France, Springer-Verlag, LNCS,
Vol 1616, pp115-134, 1999.

[4] Brown, K., “Building a Lightweight COM Interception
Framework Part 1: The Universal Delegator”, Microsoft
Systems Journal, January 1999.

[5] Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S.,
Volmer, J., Welch V., “A National-Scale Authentication
Infrastructure”, IEEE Computer, Vol 33, No 12, pp 60-66,
2000.

[6] Campbell, A.T., Kounavis, M.E., Villela, D.A., Vicente, J.B.,
de Meer, H.G., Miki, K., Kalaichelvan, K.S., “Spawning
networks”, IEEE Network Magazine, Vol 13, No 4, pp. 16-
29, July/Aug 1999.

[7] Campbell, A.T., Chou, S., Kounavis, M.E., Stachtos, V.D.,
and Vicente, J.B., “NetBind: A Binding Tool for
Constructing Data Paths in Network Processor-based
Routers”, 5th IEEE International Conference on Open
Architectures and Network Programming (OPENARCH'
02), June 2002.

[8] Coulson, G., Blair, G.S., Clark, M., Parlavantzas, N., “The
Design of a Highly Configurable and Reconfigurable
Middleware Platform”, ACM Distributed Computing
Journal, Vol 15, No 2, pp 109-126, April 2002.

[9] Coulson, G., Moonian, O., “A Quality of Service
Configurable Concurrency Framework for Object Based
Middleware”, Concurrency and Computation: Practice and
Experience (to appear), 2002.

[10] Chandra, P., Fisher, A., Kosak, C., Ng, T.S.E, Steenkiste, P.,
Takahashi, E., Zhang, H., “Darwin: Customizable Resource
Management for Value-added Network Services”, in 6th
IEEE Intl. Conf. on Network Protocols (ICNP 98), Austin,
Texas, USA, Oct 1998.

[11] Schmid, S.,Chart, T., Sifalakis, M, Scott, A.C., “Flexible,
Dynamic and Scalabale Service Composition for Active
Routers”, Proc. IWAN 2002, Zurich, Dec. 2002.

[12] Clark, M., Blair, G.S., Coulson, G., Parlavantzas, N., “An
Efficient Component Model for the Construction of
Adaptive Middleware”, Proc. IFIP/ACM Middleware 2001,
Heidelberg, Nov 2001.

[13] Decasper, D., Dittia, Z., Parulkar, G., Plattner, B., “Router
Plugins: A Software Architecture for Next Generation
Routers”, Proc. ACM SIGCOMM 98, 1998.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200363

[14] Engler, D.R., Kaashoek, M.F., O’Toole, J., “Exokernel: An
Operating System Architecture for Application-Level
Resource Management”. Proc. 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, CO,
USA, pp 251-266, Dec 1995.

[15] Fry, M., Ghosh, A., “Application Level Active
Networking”, Proc. 4th Intl. Workshop on High
Performance Protocol Architectures (HIPPARCH '98), June
98.

[16] Merugu, S., et al, “Bowman and CANEs: Implementation
of an Active Network”, Proc. 37th Conference on
Communication, Control and Computing, Monticello,
Illinois, September 1999.

[17] Yemini, Y., da Silva, S., “Towards Programmable
Networks”, Proc. IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management”, Italy,
October 1996.

[18] Hicks, M.W., Moore, J.T, Alexander, D.S., Gunter, C.A.,
Nettles, S., “PLANet: an Active Internetwork”, Proc. IEEE
INFOCOM (3), pp 1124-1133, 1999.

[19] Schwartz, B., et al, “Smart Packets for Active Networks”,
Proc. OPENARCH 1999, March 1999.

[20] Helander, J., Forin, A., “MMLite: A Highly
Componentized System Architecture”. Proc. 8th ACM
SIGOPS European Workshop, pp 96-103, Sintra, Portugal,
September 1998.

[21] Hjalmtysson, G. “The Pronto Platform - A Flexible Toolkit
for Programming Networks Using a Commodity Operating
System”, Proc. IEEE Conf. on Open Architectures and
Network Programming, OPENARCH 2000, Tel-Aviv,
Israel, March 2000.

[22] IEEE P1520 Proposed IEEE Standard for APIs for
Networks, http://www.ieee-pin.org/ .

[23] Intel IXP1200; http://www.intel.com/IXA .

[24] Isaacs, R., Leslie, I., “Support for Resource-Assured and
Dynamic Virtual Private Networks”, JSAC Special Issue
on Active and Programmable Networks, 2001.

[25] Jones, N.D., “An Introduction to Partial Evaluation”, ACM
Computing Surveys, 28(3), pp. 480-504, Sept 1996.

[26] Joergensen, B.N., Truyen, E., Matthijs, F., and Joosen, W.,
“Customization of Object Request Brokers by
Application Specific Policies”. IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware'2000). New York.
April 3-7, 2000.

[27] Karlin, S., Peterson, L., “VERA: An Extensible Router
Architecture”, Proc. IEEE Conf. on Open Architectures and
Network Programming, OPENARCH 2001, Anchorage,
Alaska, pp 3-14, April 2001.

[28] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek,
M.F., “The Click Modular Router”, Proc. ACM SOSP 1999,
pp 217-231, Dec 1999.

[29] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T.,
Magalhães, L.C., and Campbell, R.H., “Monitoring,
Security, and Dynamic Configuration with the
dynamicTAO Reflective ORB”. IFIP International
Conference on Distributed Systems Platforms and Open

Distributed Processing (Middleware'2000). New York.
April 3-7, 2000.

[30] Liedtke, J., “On µ-Kernel Construction”, Proc. 15th ACM
Symposium on Operating System Principles (Copper
Mountain Resort, CO., Dec. 3-6). ACM Press, New York,
NY, pp. 237-250,1995.

[31] Maes, P., “Concepts and Experiments in Computational
Reflection”, Proc. OOPSLA'87, Vol. 22 of ACM SIGPLAN
Notices, pp147_155, ACM Press, 1987.

[32] Mozilla Organization, XPCOM project, 2001,
http://www.mozilla.org/projects/xpcom .

[33] Microsoft, .Net Home Page, http://www.microsoft.com/net.

[34] NodeOS Interface Specification, AN Node OS Working
Group,
http://www.cs.princeton.edu/nsg/papers/nodeos.ps , Jan
2001.

[35] Peterson, L., Gottlieb, Y., Hilber, M., Tullmann, P., Lepreau,
J., Schwab, S., Dandekar, H., Purtell, A., Hartman, J., “ An OS
Interface for Active Routers ”, IEEE Journal on Selected
Areas in Communications, special issue on Active
Networks, March 2001.

[36] Object Management Group, “CORBA Components” Final
Submission, OMG Document orbos/99-02-05.

[37] Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E., “Knit:
Component Composition for Systems Software”, Proc.
OSDI 2000, pp 347-360, Oct 2000.

[38] Roman, M., Mickunas, D., Kon, F., and Campbell, R.H.,
“LegORB”, Proc. IFIP/ACM Middleware’2000 Workshop
on Reflective Middleware, IBM Palisades Executive
Conference Center, NY, April 2000.

[39] Szyperski, C., “Component Software: Beyond Object-
Oriented Programming”, Addison-Wesley, 1998.

[40] Villazón, A., “A Reflective Active Network Node”, Proc.
2nd Intl. Working Conf. on Active Networks (IWAN 2000),
Tokyo, Japan, Oct 2000.

[41] Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G., “THINK:
A Software Framework for Component-based Operating
System Kernels”, Proc. Usenix Annual Technical
Conference, Monterey (USA), June 10th-15th, 2002.

[42] Grace, P., Blair, G.S., Samuel, S., "ReMMoC: A Reflective
Middleware to Support Mobile Client Interoperability",
Proc. International Symposium on Distributed Objects
and Applications (DOA 2003), Catania, Sicily, Italy,
November 2003.

[4 3] Schmid, S., “A Component-based Active Router
Architecture”, Lancaster University PhD Thesis,
http://www.mobileipv6.net/~sschmid/PhD_Thesis.ps ,
2002.

[44] Comer, D., Peterson, L., “Network Systems Design Using
Network Processors”, ISBN 0131417924, Prentice-Hall,
2003.

[4 5] Mozilla Organization, XPCOM project, 2001,
http://www.mozilla.org/projects/xpcom .

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200364

[46] Bos, H., Samwel, B., “The OKE Corral: Code Organisation
and Reconfiguration at Runtime using Active Linking”,
Proc. IWAN 2002, Zurich, Dec 2002.

[47] Solarski, M., Bossardt, M., Becker, T., “Component-based
Deployment and Management of Services in Active
Networks”, Proc. IWAN 2002, Zurich, Dec 2002.

[48] Braden, R., Faber, T., Handley, M., “From Protocol Stack to
Protocol Heap–Role-Based Architecture”, ACM
SIGCOMM Computer Communication Review, Vol 33 No
1, January 2003.

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200365

ACM SIGCOMM Computer Communications Review Volume 33, Number 5: October 200366

