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Abstract. Mobile devices often use offloading nodes to reduce the
amount of power used locally, or because of the low computational power
of the device. Mobile devices can take advantage of offloading to reduce
the power usage and increase the battery life of the device. Cloud offload-
ing architectures are largely out of the users control and have higher
latency than running the computation on the local device. Cloud com-
puting architectures use specialised nodes, which need to be designed for
the service provider. As more Internet of Things (IoT) devices are created
and deployed, the number of idle devices also increases. These devices use
power to stay in an idle state, which constitutes an inefficient usage of
computational resources; both as network resources and physical materi-
als used to make the device. To address an alternative to cloud offloading
architectures, this work proposes an architecture for taking advantage of
idle computing power of IoT devices for offloading computations from
devices locally to improve privacy, latency, and sustainability. Testing of
the proposed architecture demonstrates that computations can be suc-
cessfully offloaded, with acceptable latency, and minimal increase to the
individual power use of the connected IoT devices.
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1 Introduction

Mobile devices often require aid in completing computations, due to stringent
power and computation needs [21]. Offloading uses existing computational infras-
tructure to enhance the capability of resource-constrained (mobile) devices.
Depending on connection speeds and data privacy, using cloud-situated resources
for offloading is not always desirable or possible. Local offloading methods can
be used to address these concerns. This requires an additional device for the
offloading of computation, which is not always required for smaller offloading
applications. By taking advantage of locally deployed devices, idle computation
can be used to effectively complete offloading requests within a timely manner,
and with no data exposure to the wider Internet.
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Within the wider area of IoT, many reduced functionality devices resort
to offloading techniques and technologies to reduce local power consumption,
or to circumvent local computation limitations. A common technique [31] of
cloud offloading systems allows for devices to send computations to external
services, and receive results given a short latency and run time. Whilst this works
for applications where devices are connected to the wider internet, localised
offloading techniques are still being explored for efficiencies in latency, reduction
of communication complexity, and practical applications.

In addition to optimisation of offloading techniques for local applications, IoT
devices are often produced with more computational power than strictly required
for average operation [29]. In the context of Smart Home devices, many do not
constantly use their full computational power, as their computation requirements
vary largely. As the number of these devices increases, and become more complex
[12], materials will become more scarce and difficult to manufacture. Use of local
existing IoT devices would reduce the material cost of creating local offloading
solutions.

Single device offloading systems can be a single point of failure for physi-
cal and digital vulnerabilities. Edge Computing [6] is the practice of keeping
resources available to client devices as close to the client network as possible;
often placing devices within the clients network for local access. Taking advan-
tage of Edge Computing, a distributed architecture of devices to handle offload-
ing on the edge would reduce latency, and increase privacy.

The aim of this work is to justify and propose an architecture for localised
offloading of computations from reduced functionality devices to a network of
low power devices. The contributions of this work are: (i) an architecture for
dynamic offloading using pre-deployed IoT devices; (ii) a method for offload-
ing with dynamic network sizes and computation sizes; (iii) an approach for
negotiation of resources for multiple simultaneous clients; (iv) an evaluation of
the architecture, focusing on scalability of devices, computation and offloading
techniques.

The remainder of this paper is as follows: Sect. 2 looks at relevant past works.
Section 3 presents the research design and methodology. Section 4 explores the
areas of the proposed architecture to evaluate, and outlines the results of the
experiment evaluation, to be further evaluated within Sect. 5, with Sect. 6 con-
cluding this work.

2 Background

The Internet of Things (IoT) is an area of increasing importance, especially with
more devices and technologies being used in technical, industrial, and private
sectors. These devices can be used to perform simple tasks, and gather data
from the world around them. IoT devices are becoming increasingly popular
for consumers, and the rise of smart-technology enabled homes has lead to an
increase in the usage of low power devices.

Additionally, as the number of devices globally increases [2], the longevity of
device manufacturers and developers relies on the use and reuse of previously
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or currently deployed devices. This would reduce overall production costs for
new distributed systems, as well as increasing the material efficiency of in-place
devices.

Distributed offloading systems cover a variety of different areas in existing
literature. These areas include offloading technologies, automatic resource dis-
covery, dynamic code deployment and execution, and resource negotiation.

2.1 Offloading Technologies

Offloading is an area that has been explored with increasing interest. Most of
this focus is on the architectures and algorithms used when offloading computa-
tions. Mainly, methods that are used revolve around a Mobile Edge Computing
(MEC) architecture, as explored in [16]. MEC architectures constitute an edge
node communicating with the mobile client device, which can then communicate
further with external cloud services. The edge node can communicate with other
IoT devices, as well as cloud based servers. The main goal of this architecture is
to offload from the mobile edge device, to reduce local power and computation
requirements.

In the example presented in [11], applications for connecting multiple dif-
ferent mobile devices to the same network, This is a requirement for scalable
dynamic MEC systems to be justified over the alternative of having one high
powered device to complete otherwise offloaded computations. Additionally, [11]
shows that such a system can complete complex tasks, such as Machine Learn-
ing algorithms, further justifying the use of a MEC system as a common place
architecture.

[28] further looks at the joining of Small Cell Network (SCN) and MEC sys-
tems to allow for Non-Orthogonal Multiple Access (NOMA) algorithm to work
on a similar architecture. In part, this is approaching the problem of bandwidth
resource management; as more and more devices start using wireless commu-
nications, the usable range of network bands start to have a higher demand.
Whilst this is a problem that is present for having a lot of devices working on
the same SCN, the underlying architecture is focused on the application of MEC
systems in the modern world. Whilst focusing on the bandwidth efficiency of this
algorithm, the energy usage of the individual mobile device is taken into account
within the bandwidth minimisation algorithm used.

In [25] and [14], new algorithms and architectures are proposed to solve
highly specific problems. [25] explored the use of an edge device to compute
energy harvesting techniques for IoT devices in a Fog architecture. This use of a
edge device allows for IoT devices to interact with the network in a obfuscated
manner: adding a layer of separation between the IoT device and the cloud
system. This reduces the overall load on the cloud network, but as a trade-off,
requires a MEC device in the end system. For this application, whilst each of
the IoT devices exists in isolation, the application of a MEC device allows for
computation to be done over the whole system, rather than on a single device.
Similarly, [14] looked at computational offloading for IoT devices using a MEC
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system. However, this work begins to look at decentralised distributed systems
as a mechanism for Offloading.

As seen in the explored literature, offloading has been a major focus when
using IoT devices for data collection and decision making. However, at this
stage, mobile devices are always offloading to a high powered device, in the
form of a MEC device, or cloud services. Distribution of computations to local
devices, following distributed programming techniques, is not applied to MEC
architectures to create offloading systems.

2.2 Resource Discovery

In IoT networks, having flexibility in the deployment and usage of resources
is important to allow for up-scaling the network. Mobile devices specifically
have started to interact more with the other devices around them, especially
when approaching IoT integrated mobile systems. As discussed in [27], some
challenges with using dynamic resource discovery are recognising the existence of
new nodes, allowing for the sharing and acquisition of knowledge, and predicting
when new nodes will join the network for scheduling optimisation. Each of these
challenges is important to plan for when creating a dynamic node network, to
ensure that the requirements of timely communication and QoS are met.

The usage of low power devices in a dynamic node network also presents chal-
lenges, especially the energy usage of the communication method and protocol
used between new and old devices. Bluetooth Low Energy (BLE) can be a use-
ful connection strategy for IoT devices to avoid using a WiFi based connection
protocol. [7] proposed sDiscovery; a discovery technology for use on low power
devices using BLE communications. This method more efficiently uses energy
than traditional device discovery, mainly through the use of BLE as the com-
munication method. This focused on the energy usage of the system, which is
an important aspect when using deployed IoT devices. Additionally, sDiscovery
used an optimisation to the search protocol, allowing for the overall system to
discover more effectively and efficiently.

Another method of reducing the discovery time and the energy usage can
be achieved by clustering devices into “neighbourhoods”. [10] discussed how
this method could be used to achieve fast discovery in Device-to-Device (D2D)
architectures. This method would allow for dynamic sizing of smaller “neighbour-
hoods” of devices, promoting a scalable device discovery architecture. Addition-
ally, use of a decentralised system promotes the use of low power devices, without
the requirement of a high power device to act as a routing node. However, test-
ing is deployed using a simulation, without physically creating a network of low
power devices.

Literature focusing on device discovery outlines the requirements of an IoT
network discovery system; mainly the energy efficiency of the system, and the
speed of the discovery and subsequent connection. Most work focuses on simu-
lation results, rather than physical implementation with low power devices.
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2.3 Dynamic Execution and Deployment

Distributed programming techniques are another method of Offloading computa-
tions from a Host device. By distributing computations out to multiple different
devices, local energy can be conserved. QoS and Latency are still issues with
this type of programming technique, however depending on the architecture and
method, these can also be minimised. One approach that aides in distributed pro-
gramming techniques is dynamic deployment. By dynamically allocating opera-
tions to individual devices, operations can be completed in a distributed manner
whilst using each device effectively.

As proposed by [5], dynamic deployment of code using containers can opti-
mise the usage of resources to complete a computation. In this case, Docker was
used as a containerisation technology for a virtual cluster. Whilst this type of
deployment can help to limit the run-time of certain operations, it does also
require a higher level of computation to run multiple virtual machines in a clus-
ter. Additionally, it further discusses creating sub-clusters for further breaking
down operations into workable components.

Further, the concept of elastic clusters can be used, allowing devices to be
dynamically allocated tasks, rather than either being in the cluster, or not in
the cluster. As [8] proposed, containerisation of Virtual Elastic Clusters (VEC)
can be used as a management system for virtual machines, in replacement of
a Hypervisor. This use of elastic clusters focuses on reducing the overhead for
individual virtual devices, allowing for more efficient VEC’s to be used.

To demonstrate the applications of elastic clusters, [15] discusses using elastic
clusters to coordinate wireless sensor networks using a Fireworks algorithm. This
application of a distributed algorithm allows for stages of the algorithm to be
completed with a faster convergence rate. However, the algorithm is still being
deployed using VEC systems.

To further optimise elastic clusters, [20] proposed dynamic deployment of
components for embedded systems. By outlining the existing components of a
cluster, the components can be migrated to physical embedded devices. This
allows for less computation on a host machine, and for embedded systems to
do some calculations locally rather than only focusing computational power on
data collection. This begins to approach the focus of this paper, as allowing
for more computations to take place on low power devices would reduce the
computational requirements for client devices.

At this stage, some literature is focused on the clustering and dynamic
deployment of virtual machines. This still requires a higher powered network
of devices to run the virtual machines. By using running computations on Idle
low power devices, the computational requirement of all devices in the cluster can
be reduced. QoS can be maintained through different distributed programming
techniques.

2.4 Resource Negotiation

In addition to offloading, technologies for prioritising computations need to
ensure that operation run-time and QoS meet given requirements through the
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process of offloading. Device negotiation approaches this problem by having
shared agreements between the host (handling offloading resources) and client
(generating offloading requests) devices. As [30] discussed, using a fog archi-
tecture to complete offloading requires low latency for operations such as aug-
mented reality. To aid in this type of computation, edge devices may need incen-
tives to complete the computation. As a result of the required motivation and
low latency requirements, fast negotiation practices are required to allow for
distributed offloading using the Fog network. Whilst this focus works well for
decentralised High Powered Devices, for low powered devices such a system may
have too much overhead, as incentive systems and negotiation practices require
more communication and processing power.

Mesh networks, a type of fog architecture, can be used for individual Device-
to-Device (D2D) negotiations. [17] took advantage of individual D2D negotia-
tions for implementation of an energy monitoring and management system for
an IoT network. This type of network allows for devices to reach an agreement
based on their own computational load and specifications. A distributed net-
work of IoT devices can make an agreement as to which devices will complete
tasks required of the network. However, this method does take advantage of
centralised task creation method. Having negotiations take place between indi-
vidual devices, whilst a task list is created in a centralised manner leads to a
semi-centralised system, requiring a control hub in addition to the smaller Low
Powered Devices.

Further, QoS requirements and capability may not always match between the
host network and the client device. As presented by [26], QoS can be negotiated
between an end system and the offloading device. In the presented example
[26], a simulation is used to model the communication between a mobile device
with a IoT device. However, with a network of distributed devices, the overall
specifications of the network may not be easily queried, and would need to be
recalculated every time a device leaves or joins the network. This may not be
suited for dynamic distributed systems, especially for low power devices.

2.5 Gap Analysis

This paper proposes an architecture to use idle low power devices for offload-
ing distributed computations within a deployed IoT network. Exploration of
offloading processes onto low power devices is a new area of research. Dynamic
programming and deployment strategies can be used to aid in the creation of this
architecture. The QoS, latency, run-time, energy usage, and materials usage are
all concerns that must be taken into consideration when designing and testing
the proposed architecture.

As can be seen from Table 1, the explored works do not cover a system which
uses all areas of investigation. The aim of this paper is to outline how such a
system would be designed and implemented.

The state-of-the-art analysis identifies the following areas that should be
further investigated:
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Table 1. Areas covered by existing literature

Literature Sustainablity Discovery Offloading Negotiation Dynamic
Deployment

[9] ! !
[10] ! ! !
[25] ! ! !
[17] ! !
[8] !
[1] ! !
[23] !
[18] ! !
[24] ! !
[19] ! !
[22] ! ! !

– Usage of idle computational resources to complete complex computations.
– Sustainability (material cost, energy use) of existing devices within a network.
– Offloading of computations onto a network of low power devices.
– Resource negotiation within offloading computations onto a network.
– Dynamic deployment of offloading computation.
– Low power devices with service discovery.

An IoT system that incorporates resource discovery, offloading of computa-
tions, and resource negotiations with dynamic deployment have not been iden-
tified or closely studied. Additionally, the area of sustainability within IoT net-
works and devices has not been thoroughly investigated, specifically with man-
aging old or overpowered devices.

3 Localised Offloading Architecture for Distributed
Horizontal Computations (LOADHoC)

The Localised Offloading Architecture for Distributed Horizontal Computations
(LOADHoC) is the proposed solution for distributing computations among low
power devices. This section aims to identify the core aims and requirements for
the development of a prototype using the LOADHoC.

3.1 System Aims

To meet the aims of this work, an architecture is proposed for enabling the
use of previously deployed devices for computing local offloading requests. The
following aims have been defined to guide evaluations of localised distributed
offloading with LOADHoC using the areas identified within Sect. 2.
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– Aim 1: Creation of a dynamic system for decentralised offloading of compu-
tation.
Using device discovery allows for ad hoc networks to be created per compu-
tation, meaning that devices can be added and removed from the network
dynamically. Further, an important aspect of this architecture is to ensure
that the latency and QoS are comparable to other offloading solutions.

– Aim 2: Designed for using low power devices for offloading.
Understanding how networks of low power devices can be used for offloading is
important for understanding whether such a system is achievable and useful.

– Aim 3: The system should be energy and resource efficient. Understanding the
resources used for the architecture is important for identifying the sustainabil-
ity and viability of the proposed architecture. This would involve analysing
the energy use, latency, and physical material use.

3.2 System Requirements

Given the preceding System Aims, the final prototype design must adhere to the
following functional requirements:

– Req 1: The proposed system must use low powered devices.
Most offloading systems [13] currently use higher power devices. The aim
of this paper is to take advantage of pre-existing low power devices within
a network. As such, the prototype must use similar devices to emulate the
practical application of the research.

– Req 2: The system must be able to perform offload-able computations.
Offloading computations onto Low Powered devices allows for the prototype
to be used to be useful manner, aligning with the aim of reuse of low power
devices, and is key to meeting Aim 1.

– Req 3: The system must be decentralised for system requests and queries.
In a practical situation, devices may be added or removed from the system,
with the elimination of high power devices within the offloading process. As
a result, the system must be decentralised to allow for each device to be
removed from the network when needed.

– Req 4: The system must have measurable latency and QoS.
Measuring the latency and QoS allows for the comparison of the pro-
posed offloading architecture against performing the computation locally, and
offloading to a cloud system.

– Req 5: The energy usage of the system must be able to be monitored, when
completing operations.
The energy usage must be monitored to ensure that the overall system is
sustainable not only in terms of computational output per material used, but
also in regard to energy usage.

Further, some non-functional requirements must be observed during the
development of the LOADHoC.
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– Req 6: The offloading computations must have comparable run-times to other
offloading solutions.
The run-time for offloading computations is important as the typical use of
offloading is in real-time application. As a result, if the offloading is must
slower, than the use of offloading on low power devices is not viable in a
commercial application.

– Req 7: The devices must be able to dynamically disconnect and reconnect to
the network.
The system is designed for the use of pre-existing devices. However, when new
devices join the network, or old devices leave the network, the system should
be robust so that users do not need to manually add or remove devices from
the offloading system.

– Req 8: The devices can be queried to display their computation.
For diagnostic purposes, devices should be able to make available their current
computation for testing. In a real world application, this decreases the security
of the network, but making clear what computation is being completed allows
for more careful and informative analysis of how effective the computation is,
as well as analysis of the viability of the proposed system.

3.3 System Design

To meet these requirements, the LOADHoC is designed as a horizontally scaling
system, with dynamic resource discovery. As can be seen in Fig. 1, each of the
devices in the proposed network are of equal importance; with a distinction
only being drawn when a client (the device requiring offloading) connects to
the system. By having one of the devices act as a leader (the device handling
the clients computation), this means that all of the devices in the network can
receive instruction, and allows for no distribution of computation on the client
device.

Each of the devices within the network requires two processes to function:
these processes are the discovery and advertisement process, and the computa-
tion and request process.

The discovery and advertisement process takes advantage of mDNS addresses
to advertise the device as a serviceable device. As can be seen in Fig. 2, this allows
for other devices in the network to identify this device within the LOADHoC sys-
tem. The process is then able to discover all other devices within the system, to
keep track for when the new device is considered a Leader device.
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Fig. 1. Architecture Design of the LOADHoC

The computation and request process handles all requests for computation
or information from the device, in addition to completing the computations that
it receives. Importantly, this process must be able to act both as a leader or a
follower device, as computations received directly from client devices will need
to be split among all of the follower devices in the system, including the leader
device.

The information from each individual device must be able to be queried by
the system, as this allows for the leader device to check if a device is able to
receive computation, as well as gain detailed information about the rest of the
network that can then be used for allocation of computations. This, in addition
to the previously outlined computations and dual functionality of the devices,
requires the following methods must be present on all of the devices within the
architecture:

– Info Request: Request the information of all of the devices within the net-
work.
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Fig. 2. Sequence for device advertisement method

This request would come from a Client device, and must be propagated
through the network using the Info method.

– Info: Sends the info of the local device to the requesting device.
This method is a direct response to the Info Request method. This endpoint
will only be used by leader devices in the network requesting the device
information.

– Ready Request: Request the ready status of all of the follower devices in the
network.
This method is similar to the Info Request method, and must return the
current status of all of the follower devices in the network. This method
would be requested by client device interacting with the system, to be further
propagated through the remainder of the network.

– Ready: Sends the status of the local device to the requesting device.
This method is a direct response to the Ready Request method. This endpoint
should only be called by the leader devices, to compile information on the
status of all devices for the Ready Request method.

– Computation Request: Receives the requested computation from the client
device.
This method is required on all devices as all devices must be able to act as
a leader: able to accept computations from potential clients. This method
focuses on filtering the type of computation requested, in addition to alloca-
tion of computation to other devices within the network.

– Computation: Receives computation from the leader device, completes and
returns the result to the leader device.
This endpoint will only be requested by the leader device in the context of
the computation. This method receives portions of the overall computation,
and returns the processed values.
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Fig. 3. Sequence Diagram for checking network status and completing computation.

The sequence of events for the status request system and computation request
system are shown in Fig. 3. The status of the network, such as number of devices
and processing ability of the devices, does not need to be retrieved before sending
a request. The leader device should not wait for a portion of the computation to
be completed before requesting another portion. This happens asynchronously,
to allow for multiple devices to be working on computations simultaneously.

4 Experimental Evaluation

4.1 Experimental Setup

The experimental setup for all of the experiments use the LOADHoC prototype.
The LOADHoC prototype is developed using a Restful API, taking advantage of
Wireless Access Points (WAP) pre-existing on smart home devices. The use of
devices already in place demonstrates the ability for the LOADHoC to operate
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without any additional components being added to the network. Smart home
systems contain many of these types of devices, and would not require a dedicated
device for functional offloading. Communication between the individual devices
is conducted through API requests, with each individual device operating as an
API.

The LOADHoC prototype was deployed to a cluster of 9 Raspberry Pi Zero
Wireless devices (shown in Fig. 4) in addition to a Raspberry Pi 3b+. The Zero
devices utilises a 1 GHz Broadcom BCM2835 single-core processor, with 512MB
of RAM. Each board communicates with the rest of the network wirelessly using
a Mediatek RT5370 (2.4 GHz B/G/N) chipset. The Zero boards run a Raspbian
Lite OS, and the 3B+ a full Raspbian OS installation. The singular Raspberry
Pi 3b+ includes a Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC
processor with a 1.4 GHz clockspeed. This board additionally contains a wire-
less Cypress CYW43455 chipset. All devices were loaded with the heterogenous
LOADHoC prototype, operating as leader and follower devices depending on
which device receives the clients initial request.

When a client is interacting with the LOADHoCcluster, each device is able
to operate as a routing device (splitting and sending computations to others
within the system), and a worker device (completing requested computations).
This means that if a request is sent to any of the devices, the computation will
be split between the existing devices within the architecture.

Further, each of the devices within the LOADHoC is discovered automat-
ically, with new devices able to participate in the load sharing protocol. This
discovery is achieved using ZeroConf [3], an implementation of mDNS addresses
designed for service and resource discovery. Devices are able to join the network
at any time.

The system can support any offloaded computation, with testing occurring
with matrix multiplication problems as the main measure, and accuracy of π also
able to be completed with this implementation. Given the design, the system
will be able to complete any offloaded computation given enough computational
resources across all devices.

4.2 Experiment 1: System Validation

This experiment aims to assess the effectiveness of the proposed architecture. To
analyse the effectiveness, the latency, run time, and QoS will be measured, and
tested against non-distributed offloading, in addition to non-offloaded computa-
tion. This will be completed using the API implementation, to test the validity
of the proposed architecture.

The setup for this experiment is focusing on the architecture, rather than the
deployment to low power devices. In response to Aim 1, the latency, run time,
and QoS will be individually measured.

The LOADHoC can be tested easily by deploying the API to three exter-
nal devices, and creating a client to test the required metrics. The expected
results from this experiment are that the run-time and latency are lowest when
performing the computation locally, as the client device will be a high powered
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Fig. 4. 9 Raspberry Pi Zero W devices loaded with the LOADHoC Prototype

device. The non-distributed offloading and the distributed offloading systems are
expected to be comparable in terms of latency and run-time, as the run-time
and latency increase through the use of multiple devices will balance the reduc-
tion of sending the computation to multiple devices. However, as the number of
devices increases, this balance will change, and the distributed offloading system
is expected to outperform the non-distributed offloading method. Finally, the
QoS should be the same among all three test-beds, which can be measured by
testing the result matrix from each system against the other systems.

Figure 5 shows the time for each system to complete a matrix multiplication
problem of the listed size. The tested methods are completion of the computa-
tion on the client device (Time locally), offloaded to one device (Time offloaded),
and the time offloaded to the LOADHoC (Time offloaded with Distribution).
The lowest run-time was achieved by completing the computation on the high-
powered client device. This is expected, however this time may differ for mobile
clients. Offloading the computation onto one local device produced acceptable
run-times, but increases geometrically given the size of the matrices. This time
may decrease or increase given the computational resources available to the
single offloading device. The distributed system performed similarly to the sin-
gle offloading system, demonstrating its viability when compared to traditional
offloading systems.
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Fig. 5. Time-to-Complete for tested methods

Originally, the response time was much higher due to an implementation
error. Each row of the second matrix was sent to devices using individual web
requests, meaning the delay for each row was compounded. This inefficiency was
fixed by removing all logging of data to the console, as well as changing the
method to send multiple columns in the same request.

Additionally, it was shown that the distributed and non-distributed systems
were comparable as the size of the matrices increased, with the distributed
method taking longer. Experiment 2 tests the sustained efficiency of the sys-
tem as more devices are added to the network. The non-distributed method
performed better as the size of the matrices increased, however as the number
of devices is increased, the response time should decrease for larger matrices.

When running computations, the individual power draw for one of the nodes
in the LOADHoC can be measured, as shown in Fig. 6. This allows measuring
the instantaneous power draw per device, which can give an energy usage rating
to all of the devices in the network. As shown, the power draw does change when
computations are being completed, by a constant amount. This method can also
be used to visualise the computations being completed by the individual device.

Further, all three methods returned the same result matrix when presented
with equivalent inputs for all tests. As the LOADHoC is producing an accurate
result Matrix, the QoS has been preserved through the use of the API, with
matrix sizes up to 100× 100.

4.3 Experiment 2: System Scalability

This experiment aims to test the scalability of the LOADHoC. To analyse the
architecture, the latency, run time, energy usage, and QoS is be measured for
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Fig. 6. Power usage of one Raspberry Pi within the system

computations that use up to 9 devices. These computations are distributed
through the LOADHoC, using a standard 100 by 100 matrix.

The results of this experiment outline the scalability of the LOADHoC proto-
type for small scale calculations on medium size networks. The LOADHoC imple-
mentation can handle a large number of devices within the network, limited only
by the unique number of IP addresses on the network. Testing the run-time of
requests within the system as the number of devices increases allows for under-
standing the minimum number of devices required to complete computations
faster than other traditional offloading and local calculation methods.

The LOADHoC prototype has been developed to allow for the number
of devices within the system to dynamically change. For this experiment, 9
devices, including the Leader device, are connected within the system. In testing
the LOADHoC, two 100× 100 matrices are multiplied together, as requested by
the client device.

The latency and QoS are measured by the Client device, using the amount
of time that it takes to get the result from sending the computation. Addition-
ally, the energy usage of the overall system will be monitored, using one energy
collection device to measure the usage of the entire system, and one to measure
the usage of an individual device.

This experiment allows the system to be tested on larger networks; testing
its run-time and energy usage, compared against performing the computation on
a smaller number of devices. Additionally, the method that the LOADHoC uses
to handle distributed computations can also be evaluated.

Figure 7 details the time-to-complete the multiplication of two 80× 80 matri-
ces. As can be seen, this time increases as the number of devices increases. The
lowest run time occurs with one device, as communication only needs to occur
between the client and leader device. As the number of devices increases, the
run-time also increases due to the number of computation requests that must be
sent to each of the follower devices.
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Fig. 7. Time to complete with given number of devices

Figure 8 displays the energy usage of the network when offloading the multi-
plication of two 100× 100 matrices across 9 devices. As more devices receive their
computational load, the energy demand of the system increases to accommodate
the extra processing power required by the worker devices. The baseline energy
usage of these devices remains unchanged before being added to the LOAD-
HoC. This means only the increase of energy use during a computation must be
considered when analysing the energy usage of the system.

Fig. 8. Energy for 100× 100 multiplication across 9 devices



192 S. Christmas et al.

In this case, offloading to one device is seen to be the most optimal solution
for completion time and energy use. However, the LOADHoC implementation is
currently implemented on high power devices, and as such, are able to complete
more complex operations by themselves. These devices are able to complete
computations effectively by themselves. The main time-sink is the sending of
messages between the leader and follower devices.

4.4 Experiment 3: Computation Flexibility

The aim of this experiment is to demonstrate and test the system using another
distributed computation. Implementing a second computation algorithm demon-
strates the suitability of the LOADHoCfor dynamic deployment methods. This
flexibility in the computations that can be completed is integral for the system
having wider applications.

For this experiment, a estimation of π will be implemented as a distributed
computation across the system. The accuracy will be tested to ensure that the
result that is achieved by the system matches a locally calculated value.

The LOADHoC system has been enhanced to include the calculation of Pi.
In order to implement the π calculation, the system must have the distributed
computation method on all of the devices. To demonstrate the LOADHoC’s flex-
ibility, the overall system architecture needed to remain functional, as well as
maintaining the matrix multiplication functionality.

The π estimation method used within this experiment is the Nilakantha
infinite series [4]. The Nilakantha series uses the following equation:

π ≈ 3 + 4
∞∑

n=0

−1n

(2n+ 2)(2n+ 3)(2n+ 4)
(1)

As implemented within the prototype, the maximum value of n is the accuracy
of the computation, which can be specified by the client device when retrieving
the value. The values of n can then be distributed to each of the devices, the cal-
culation of each section distributed to the follower devices, then added together
on the leader device.

Listing 1.1. Code for estimating Pi locally

f unc t i on ca l cP i ( accuracy ) :
r e s u l t = 3
for ( i in range (0 , accuracy / 2) ) :

n = i ∗ 2
m = n + 1
r e s u l t+= (1/( (2 n+2) (2n+3) (2n+4) ) ) − (1/ ( (2m+2) (2m

+3) (2m+4) ) )
return r e s u l t

Listing 1.1 highlights how this code can be used for estimating π on a local
device. By giving individual devices differing values of i, the function can be
distributed across the for-loop.
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This experiment outlines the ability for the LOADHoC to be adapted
for more distributed programming applications. The adaptation the prototype
requires identification of the requested computation, distribution and collection
of the computation, and calculation on the follower devices.

The testing value of π for this experiment is as follows:

π ≈ 3.14159265358979323846264338327 (2)

Table 2. Values retrieved from distributed calculation of π

Value of n Value of π Obtained No. of
accurate decimals

n = 10 3.222821622821623 0

n = 100 3.141620854093511 3

n = 1000 3.1415927233510117 6

n = 10000 3.141592653593063 10

n = 100000 3.1415926535897905 14

n = 1000000 3.1415926535897932 16

The values obtained range in accuracy given the depth of the π calculation.
The values within Table 2 were retrieved by requests to the LOADHoC imple-
mentation. Further levels of accuracy can be obtained given larger values of
n. However, a limitation of the current system is the implementation, and the
number of decimal places available. The LOADHoC implementation is currently
developed in JavaScript, and limits the number of decimal places available to be
received by the client. This is largely a problem that exists with this calculation
and this implementation, so this does not effect the validity of the overall LOAD-
HoC implementation.

This experiment demonstrates the flexibility of the LOADHoC architecture.
The prototype is able to handle different distributed computations, which are
only limited by the systems programmed on the networked devices.

4.5 Experiment 4: Resource Allocation

This experiment aims to demonstrate the implementation of different types of
allocation methods for resources. Given the different calculations achievable, and
differing devices in the architecture, systems for allocation different sized loads
to different devices.

This experiment will record the timing of each of the different allocation
methods (including calculation), as well as the energy use of the system using
these methods. The output of the different allocation methods can also be tested,
to ensure the QoS of the overall system is maintained with differing resource
allocation methods.
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The previously outlined LOADHoC prototype is used for this experiment.
In addition to the calculations, a resource allocation method is implemented
for allocating the resources between those available in the network. Within
the LOADHoC implementation, four allocation methods are present. These allo-
cation methods are:

– “none”: Default allocation method, which splits the computation over the
requested number of devices.

– “even”: Allocates the computation to every second node, relative to their
position in the leader device list.

– “ready”: Similar to the default allocation method, allocates computation only
to ready devices. Devices are considered ready if they are not currently com-
pleting another operation.

– “geo”: Allocates multiple computation regions to the same device; increasing
by one portion of the overall computation as each device is allocated its
computations.

Each of these methods must be set within the leader device local data struc-
ture. Once set, all calculations using the altered device as leader will use the
specified allocation method. Importantly, different methods can be defined for
differing leader devices. This means multiple users are able to define different
allocation methods while using the system simultaneously.

This experiment demonstrates that allocation methods can be created and
used for the LOADHoC architecture. This implementation uses four different
methods, while showing the effective run-time of the same calculation across all
methods. Further, more complex allocation methods can be used effectively with
this system, using the data made available by each of the devices.

Fig. 9. Time to complete with different allocation methods
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As can be seen in Fig. 9, the time to complete the different allocation methods
was comparable between all methods, other than the “geo” method. This is
mainly due to the number of requests being sent to the same device. Increasing
the load on an individual device, when all of the devices are of equal computing
and processing power leads to an increase in the total completion time. The Geo
method was unable to resolve as the request was taking too long to be fulfilled.
This is because the device that was loaded with the most computation was
similar in power to the remainder of the devices, and was required to compute
many different parts of the computation simultaneously.

This experiment outlines that different allocation methods are possible, in
addition to querying information from the devices to inform this allocation.
The LOADHoC architecture is able to take advantage of more advanced alloca-
tion methods, and only requires the leader device to manage the allocation of
computation within the network.

4.6 Experiment 5: Robustness

The aim of this experiment is to evaluate the failure recovery methods for
the LOADHoC architecture. The LOADHoC implementation is able to freely
add, remove, and drop devices. This allows individual devices to cease normal
operation, whilst maintaining the integrity of the overall architecture and net-
work.

The experiment records the QoS of the given computation after a device
is forcefully removed from the network. By simulating a device being removed
from the system in the middle of a requested computation, the way that the
LOADHoC architecture can handle errors can be observed.

This experiment uses the previously outlined LOADHoC implementation.
Each of the nodes in the network uses two separate processes: advertisement and
discovery, and a computation process. By shutting down the computation process
of an individual device, a connection or computation error can be simulated.
Importantly, this simulates when a device that is actively on the network is not
responding in an expected manner.

When sending a request to a new device, if the request fails, then the same
request is sent to a new device listed on the Leader devices device list.

Testing the system in this way tests the LOADHoC’s ability to support recov-
ery and retention of computation when individual devices fail. As the client only
communicates with the Leader device, the follower devices are able to drop in
and out of the network without effecting the ability for the system to function.

Multiple devices can be removed from the network. This will effect the overall
run-time to comparable times to limiting the number of devices a computation
can use. This test will look at the QoS of the LOADHoC implementation when
devices are removed.

This experiment focuses more on how the architecture can be implemented.
By only relying on the Leader device to function, a system running the LOAD-
HoC architecture can be scaled horizontally without negatively effecting the
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network. Additionally, parts of the network can be removed without effecting
the integrity of the remaining network.

Overall, as devices were forcefully removed from the system, the LOAD-
HoC implementation was able to cope with the removal, and reallocated the
specific portion of the computation to an active device. This was done by query-
ing all of the devices in the leaders device list, which includes itself. However, this
did effect the total run-time of the system, in a similar manner to the results of
the experiments presented in Subsect. 4.3. However, when removing the leader
device in the middle of a computation, the result will not be returned to the
client. The leader device is determined by which device receives the request
from the client device. As such, other devices in the network can be queried, so
re-sending the computation request from the client side will result in the compu-
tation being completed, maintaining the system fidelity. This removal does not
effect other computations using the removed device as a worker.

These results demonstrate that the overall architecture is able to cope with
individual devices being removed from the network. In applications where net-
work security and stability are not ideal, the system will remain to function in
an optimal condition given the client remains connected to the leader device.

5 Discussion

Addressing the aims of the LOADHoC implementation, as defined in Sub-
sect. 3.1, the experimental results can be split into three areas.

5.1 Creation of a Dynamic System for Decentralised Offloading

Through the development of the LOADHoC, the requirements outlined in Sub-
sect. 3.2 were used to allow the overall design to achieve dynamic centralised
offloading. Subsection 4.2 outlined the use of the system using matrix multipli-
cation as a test problem. In addition, Subsect. 4.4 focuses on a calculation of π,
highlighting the ability for different computations to take place using the system.

By taking advantage of multiple low powered devices, many different types of
computations can be completed, limited only by the time constraints placed on
the computation. Given the results achieved in Subsect. 4.2, computation run-
time could feasibly fall outside the request timeout set by the client device. This
can be tweaked, by changing the method of request delivery and sending. Use of
a message queue would allow for dynamic Time-To-Live (TTL) for requests and
results. The LOADHoC is able to cope with multiple different types of resource
management, as demonstrated within Subsect. 4.5. The LOADHoC is designed
to be dynamic in both computation and resource allocation method, allowing for
further implementation in real-world dynamic applications where local offloading
is required.
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5.2 Design for Implementation on Low Power Devices

The overall design of the LOADHoC allows for use of low power devices to run
and work on the network. This was achieved using a RESTful API system as
a demonstration, allowing definition of methods and endpoints, as outlined in
Subsect. 3.3. Whilst experiments were run on high powered devices, the network
connectivity was the main difference in run-time when compared to a tradi-
tional offloading system. As the LOADHoC needed to communicate with several
devices, offloading to a dedicated device was substantially faster, as seen in Sub-
sect. 4.2. This time difference was also outlined in Subsect. 4.3, as use of 9 devices
produced the largest run-time. In addition to time delay through communica-
tion within the network, the use of high powered devices splitting processing
power among multiple passive processes can also reduce the amount of avail-
able resources for computation. This is highlighted by Subsect. 4.2, where even
offloading to a single high powered device significantly increased the run-time of
the computation. Distribution of the computation across the network decreased
this time inefficiency, while still taking longer to complete the computation. Low
power devices can also be easily fault or disconnect from networks in real-world
applications. As seen in Subsect. 4.6, the LOADHoC can cope with device relia-
bility issues, allowing for QoS to be maintained for error-sensitive computations.
The LOADHoC design lends itself to use on low powered devices, through sim-
ple implementation design and robust handling of device and communication
errors.

5.3 Energy and Resource Usage and Efficiency

The LOADHoC implementation was tested on run-time, as well as energy and
resource usage. The main outcome from the implementation is that the architec-
ture would work on low power devices, as discussed in Subsect. 5.2. Additionally,
it can be seen in Subsect. 4.2 that the energy usage of the system is compara-
ble to having the devices passively in the network. Given the implementation of
the LOADHoC onto pre-existing devices, the overall energy and resource con-
sumption is minimal compared to having a dedicated device for computation.
The energy from each of the devices does add up, as can be seen in Subsect. 4.3,
but still remains less than the overall passive power of the devices within the
network. The current power readings from the network are a reflection of the
power requirements for an implementation of the LOADHoC using low power
devices. However, the values may differ, effecting the overall efficiency of the net-
works energy use. When analysing resource use, taking advantage of pre-existing
devices ultimately saves on cost, in addition to resource and material use.

6 Conclusion and Future Work

Through this work, horizontal distribution of computation has proven to be a
viable method of distributing computation. Whilst the overall time constraints
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and energy usage are higher than the use of a single high powered device, the
computations being run on each individual device can be implemented on lower
power devices for in-place computation; without the addition of new devices
into a network. This decreases the overall price of using a localised offloading
network, at the cost of time-to-complete. Whilst the energy efficiency is lower
than using a single high powered device, as discussed in Sect. 5, the increased
energy usage is minimal when compared to a new high powered device on the
network.

Future work focuses on the implementation of the LOADHoC onto low pow-
ered devices, testing the run-time and resource usage to determine viability in
real-world resource constrained networks. In addition, different methods of com-
munication can be tested, such as a message queue system.
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