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Abstract

Recently developed nenworked servioes have been de-
manding architechires thar accomnodare an fnoveas-
trgfy diverse range of applications requimements (g
robifity, mefticasy, Do8), as well as systent wegufrenents
fe.g. specialized processing hardware). This is particu-
farfy cructal for architectures of network systems wheve
the fack of extensibility and frteroperability hns been a
constant striggle, hindering the provision of rovel ser-
vices. It is afso ofear that to achfeve such flextbility these
Systems mst support extensibility and w-config weabiling
of the bage functiomafity subaequent to the initfal de-
Floveenr. In this paper we present 2 component model
that addvresses these concerms. We also discuss the ap-
Flicatfon of the component model in network processo -
baged progranuable nenworking environments and dis-
cuss how owr approach aan offer a more deployable,
Fexible and extensible networking infrastruct e,

1. Introduction

An increasing nomber of mcent applications (e.g.
eal-time, multimedia) and their underlying sys-
tems [e.g. workstations, PDAs, embedded systems,
ad-hoc networks) have been requiing a flexible achi-
tectule to accommodate all the requilemerts neces-
sary to ron these applications as well asto inter-operate
in a heterogeneous envimnment compeosed of dif-
ferent types of applications ard hardware platforms.
Tt is clear that in omder to achieve this accommo-
dation, we need an extensible and ®-configuabla
architecture that is capable of loading and integiat-
ing new functionality at von-time. As an example
ot e-configuiability, we could load and unload ser-
vices on a network router and intelligently adapt its
forwarding behaviowr to various types of tiaffic and en-
vironments such as mobile or ad-hoc,

Unfortunately, although moch ®seach in pro-
viding an open architectuie for networking systems
have been carried ouat, we still lack a generic ap-
proach to develop and deploy new networ services.
Euisting paradigms tend to only addess configura-
tion and ®-configuration of services mnning on a par-
ticular level of a programmable netwoking system (e.g.
open signalling for comtrl fanctions, and active net-
warles for fn-band packer processing).

At the same time, component technology [13] has
been widely cited as a suitable appmach for devel-
oping adaptive software due to its incrementally de-
ployable natuve [7]. Bor example, with the component
technelogy desciibed in [7] one can add, replace and 1e-
move the constitnent components residing in the same
address space. Theretoe, the use of compeonent technol-
ogy potentially provides the means fordeployment-time
configurability amd mntime reconfigombility. How-
ever, although component-based architecture have
been successfully used in many adaptive applica-
tions, early reseach into proglammable networks has
mot touly adopted a component model [12]. More-
ovel, the maolity of existing work in this aka [e.g.
Vera [9] and Genesis [3]) omit suppout for dynamic
e-configuation.

As A consequence, this paper presents the design and
implementation of a component-based achitectare for
programmable networking software, which provides an
integrated means of developing, deploying and manag-
ing such systems. The proposed ahitecture consists of
a genelic component model applied on aff fevels of the
programmable networing design space, which ranges
from fine-grained, low-level, in-band packet processing
functions to high-level signalling and coordination func-
tions. Benefits of this proposed approach are detailed in
section 3. Configuiation and e-configuiation across this
architecture is achieved by dynamic loading and unload-
ing of service components. Burther, eflection is used to
eify configuiations of components and to support vari-



ous typesof reconfigumtion.

The mmainder of the paper is structored as follows.
Section 2 examines existing technology that underpinsg
our appmach. Tt introdnces onrcomponent model Open-
COM, the concept of component frameworks and finally
covers the Intel TXP 1200 network proce ssor based ronter
platform. Section 3 then presents onr“globally applied”
approach to network programmability, and section 4 dis-
cusses onr implementation efforts so fac Subsegnently,
section 5 presents an application scenario that illostates
our approach. Finally, section & sorveys and analyses
elated woul;, and section T diaws gene@l conclosions
from this paperand the proposed architectore.

2. Background
21 OpenCOM

Lancaster’s OpenCOM [4] is a lightweight, efficient,
flexible, and langunage-independent component model
that was developed as part of previons research on con-
fignable middleware [7]. OpenCOM adopts a compu-
tational model based on interfaces, receptacles and con-
nections and has basic reflective tacilities buailt in.

CpenCOM relies on five fundamental concepts:

Capsules: acapsule isalogical “component container™
that may encompass multiple addiess spaces (al-
though capsules do not cioss machine boundaries).
Bor example, a capsule could encapsulate malti-
pleLinux processes, ordifferent hardwae domains
on a network processor-based wuter. Encapsulating
multiple addiess spaces offers a powerful means
of abstracting over tightly-conpled but heteroge-
neous hadware (e.g. the PC, StongARM and mi-
croengines of an Intel TAP1200 router platfomm —
gee section 2.3 and figue 1)

Components: components Serveé 85 PIOZUAMMing
language-independent units of deployable func-
tionality. One builds systems by loading compo-
nents into capsuales, and then composing these
with other components (by binding their inter-
faces and receptacles; see below).

Interfaces: intefaces of componentsare expressed in a
language independent interface definition language
and enpress a anit of service provision; maltiple in-
terfaces can be supported per component.

Receptacles: define a service requitement and ae nsed
to make the dependency of one interface on another
explicit and hence one componenton ancthery,

Bindings: Bindings express an association (a commu-
nication path) between one eceptacle and one in-
terface ®siding inthe same capsule.

CpenCOM iscurently implemented ontop of a sub-
set of Mozillas XPCOM [11] which is a cross plat-
form component medel that can run over a lage num-
ber of achitectores. CpenCOM is inherently langnage-
independent and employs binary-level component bind-
ings, which has the potential to provide the performance
needed in netwolking systems.

A crucial aspect of OpenCOM that is heavily ex-
ploited in our programmable netwouking esearch is its
sappott for plug-in feaders and plieg-in Binders. Bssen-
tially, loading and binding ae viewed as components
framewoulcs (see below) in the OpenCOM architecture,
ard it is possible to extend the ahitecture with many
ard various implementations on loading and binding.
We ®turn to this topic in section 4,

21 Component Frameworks

CEF were onginally defined by [15] as “reffec-
tions of rules and interfaces that govern the interac-
tien of a set of components ‘plugged inte” them™. In
onr sense, 3 CF embodies mles and interfaces that
would make sense for a specific domain of applica-
tion. For example, a packet-forwading CF might ac-
cept packet-scheduler compenents as plug-ins, or a
media-stream filteriing CF might accept vanous me-
dia codecs as plug-ins [7]. A nomber of mntime CFs
have been implemented as partof our past esearchleg.
pluggable protocols, thread management—otternng plug-
gable schedulers, boffer management, media filtering
ard extensible binding types) [7]. (In the vest of the pa-
per we use the shorthand “plug-in™ to refer to a compo-
nent that is plugged into a CE}

Cmcially, CFs can impose consti@ints that govern
the way a set of plug-ins inter-relate. Bor example, in
a packet forwarding CF, a CF can mandate that a paclet
scheduler component most always read its inpat from a
pacheet classifier. Such constrmints are nsefol to facilitate
meaningful reconfignmtion and theefore the system
muost povide sapport for expressing these constraints.

A component framework can be standalone orcan in-
teract and cooperate with other CFs (as long as it con-
forms to the roles governed on the host CF). Theefoe,
it is natural to design CFs themselves as components.

In our programmable netwoking research we have
designed a generic “Router CF” on top of OpenCOM
that enables the flexible corfiguration and wconfigura-
tion of software rooters. This is described in detail in
[6]. The use ofthe Router CF is illustiated in section 5.



2. The Radizys Intel IXP1200 Router

The TXP1200 muter [5, 8], on which we have im-
plemented onr OpenCOM component model, is an Intel
poprietary architectore based on TXFP 1200 network pro-
cessolrs [MPs) Tts achitecture combines a Strong ARM
pocessor with six independent 32-hit RISC processors
called microengines, which have hardware maltithread
support. The StongARM is the core processor and is
primarily concerned with control and management plane
operations, wheeas the micoengines handle paclcet for-
warding. The TKP1200 is illostrated in Figne 1.
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Figure 1. 1XP1200 hardware ervlmonmentof our
prototy pe

3. Our Approach to Building Pro-
grammable Networking Systems

AL The Design Space of Programming Net-
working

The design space of programmable networking [§]
can be split into tour layers or strata. We prefer the
term “stratnm™ to “layer™ to avoid confusion with lay-
ered protocol achitectures. The toar strata ae desciibed
as follows:

Hardware Abstraction: The  hardware  abstrac-
tion stratum coresponds to the minimal operating
systern-like fonctionality needed to mn  soft-
wale on the higher levels.

In-Band Functions: This stratum consists of in-band
packet processing functions sich as packet fil-
ters, checlksum wvalidators, classifiers, diffsery
schedulers, and traffic shapers.

Application Services: The application services stratum
encompasses coarser-grained functions inthe sense
of programs mnning under active netwouking exe-
cution environments [1].

Coordination: This stratnm sopports ont-of-band sig-
nalling potecols (eg. R3VE) which carry onat dis-
tributed coordination, including configuration and
reconfiguration of the lower strata.

3.2 Benefits of a (Globally-Applied Compomnent-
Bazed Approach

The main aim of ocar work is to povide a
globally-applied component model, which can en-
able (1e)configuiation of services in all strata. This po-
tentially yields a number of important benefits. The
approach:

n is simple and wniform —it allows the creation of ser-
viceson all strata and provides a uniform run-time
support tor deployment, inspection of carrent con-
figurations, and [ ejconfignration,

n chables bespoke software configurations—by the
composition of CFs in each stratum, desied func-
tionality can be achieved while minimising mem-
ory footprint; trade-offs vary for different sys-
tems types (e.g. embedded, wieless devices,
lage-gscale cole routers);

s facilitates ad-hoc interaction—e.g. application or
transpout layer components in protocol layer can
diectly access (subject to access policies) “layer-
violating™ infommation from other, non-adjacent,
layers, which is increasing considered useful [2].

In oor work we apply this appoach to both net-
work processor based wuters and commodity PC-based
wuter. This heterogenaity is fundamental to validate onr
claim of a generic model. We also stiive to implement
this model without compromising the overall pedfor-
mance.

4. Implementation

As mentioned, our component model offers sapport
tor foading and birdieg of components ®siding in all
strata of the design space of the programmable netwo k-
ing environment. We provide this functionality as pan
of owr cove achitecture. The loading mechanism nses
plug-in loaders to create an instance of one component
in the specified container and the binding mechanism
uses plog-in binders to accomplish the binding between
individual components (between interfaces and moepta-
cles).

As a consequence, we have implemented plag-in
loaders that load components into Windows address
spaces, Linux addmess spaces, and THP1200 micro-
ergines. In the general case, the progmmmer may



either select a specific loader manually, or (more com-
monlyy elect for tmnspaency and let OpenCOM
make the choice. In the former case, the program-
mer wounld nose OpenCOM’s eflective capabilities
[7] to malke the alematives visible, and then inter-
act with a specific loader. In the latter case, the selection
is made on the basis of attributes attached to both com-
ponents and loaders (e.g. a “CPL-type” or “O5-type”
attribute). Loaders themselves may esponse a for-
ther level of choice (which may also be attiibote driven)
of which addiess space to load into. Bor example, a mi-
cioengine loader (that comprebends each TXP 1200 mi-
CIEngine as a4 sepaiate address space) might make
a choice of which micoengine to use for a particu-
lar load eqguest by taking into ascount factors such
as resource usage, o3, and secwrity/ satety con-
stimints. Purthermowe, it is possible, using a “place-
ment”™ meta-medel sopported by the microengine
loader, to manuoally control this placement if de-
sired.

In addition, we have implemented the following set
of plug-in binding components (ov &indersy.

s vrablfe-Based — This binder was implemented as
partofthe oiiginal OpenCOM platform. Tt operates
only in the Linox environment (on the host PC or
Swong ARM) and enables the birding of any com-
ponent generated by a compiler whose binaries em-
ploy the vtable function-call convention.

s shared memory — We have developed a
microengine-specific binder that uses shared
memory [ie., scratch memory, static and dy-
namic RAW - SRAM and SDRAM; see figure
13, to bind components that eside in differ-
ent microengines. We alsn have a shared memovy
binder that birds a microengine-based compo-
nent to a Linux-based component, and another
that binds two components running in differ-
ent Linux processes.

n fHranch instenction — This binder enables bindings
between componentson the same microenging. Es-
sentially, a component is bonnd to another [cf Mat-
bind [3]3 by rewriting a bianch instiuction so that
execation jumps to the desired target.

The above functionality is made available thiough the
following capsuf A PL

m loadiaddress_szoace, comlonent),
m load({loader, address =zoace, comzonent),
s unleoadiaddress_sSoace, comaonant),

m bindi{recestacle, interfaca),

bindibinder, recestacle, interface),

» unbindirecastacle, interface);

In addition, the following meta-interfaces expose a
meta-meodel of the loader and binder CFs:

s install leader(comaonent, loadar),
m remove_leadaer (comenant),
m install binder(comaenent, binder);

s ramove_binder (comaonant),

These meta-interfaces ae nsed to adds remove load-
€rs and binders to alter the set available to callers of
toadf), wnfoadf ), Bind{ ), and wnbindf ).

5. Application Scenario

To demonstrate onr appmoach, we piesent a confign-
mtion of oor recently-implemented Ronter CF (that was
mentioned in section 2.2Y which covers strata 2, 3, ard
4 (the OpenCOM runtime itself deals with statum 1 by
wrapping the nnderlying O35 with CFs for thread man-
agement, bofter pool management etc.}). The below sce-
nario demonstrates how OpenCOM’s (re)configoration
capabilities can be nsed to extend the netwok services
on a muterat run-time. In addition, the scenario empha-
sizes the benefits of a single, nniformly-applied, compo-
rent model, which allows configuiation and reconfign-
mtion of service components acioss severdl strata of the
programmable network design space and acioss differ-
ent hardware environments (Le., a8 FC and an TP 1230-
based oater). It also shows how reconfigniation can be
caried out in dimensions that have not been foeseen
when the systermn was designed.

The Router CF configuiation illostrated in Bigore 2
(minus the dotted box} is a typical configoration for TP
forwarding. Tt consists of severml in-band components
(stratnm 23 on the “fast-path™ of the woter, namely a
classifier and a forwarder, as well as scheduling compo-
nents, an application service-level component (stratom
3) for the processing of TP options on the “slow-path™,
and a *“moating protocol™ CF in the contmol plane of the
moter (stratnm 4.

To best exploit the capabilities of the different bard-
ware elements of the TXP1200, we taget the above func-
tions at the hardware best suited to them. Thus, we de-
ploy the “fast-path™ components on the micoengines,
the IF options component on the Strong ARM, and the
wuting protocol CFon the PC Mote that we can addi-
tionally exploit the multi-addiess-space capsule featuis
of OpenCOM to address security/ safety issues. For ex-
ample, we can lead untiusted components into separate
address spaces (within the same capsale) so that they
cannot malicionsly or accidentally disrapt ov crash the
whaole system.
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Figure 2. IPvGvd translator appllcatlon scenarke

To illostrate un-time reconfiguiability, we dynami-
cally install TPv6-to-TPvd protocol trmnslation fonction-
ality fcollectively called a “translator™), into the initial
corfiguration (note that, like the Roater CF itself, the
translator is spread across different layers of the ronter
achitectnre: while the actnal protocol translation takes
place on the Strong ARM, management is performed on
the PCY Such dynamic extensibility might be equired
to adapt to a network environment providing TPvh sop-
port withont needing to restart the network device. Bor
example, if onr system was mnning on a mobile PDA,
we would only requie TPv6 functionality when we be-
come attached to a fixned network. When opemting in a
wireless network envimonment, we can save memoly by
omitting this functionality.

To integrate the tianslator we first attempt to load
its two consitnent components into the appropriate ad-
diess spaces. This is achieved transparently (hased on a
“CPU-type™ attribote attached to the components) by the
loader CF Furthermore, the COF checles that the compo-
nerts being loaded confoim to its rules. We then obtain
a new eceptacle onthe classifier, and armange forthisto
be bourd to the translator. An appropriate binder is se-
lected tianspaently (by the binding CF). We could also
use OpenCOM facilities [7] to ensuie that the translator
has adequate souces (e.g. in terms of its thiead prior-
ities, and buffer pool availability) to perform with a re-
quired level of Qo8 Mote that none of these steps need
1o have been foreseen when the initial configumtion was
defined, and that they a® entiely decoupled from the
basic functionality of the components imvolved.

6. Related Work

Althongh there exists 2 whaole variety of research on
component-based platforms for programmable wuaters
fe.g Click [1d], WP-Click [14], VER A [9], MetBird [3],
LARA++ [13]), few works sopport confignmtion and -
configuration [i.e., adaptation, extension, evolotion and
removal of components) sufficiently. Most of them sop-
port initial configoration bat do not support subseqnent
mntime reconfiguration. Moeover, systems that do im-
plement 1&-confignration do not adeguately sopport the
management of system integlity over reconfiguration
operations le.g. ensaring that firewall npdates are ap-
plied consistently and oniversally) We addmess this is-
sne by designing appmopriate CFs Forthermoe, these
worlcs do not provide an inreg rated appoach to config-
ore and re-confignre services acioss all layers of the pro-
grammable networking system (see section 3). Bor ex-
ample, VER A limits re-confignmbility to in-band fanc-
tions and the hardware abstiaction laver, whereas Met-
Bind considers only in-bard functions. LAR A++, on the
other hand, allows ®-confign@bility on all strata, bat
lacks an uniform model to do so (ie. different compo-
rent models ae osed on the different layers). Villazan
[16] introduces the nse of eflection to support fexible
configuration in active networlks, bot this work only ad-
dresses an architecture in which active nodes nse 1eflec-
tion better to stiuctore services. Essentially, the worlk
defines a Eflective architecture for configuration ather
than [re-Jconfign@tion.

7. Conclusions

In this paper we have proposed a component model
based on a single frrmework for all strata of the de-
sign space of programmable network platforms that
facilitates the creation of services by flexibly load-
ing and binding relevant components at a poten-
tially fine grnolarity. We believe that the combi-
nation of components, eflection, and CFs offers a
promising approach to the configoration and econ-
figumtion of services in networking environments.
A key strength of ow model is the wniform frame-
worl to load and bind both Linox and assembly-baszed
components on heterogeneons hardwae. As a conse-
guence, we ague that oor model facilitates fundamen-
tal m-configuation on progrmammable woters and hence
greatly increases flexibility.

Burthermore, it is impotant to emphasize that oarap-
proach facilitates the extensibility and programmability
of network processors based systems. These architec-
tures ave usually had to program and, as a consequence,
®-configuiation is hardly considered on these “primi-



tive™ environments. However, the provision of a generic
framewok for these achitectn ®s gives the prog@mmer
a friendly interface (abstiaction) to cieate and conse-
quently e-configuE services on assembly-based com-
ponents. We do this by creating an “illosion™ for the
component developer that assembly-based components
can be loaded and bound in the same way as Linox com-
ponents.
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