
electronics

Article

Automatic Failure Recovery for Container-Based IoT
Edge Applications

Kolade Olorunnife *, Kevin Lee * and Jonathan Kua *

����������
�������

Citation: Olorunnife, K.; Lee, K.;

Kua, J. Automatic Failure Recovery

for Container-Based IoT Edge

Applications. Electronics 2021, 10,

3047. https://doi.org/10.3390/

electronics10233047

Academic Editor: George Angelos

Papadopoulos

Received: 9 November 2021

Accepted: 2 December 2021

Published: 6 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information Technology, Deakin University, Geelong, VIC 3220, Australia
* Correspondence: kolorunnife@deakin.edu.au (K.O.); kevin.lee@deakin.edu.au (K.L.);

jonathan.kua@deakin.edu.au (J.K.)

Abstract: Recent years have seen the rapid adoption of Internet of Things (IoT) technologies, where
billions of physical devices are interconnected to provide data sensing, computing and actuating
capabilities. IoT-based systems have been extensively deployed across various sectors, such as
smart homes, smart cities, smart transport, smart logistics and so forth. Newer paradigms such
as edge computing are developed to facilitate computation and data intelligence to be performed
closer to IoT devices, hence reducing latency for time-sensitive tasks. However, IoT applications
are increasingly being deployed in remote and difficult to reach areas for edge computing scenar-
ios. These deployment locations make upgrading application and dealing with software failures
difficult. IoT applications are also increasingly being deployed as containers which offer increased
remote management ability but are more complex to configure. This paper proposes an approach
for effectively managing, updating and re-configuring container-based IoT software as efficiently,
scalably and reliably as possible with minimal downtime upon the detection of software failures.
The approach is evaluated using docker container-based IoT application deployments in an edge
computing scenario.

Keywords: Internet of Things (IoT); edge computing; failure recovery

1. Introduction

The past decade has seen the rapid development and adoption of the Internet of
Things (IoT). IoT refers to an ecosystem where billions of physical devices/objects are
equipped with communication, sensing, computing and actuating capabilities [1,2]. In
2021, there is an estimated 12.3 billion of active IoT endpoints and it is forecast that the
number of active IoT endpoints will reach 27 billion in 2025 [3]. IoT-based systems have
been extensively deployed across many industries and sectors that impact our everyday
lives, ranging from smart homes, smart cities, smart transport and smart logistics. Business
opportunities and new markets abound in IoT, with new IoT applications and use cases
constantly evolving. However, IoT applications are increasingly complex, commonly with
a large number of end devices with many sensors and actuators and computing spread
across end-nodes, edge and cloud locations. There has been substantial effort in designing
architectures and frameworks to support good IoT application design [4,5]. An effective
and efficient IoT system requires optimal architectural, communication and computational
design. The heterogeneity of device hardware, software, communication protocols has
made achieving the performance requirements of specific IoT services challenging [6–8].
Service requirements for IoT systems have motivated the development of new computa-
tional paradigms such as edge and fog computing to facilitate IoT data computation and
analysis, bringing data intelligence and decision-making processes closer to IoT sensors
and actuators, thus improving their performance by reducing service latency [9–12]. This
is particularly important for time-sensitive tasks, such as those in autonomous vehicles,
manufacturing and transport industries, where minute delays in services can have serious
safety consequences [13].

Electronics 2021, 10, 3047. https://doi.org/10.3390/electronics10233047 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2730-9150
https://orcid.org/0000-0001-9699-9418
https://doi.org/10.3390/electronics10233047
https://doi.org/10.3390/electronics10233047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10233047
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10233047?type=check_update&version=2


Electronics 2021, 10, 3047 2 of 19

There are significant trade-off considerations when deciding on the computational
paradigm for IoT systems [14]. Cloud computing offers higher reliability, availability and
capabilities, while edge computing offers low-latency services. However, like all complex
computer systems, edge-based IoT deployments can suffer from failures [15]. This is
potentially more problematic for IoT deployments due to the nature of these often being
in an embedded or hard to reach physical locations. IoT devices are usually deployed at
scale and has cheaper chipsets and hardware, which make them more prone to faults. It is
challenging to manage faults, especially when these devices are deployed across a large
area in physically hard-to-reach environments. Solving this issue can be through fault-
tolerance [16,17] attempting to prevent errors in the first place, or through failure recovery
techniques that attempt to recover from problems [18,19]. In addition, IoT applications
are increasingly deploying software on cloud services which have no physical access
making fault-tolerance necessary and difficult [20]. A potential solution to this problem
is to use virtualisation technologies for resource optimisation in heterogeneous service-
oriented IoT applications [21]. Redundancy is another common approach which has been
extensively studied, particularly providing fail-overs in the IoT sensing, routing and control
processes [22]. In addition to fault-tolerance, approaches using anomaly detection and
self-healing techniques have also been explored for building more resilient IoT and Cyber-
Physical Systems (CPS), addressing the various risks posed by threats at the physical,
network and control layers [23].

Among the many fault-tolerance approaches studied and proposed, container-based
approaches are still lacking. The aim of this paper is to investigate the feasibility of
automatically detecting failures in container-based IoT edge applications. Specially, this
paper investigate if this technique be used in scenarios with IoT software deployed in
embedded or hard to reach scenarios, with no or difficult physical access. The proposed
approach can automatically diagnose faults with IoT devices and gateways by monitoring
the output of IoT applications. When faults are discovered, the proposed approach will
reconfigure and redeploy container-based deployments. The experimental evaluation
analyses the impact of error rate, redeployment time and packed size on the recovery time
for the IoT application.

The contributions of the paper are (i). An evaluation of approaches for failure recovery
for IoT applications (ii). A proposed framework for enabling failure recovery for IoT
applications (iii). Experiments to evaluate the flexibility, resilience and scalability of the
proposed approach.

The structure paper is as follows. Section 2 provides background of edge computing
and failure recovery for IoT applications. Section 3 proposes the architecture of a framework
for automatic failure recovery of IoT applications. Section 4 describes the experimental
setup for this paper and Section 5 presents results of the evaluation of the framework.
Section 6 concludes the paper and discuss future work.

2. Background

This section presents some background information on edge computing, IoT software
management and failure recovery in IoT.

2.1. Edge Computing

With billions of IoT sensors and devices generating a large amount of data and ex-
changing communication and control messages across complex networks, there arise a
need for more efficient computational paradigm, rather than merely relying on cloud com-
puting infrastructure. Edge computing is designed and proposed to address the complex
challenges resulting from the large amount of data generated by IoT systems, such as
resource congestion, expensive computation, long service delays which negatively impact
the performance of IoT services. Edge computing aims to be a distributed infrastructure
and perform data computation and analysis closer to the sensors that collect the data and
actuators that act upon the decisions [9]. This significantly reduce service response time



Electronics 2021, 10, 3047 3 of 19

and is particularly important for IoT applications that requires real-time or time-sensitive
services [13].

Put simply, an edge device is a physical piece of hardware that is a bridge between two
given networks. In IoT, an edge device would commonly receive data from end devices
which include sensors such as temperature sensors, moisture sensors or radio-frequency
identification (RFID) scanners. The data from the sensors would be passed onto a edge
device that then forwards the data to the cloud or minor data processing occurs at the edge
which is then forwarded to the cloud [24].

Figure 1 illustrates a general IoT and edge-based architecture. On the left there are
various sensors connected to a singular edge device which in this case is an embedded
device. The edge device in Figure 1 is connected to an actuator which could possibly flip on
a light switch or turn on an air conditioning unit. The edge device will forward the sensor
data to an internet gateway. The internet gateway will pass this data onto an application
server which will then handle the processing of this data or store it. The relationship
between an edge device to edge gateway can be many to many. We can have many edge
devices connect to a singular edge gateway or have many edge devices to connect to one of
many edge gateways. Processing of data can happen at any stage of this architecture [25].

Figure 1. Edge Computing Architecture.

The increase in computational power for embedded devices allows for complex data
processing on the edge devices before they even reach the cloud service [26]. Fog computing
is where the majority of the processing is done at the gateway rather than the edge or
the cloud. For IoT applications, there are strong benefits of using edge computing or fog
computing. One such benefit is that latency for time-sensitive IoT applications is minimised
due to the fact that the processing occurs at the edge rather than transferring data to
and from the cloud through a gateway. Lower latency allows for real-time applications
to become a forefront within the consumer, industrial and commercial space. In edge
architectures, it is also possible that the end device and edge device work together to
perform edge computing in order to make informed decisions or trigger an action. In
edge architectures, real-time operations become a more feasible option because of lower
latency due to the fact that no communication with a cloud service is needed. The sensor(s)
embedded within the edge device can process the data as they are collected and then act
upon this information without minimal impact to quality of service [9].

To understand the reliability and failure characteristics of IoT application deployments
its useful to discuss the architecture. IoT can be thought of as an evolution of traditional
sensor networks; however, there is an inherent and growing need for resources to e.g.,
process video. The traditional solution to this has been to use Cloud Computing resources.
This has distinct advantages, such as access to almost unlimited cheap resources, but
distinct disadvantages such as high-latency and a lack of control. If there is a failure of



Electronics 2021, 10, 3047 4 of 19

communication to the cloud resources or a failure of the cloud computing resource itself,
there is often no ability to recover from this. Edge computing offers a compromise, with
the introduction of powerful resources at the edge of the network, often in full or partial
control of the application developer. In an edge computing architecture, reliability of the
IoT application can potentially be better than just using a cloud service as the system
does not need to rely entirely on the cloud service for it to fully function. In particular,
communications are much simpler for IoT node to edge node, than that of to the Cloud
Computing resources which will have many hops.

However, edge computing reaps several benefits as previously mentioned. They still
suffer from a common issue, namely, network instability, which plagues any system or
application that requires a steady connection to the internet or some form of secondary
device. A device network stability has a correlation to consumed power. The greater the
amount of consumed power, the higher the chance of instability possibly due to heavy
computation on the edge device for processing a large volume of data, which is why
segmenting and de-identifying the sensor data for privacy reasons to then send to the
gateway for pre-processing is a new challenge.

The need for fault tolerant IoT systems and application have been on the steady
incline and also the need for fault tolerant within IoT has been made apparent. The
need for fault tolerant IoT systems is due to the possibility of intermittent long distance
network connectivity problems, malicious harming of edge devices, or harsh environments
physically affecting the devices performance [27]. As IoT systems become increasingly
large, the effectiveness of having software frameworks automatically manage the different
components within an IoT application is needed [28].

2.2. IoT Software Management

Recently, software defined network (SDN) technologies have been considered as
a dominant solution for managing IoT network architecture. Dang et al. propose in-
corporating SDN-based technologies with over the air (OTA) programming to design
a systematic framework which allows for remotely reprogramming heterogeneous IoT
devices. This framework was designed for dynamic adaptability and scalability within IoT
applications [29].

Soft-WSN is a software defined wireless sensor network architecture in an effort to
support application aware service provisioning for Internet of Things systems. Soft-WSN
proposed architecture involves a software controller, which includes two management
procedures, device management and network management. Device management allows
users to control their devices within the network [30]. The network configurations is
controlled by the network management policy, which can be modified in run time to deal
with dynamic requirements of IoT applications.

UbiFlow, is a software defined IoT system for mobility management in urban heteroge-
neous networks. UbiFlow adopts multiple controllers to divide software defined networks
into different partitions and achieve distributed control of IoT data flows. UbiFlow mostly
pertains to scalability control, fault tolerance and load balancing. The UbiFlow controller
differentiates scheduling based on per device requirements. Thus, it can present an overall
network status view and optimize the selection of access points within the heterogeneous
networks to satisfy IoT flow requests, and guaranteeing network performance for each IoT
device [31].

2.3. Fault Tolerance in IoT

Providing fault tolerance support to Internet of Things systems is an open field, with
many implementations utilising various technologies like artificial intelligence, reactive
approaches and algorithmic approaches [32].

A plug-able micro services framework for fault tolerance in IoT devices can be used to
separate the work flow for detecting faults. The first micro service utilises complex event
processing for real time reactive fault tolerance detection, whereas the second micro service



Electronics 2021, 10, 3047 5 of 19

uses cloud-based machine learning to detect fault patterns early and is a proactive strategy
for fault tolerance. The reactive fault tolerance that uses complex event processing only
initiates recovery protocols upon the detection of an error. This sort of strategy is only
effective for systems that have a low latency connection to the faulty device. Whereas the
proactive strategy that uses machine learning initiates recovery protocols before errors
occur using predictive technologies. The main process behind a proactive strategy is to
temporally disable or isolate IoT devices that will cause an error or harmfully impact the
system before it occurs [33].

A mobile agent-based methodology can be utilised to build a fault-tolerant hierarchical
IoT-cloud architecture that can survive the faults that occur at the edge level. In the
proposed architecture, the cloud is distributed across four separate levels which are cloud,
fog, mist and dew. The distribution is based on the processing power and distance from
the edge IoT devices. This makes for a reliable system by redirecting the application onto
an alternate server when faults occur within any level of the system [34].

Whereas, utilising a bio-inspired particle multi-swarm optimization routing algorithm
to ensure connections between IoT devices remain in a stable condition is also a feasible
methodology for fault tolerant IoT networks. The multi-swarm strategy determines the
optimal directions for selecting the multipath route while exchanging messages from any
positions within the network [35].

In deployment scenarios where wireless technologies are used, such as those in WSNs,
virtualisation technologies for resource optimisation can be used to assist heterogeneous
service-oriented IoT applications [21]. There are many different redundancy and fail-over
strategies across the IoT stack and ecosystem. The paper in [22] provides a comprehen-
sive survey, particularly in the IoT sensing, routing and control processes [22]. Another
paper [23] presents a comprehensive roadmap for achieving resilient IoT and CPS-based
systems, with techniques encompassing anomaly detection and self-healing techniques
to combat various risks and threats posed by internal/external agents across the physical,
network and control layers.

2.4. Theories, Metrics and Measurements for System Reliability

Today’s technological landscape requires high system availability and reliability. Sys-
tem downtime, failures, or glitches can result in significant revenue loss and more critically,
compromising the safety of systems. Hence, measurement metrics for system reliability
are used by companies to detect, track and manage system failures/downtime. Some
commonly used metrics are Mean Time Before/Between Failure (MTBF), Mean Time to
Recovery/Repair (MTTR), Mean Time to Failure (MTTF) and Mean Time to Acknowledge
(MTTA). These metrics allow the monitoring and management of incidents, including
tracking how often a particular failure occurs and how quickly can the system recover from
such failure. For a more detailed explanation and derivation of these metrics, we refer the
readers to [36].

There are many approaches presented in the literature to minimise system failures
and manage incidents more effectively. These approaches span multiple industry applica-
tions, with most techniques focusing on optimising the MTBF. However, there is currently
limited work in applying these techniques to IoT and edge computing. For example, Engel-
hardt et al. [37] investigated the MTBF for repairable systems by considering the reciprocal
of the intensity function and the mean waiting time until the next failure; Kimura et al. [38]
looked at MTBF from an applied software reliability perspective by analysing software
reliability growth models as described by non-homogenous Poisson process; in two sepa-
rate works, Michlin et al. [39,40] performed sequential MTBF testing on two systems and
compared their performance; Glynn et al. [41] proposed a technique for efficient estimation
of MTBF in non-Markovian models of highly dependable systems; Zagrirnyak et al. [42]
discussed the use of neuronets in reliability models of electric machines for forecasting the
failure of the main structural units (also based on MTBF); Suresh et al. [43] unconvention-



Electronics 2021, 10, 3047 6 of 19

ally applied MTBF as a subjective video quality metric, which makes for an interesting
evaluation of MTBF in other application areas other than literal system failures.

Reliability curve is also an important metric that is used widely across many applica-
tions and industries [44]. Variants of reliability curves have been recently applied to IoT,
edge computing and Mobile Edge Computing (MEC) in the advent of innovations in 5G.
For example, Rusdhi et al. [45] performed an extensive system reliability evaluation on
several small-cell heterogeneous cellular networks topologies and considered useful redun-
dancy region, MTTF, link importance measure and system/link uncertainties as metrics to
manage failure incidents; Liu et al. [46] propose a MEC-based framework that incorporates
the reliability aspects of MEC in addition to the latency and energy consumption (by for-
mulating these requirements as a joint optimisation problem); Chen-Feng Liu et al. [47,48]
proposed two (related by separate) MEC network designs that also considered the latency
and reliability constraints of mission-critical applications (in addition to average queue
lengths and queue delays, by using Lyapunov stochastic optimization and extreme value
theory); Han et al. [49] proposed a context-aware decentralised authentication MEC ar-
chitecture for authentication and authorisation to achieve an optimal balance between
operational costs and reliability.

Link importance measure is another important aspect for measuring system reliability.
There are several techniques that considered link importance measure in the context of
IoT and edge computing. For example, Silva et al. [50] developed a suite of tools to
measure and detect link failures in IoT networks by measuring the reliability, availability
and criticality of the devices; Benson et al. [51] proposed a resilient SDN-based middleware
for data exchange in IoT edge-cloud systems, which dynamically monitors IoT network
data and periodically sends multi-cast time-critical alerts to ensure the availability of
system resources; Qiu et al. [52] proposed a robust IoT framework based on Greedy Model
with Small World (GMSW), that determines the importance of different network nodes
and communication links and allows the system to quickly recover using “small world
properties” in the event of system failures; Kwon et al. [53] presented a failure prediction
model using a Support Vector Machine (SVM) for iterative feature selection in Industrial
IoT (IIoT) environments which calculates the relevance between the large amount of
data generated by IIoT sensors and predict when the system is more likely to experience
downtime, Dinh et al. [54] explores the use of Network Function Virtualisation (NFV) for
efficient resource placements to manage hardware and software failures when deploying
service chains in IoT Fog-Cloud networks.

3. Proposed Framework for IoT Failure Recovery

The aim of this paper is to propose a failure recovery framework for IoT applications.
This framework focuses on the problem of failures in IoT applications that are deployed on
end nodes and edge nodes that utilise container deployment techniques. This is a relatively
new potential problem, as it is only recently that end nodes and edge nodes have the
resources to use containerization. The proposed framework assumes that failures occur in
IoT deployments, due to corruption or configuration in the end node or edge gateway [55].
The framework will passively monitor communications from the IoT node and gateway to
detect potential failures. On discovery of a potential failure, the framework will deploy
known good applications in containers. The general aim of the framework is to minimise
downtime due to application failure.

Figure 2 presents the overall architecture of the proposed framework which would be
bolted on to an existing IoT edge-computing deployment. The deployment controller is a
monitoring agent which can send action requests to any IoT gateway or device. An action
request is one of two things, either a reconfiguration request to reconfigure one to many
IoT gateways or devices, or a redeployment request in which the code-base for the IoT
gateways or devices can be updated. The following describes how each device of the
IoT-edge deployment interacts with the proposed framework.



Electronics 2021, 10, 3047 7 of 19

Figure 2. Proposed framework for IoT failure recovery.

The IoT Device receives action requests from the gateway. If the action request is a
redeployment request, the helper process is notified and proceeds to handle managing,
rebuilding, restarting and deleting of containers and images for a seamlessly migration
to the new version. The IoT Device can also request from the helper process to perform a
network scan for any active gateways that are connected to the same network as the IoT
device. The IoT device sends the collected data to the gateway.

The IoT Gateway receives action requests from the cloud server and will route the
request to their corresponding target devices or ignore the request entirely if it is required
to execute it. The IoT gateway will communicate with the helper process if the gateway is
the target for the redeployment request. When the helper process is notified it will proceed
to handle managing, rebuilding, restarting and deleting of containers and images for a
seamlessly migration to the newer version. The IoT gateway receives the data stream and
forwards it to the cloud server.

The Cloud Server receives action request from the deployment controller and will
propagate the request to all connected gateways. The cloud server receives the data stream
from the IoT gateway and forwards it to the deployment controller.

The Deployment Controller receives the response of an action request completion or
failure from the cloud server which is sent from the IoT devices through the IoT gateway.
The deployment controller initiates of action requests and receive the data stream from the
cloud server and display them.

IoT-edge Deployments are described through YAML configuration files. Redeploy-
ment requests must have the build.yml file at the root of the update folder. The updated



Electronics 2021, 10, 3047 8 of 19

folder is located at /update of the current working directory of the deployment controller.
The structure of the build file is illustrated in Figure 3.

target:
group: "*"
type: iot-gateway

actions:
- DELETE cache.json
- OVERWRITE Dockerfile
- OVERWRITE device-helper.js
- OVERWRITE gateway.js
- MKDIR unit-tests

Figure 3. Example build.yml.

The build file is split into two configuration sections. The target section indicates to the
IoT gateways whether this build package is for a gateway or IoT device(s). The first path
within the target section, target.group is the identifier of the device to update. Specifying
the * key, like in the example, will address all devices of target.type to update. The second
path of target within the target section, target.type specifies if the build package should be
deployed on the IoT gateway or IoT device.

The second configuration section is the actions section which will tell either the IoT
device or gateway what actions to perform to unpack the build. There are only 4 action
commands that are usable within the build file actions configuration section. OVERWRITE
(filename) will create a new file or overwrite the existing file, MKDIR (dir) will create a
directory if it does not exist, DELETE (filename) will remove a file, finally REBUILD will
rebuild the device’s image. The REBUILD action will not run any subsequent actions and
should always be at the bottom of the actions list.

The build.yml refers to a small number of files, which allow the building and rebuild-
ing of the node software. The first of these, cache.json is a JSON file on the IoT gateways
that store the time data was last received from an IoT device. This allows the IoT gateway
to know when data was last sent even if the IoT gateway restarts. Dockerfile is the docker
configuration file that describes how the image should be built.

device-helper.js is a JavaScript file that executes outside the docker container environ-
ment and is solely responsible for interacting and modifying the behaviour of the docker
containers when requested to do so. The device-helper primary role is to delete and re-
build images to the new specifications, attempt to start the new image and if a failure
occurs attempt failure recovery protocols. The device-helper script is always in continuous
communication with the active running docker container.

gateway.js is the main JavaScript file that runs within the docker container and is
responsible for keeping track of all the currently connected IoT devices and automatically
removing any disconnected IoT device from the list. gateway.js has the critical responsibility
of relaying data and requests to the required devices at any given point in time.

4. Experiment Setup

To evaluate the effectiveness and robustness of the proposed framework, a series of
experiments have been performed with varying configurations. A testbed configuration
was setup using common hardware platforms widely used for IoT nodes and gateways.
The proposed architecture as described in Figure 2 using several Raspberry Pi small
board computers. Raspberry Pis are commonly used in IoT testing and deployment due
to their versatility. Their computational capabilities are typically suitable for most IoT
deployment scenarios.

The experimental testbed setup consists of (i) a laptop as the deployment controller,
(ii) a Raspberry Pi 4 as an IoT node and a (iii) Raspberry 3B+ as an edge node. The
Raspberry Pi 4 Model B consists of a 4 GB LPDDR4-3200 SDRAM, Broadcom BCM2711,



Electronics 2021, 10, 3047 9 of 19

Quad core Cortex-A72 (ARM v8) 64-bit SoC at 1.5 GHz. The Raspberry Pi 3 Model B+
consists of 1 GB LPDDR2 SDRAM Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC
at 1.4 GHz. The laptop consists of an Intel i7-8565U at 2.00 GHz, 16 GB RAM, Geforce GTX
1050 GPU. Figure 4 illustrates the different devices in the experimental setup.

Figure 4. Experiment setup with IoT devices/nodes (RPi 4B), IoT gateway (RPi 3B+), deployment
controller (laptop).

There are multiple stages of the IoT redeployment process. The deployment controller
will first read the build.yml file and send it to the IoT gateway. Upon sending the build.yml
file, the deployment controller will open a stream pipe to the IoT gateway and start
streaming a large data payload. While the segmented data are being received at the IoT
gateway, the build.yml is stored in memory and the large payload for the image rebuild
process is written to the Raspberry Pi’s disk space. After the streaming process has
completed, the IoT gateway will again read the build.yml file and verify if the redeployment
request must be forwarded to an IoT devices or the gateway should apply the update
to itself.

If the redeployment request must be forwarded to an IoT device, the IoT gateway will
open a direct stream pipe to the IoT device and proceed to send the build.yml first and then
stream the payload that previously saved to the IoT gateway’s disk. When each bit of the
segmented stream data is received at the IoT device, the IoT device will write the file to the
disk on the Raspberry Pi. After the stream process is complete on the IoT device, the IoT
device will automatically incorporate the large payload to as a part of the build process for
the new image.

The IoT device build process starts with the helper process as shown in Figure 2. It
will first terminate the active container, rebuild the new Docker image with the included
payload, run the new Docker image and when successfully starts delete the previous image
and record the elapsed time for that process of building a new image and then starting the
new container and forward the results back to the IoT gateway.

5. Experimental Evaluation

This section presents an experimental evaluation of the proposed framework by inves-
tigating five distinct scenarios using the same testbed setup described in Section 4: (i) IoT
device redeployment; (ii) IoT gateway redeployment; (iii) IoT device sensor fault detec-
tion; (iv) IoT device redeployment failure detection; and (v) IoT gateway redeployment
failure detection.

5.1. Scenario 1: IoT Device Redeployment

In this scenario, the aim is to calculate the time required for a redeployment request
to be sent from the deployment controller and for the IoT device to successfully fulfill the
request and send a response back to the corresponding IoT gateway. The data collected
from this experiment will be used as a base value to determine on average how long the
deployment controller should wait with no response from the IoT devices. IoT devices that



Electronics 2021, 10, 3047 10 of 19

exceed this threshold will be considered to have possibly encountered an error and further
diagnostics on that device may be required.

Table 1 contains the results of 3 consecutive redeployment requests.

Table 1. IoT device redeployment duration.

Test Results

Test Number Elapsed Time (secs)

1 56.6
2 102.3
3 61.8

Average 73.6

The Test Number refers to the number of that test and Elapsed Time is the overall
duration for the following actions to occur.

The redeployment processes/steps across multiple IoT devices are described as fol-
lows (presented in Figure 5):

1. The deployment controller sends a redeployment request for an IoT device to the
Cloud server.

2. The Cloud server forwards the request to the IoT gateways.
3. The IoT gateway check what IoT devices to forward the request to.
4. The IoT device receives and completes the redeployment request.
5. The IoT device sends the response of success or error message back to the IoT gateway.
6. The IoT gateway then passes the message back to the cloud server and which then

passes it to the deployment controller and the timer is stopped and time taken is
displayed.

Deployment 
Controller

Cloud Server

IoT Gateway

IoT Device

1. Sends redeployment 
request to Cloud server

2. Forwards request 
to IoT gateway

3. Determine the 
intended IoT device 
for redeployment

4. IoT device receives 
and completes 
redeployment request

5. Sends success/error 
response message 
back to gateway

6. Passes message back to
Cloud server, the deployment 
controller, timer stopped

Figure 5. Scenario 1: Redeployment process across multiple IoT device(s).

Scenario 1 explores the average time in seconds for a redeployment request to be
successfully fulfilled. The results from this experiment can be used as a benchmark to
determine a time frame window for how long the deployment controller should wait
for requests from the IoT device or devices. If the response time exceeds the time frame,
the system will assume that the device was unable to migrate to the new version and
run further diagnostics as to determine if the device is fully offline or requires another
redeployment request.



Electronics 2021, 10, 3047 11 of 19

Further exploration of Scenario 1 led to varying the size of the redeployment package
by 50 MB chunks and simultaneously recording the time data as inactive in the system
while the IoT devices migrate to the new build.

Figure 6 displays a linear trend that a larger build package sent across the network
will increase the time it takes for the redeployment request to be completed. At a 50 MB
redeployment package, it takes approximately 150 s for a successfully redeploy and a
100 MB redeployment package on average requires 250 s. The time difference between
each 50 MB increase in the redeployment package size is about 100 s.

Figure 6. Redeployment Time vs. Redeployment Package Size.

Figure 7 displays a relatively linear trend where the larger the redeployment package,
the greater time, no data are sent from the IoT devices to the IoT gateways. The time
difference between each 100 MB redeployment package size is greater than 40 s, whereas
the jump between 50 MB is relatively stagnant.

Figure 7. Data Inactivity vs. Redeployment Package Size.

Although Scenario 1 gives a benchmark for the average time it would take for a
redeployment request to be successfully fulfilled, it does not take into account when a
IoT device does successfully migrate to the new version but the time it took exceeded the
response timeout window. In this scenario, the deployment controller assumes something
is wrong with the IoT device and will resend the redeployment request which in effect will
cause the already updated IoT device to forcefully update again. Scenario 1 results do not
take into account build packages that are large or very small, which can greatly vary the
average time required for the completion of a redeployment request.



Electronics 2021, 10, 3047 12 of 19

5.2. Scenario 2: IoT Gateway Redeployment

Scenario 2 explores the average time in seconds for a redeployment request to be
successfully fulfilled. The results from this experiment can be used as a benchmark to
determine a time frame window for how long the deployment controller should wait
for requests from the IoT gateway(s). If the response time exceeds the time frame, the
system will assume that the gateway was unable to migrate to the new version and run
further diagnostics as to determine if the gateway is fully offline or requires another
redeployment request.

Table 2. IoT gateway redeployment times.

Test Results

Test Number Elapsed Tim (secs)

1 28.39
2 92.27
3 112.8

Average 77.6

Table 2 contains the results of 3 consecutive gateway redeployment requests. The Test
Number refers to the number of that test and Elapsed Time is the overall duration for the
following actions to occur.

The redeployment processes/steps across multiple IoT gateways are described as
follows (presented in Figure 8):

1. The deployment controller sends a redeployment request for an IoT device to the
Cloud server.

2. The Cloud server forwards the request to the IoT gateways.
3. The IoT gateway(s) check if the request is intended for them.
4. The IoT gateway(s) complete the redeployment request.
5. The IoT gateway(s) send the response whether success or error message back to the

Cloud server.
6. The Cloud server passes it to the deployment controller and the timer is stopped and

time taken is displayed.

Deployment 
Controller

Cloud Server

IoT Gateway

1. Sends redeployment 
request to Cloud server

2. Forwards request 
to IoT gateway(s)

3. IoT gateway(s) check if they are 
the intended redeployed gateway

4. IoT device receives and 
completes redeployment request

5. Sends success/error 
response message back 
to Cloud server

6. Passes message back to the 
deployment controller, timer 
stopped

IoT Gateway IoT Gateway

Figure 8. Scenario 2: Redeployment process across multiple IoT gateway(s).



Electronics 2021, 10, 3047 13 of 19

Scenario 2 explores the average time in seconds for a redeployment request to be
successfully fulfilled. The results from this experiment can be used as a benchmark to
determine a time frame window for how long the deployment controller should wait for
requests from the IoT gateway or gateways. If the response time exceeds the time frame,
the system will assume that the gateway was unable to migrate to the new version and
run further diagnostics as to determine if the gateway is fully offline or requires another
redeployment request.

Further exploration of Scenario 2 lead to varying the size of the redeployment package
by 50 MB chunks and simultaneously recording the time data as inactive in the system
while the IoT devices migrate to the new build.

Figure 9 displays a very linear trend that a larger build package sent across the network
will increase the time it takes for the redeployment request to be fulfilled. At a 50 MB
redeployment package, it takes approximately 110 s for a successful redeploy and a 100 MB
redeployment package on average requires 185 s. The time difference between each 50 MB
increase in the redeployment package size is approximately 80 to 90 s.

Figure 9. Redeployment Time vs. Redeployment Package Size.

Figure 10 displays a linear trend where a larger build package that is sent across
the network increases the time no data will be received from the IoT devices. The time
difference between each 100 MB redeployment package size is not consistent by a certain
amount, but starts to sharply increase when the redeployment package is above 200 MB.

Figure 10. Data Inactivity vs. Redeployment Package Size.



Electronics 2021, 10, 3047 14 of 19

Although Scenario 2 gives a benchmark for the average time it would take for a
redeployment request to be successfully fulfilled, it does not take into account when a IoT
gateway does successfully migrate to the new version and the time it took exceeded the
response timeout window. In this scenario the admin panel assumes something is wrong
with the IoT gateway and will resend the redeployment request which in effect will cause
the already updated IoT gateway to forcefully update again. Scenario 2 results do not take
into account build packages that are large or very small which can greatly vary the average
time required for the completion of a redeployment request.

5.3. Scenario 3: IoT Device Sensor Fault Detection

Scenario 3 aims to test how long it takes a gateway to detect that an IoT device has
stopped sending sensor data and how long the IoT device spends to recover and reinitialise
data sending to the IoT gateway. For Scenario 3, each message sent from the IoT device
had a 60 percent chance of failing and each request sent from the IoT gateway to the IoT
device to recover had a 40 percent chance of success.

Scenario 3 explores the average time in seconds for a IoT device to recover from a
sensor fault. The results from this experiment can be used as a benchmark to determine a
time frame window for how long on average an IoT device will take to recover one of its
critical functions.

Exploration of Scenario 3 lead to varying the frequency at which data are sent from 1
to 10 s and recording the elapsed time for the IoT gateway to detect an error and request for
the IoT device to self-heal. The IoT gateway was configured to check for errors every 5 s.

Figure 11 is a demonstration of the time increasing for the IoT device to recover from
sensor failure when the time between messages is increased with 10 s having the largest
spread of varying recovery times. The 5 s interval for Figure 11 contains the smallest
spread due to the fact that messages are being sent every 5 s to the IoT gateway and the IoT
gateway itself was configured to check for problems with the IoT device every 5 s. There is
a clear distinction that increasing the frequency at which data are sent allows for a much
quicker recovery time with a smaller spread.

Figure 11. Recovery time vs. Data Frequency.

Although, Scenario 3 explores the average time in seconds for a IoT device to recover
from a sensor fault. It is not a true measurement of what would happen in the real world as
no physical sensors were attached and forced to fail and then recover. The sensor failures
in this experiment are purely software-based and there is a fixed chance for sensor failure
and recovery. Due to the software constraints imposed to test sensor recovery the results
can only be regarded as a theoretical time constraint.



Electronics 2021, 10, 3047 15 of 19

5.4. Scenario 4: IoT Device Redeployment Failure Detection

Scenario 4 explores the average time in seconds for a redeployment request to success-
fully recover after encountering failure on the IoT devices. The results from this experiment
can be used as a guide to determine on average number of attempts until the redeployment
is successful and as well as the elapsed time from failure detection to recovery.

Exploration of Scenario 4 led to varying the chance of and triggering an error during a
redeployment request and measuring the elapsed time and attempts that is required for
the system to recover and update the IoT device.

Redeployment time is the overall duration for the following actions to occur: deploy-
ment controller sends redeployment request to the IoT gateway. IoT gateways verifies the
IoT devices to forward the request to. IoT device receives and complete the redeployment
request. IoT device sends success of failure message back to the IoT gateway. IoT gateway
checks if the redeployment request was successful and if it has failed it will request for the
IoT device to perform the redeployment request again. Upon success of the redeployment
request the IoT gateway will pass the message back to the deployment controller and the
timer is stopped and time taken is displayed.

Figure 12 shows that the redeploy time is not greatly affected when the chance of a
build error occurring is lower than 30 percent. The redeployment time begins to have a
major increase from 60 percent chance of build error.

Figure 12. Redeployment Time vs. Build Error Chance.

Scenario 4 does not take into account when the IoT device attempting to update is
stuck in an infinite loop due to attempting to start the program that has errors. Currently,
the experiment will try as long as it needs to until the IoT device has updated which can
result in an extremely high number of attempts.

5.5. Scenario 5: IoT Gateway Redeployment Failure Detection

Scenario 5 explores the average time in seconds for a redeployment request to suc-
cessfully recover after encountering failure on the IoT gateways. The results from this
experiment can be used as a guide to determine on average number of attempts until
the redeployment is successful and as well as the elapsed time from failure detection
to recovery.

Exploration of Scenario 5 lead to varying the chance of an triggering an error during a
redeployment request and measuring the elapsed time and attempts that is required for
the system to recover and update the IoT device.

Redeployment time is the overall duration for the following actions to occur: deploy-
ment controller sends redeployment request to the IoT gateway. IoT gateways verifies if it



Electronics 2021, 10, 3047 16 of 19

is required to execute the redeployment request. IoT gateway completes the redeployment
request. IoT gateway helper process (See Figure 2) sends success of failure message back
to the IoT gateway. Iot gateway checks if the redeployment request was successful and
if it has failed it will request for the IoT gateway helper process to perform the redeploy-
ment request again. Upon success of the redeployment request the IoT gateway will pass
the message back to the deployment controller and the timer is stopped and time taken
is displayed.

Figure 13 shows that the redeploy time is not greatly affected when the chance of a
build error occurring is lower than 30 percent. The redeployment time begins to have a
major increase from 40 percent chance of build error and does not slow down. Results
indicate that minimising the build error as much as possible for the gateway will ensure
quality of service for end users will not be tarnished.

Figure 13. Redeployment Time vs. Build Error Chance.

Scenario 5 does not take into account when an IoT gateway attempting to update is
stuck in an infinite loop due to attempting to start the program that has errors. Currently
the experiment will try as long as it needs to until the IoT gateway has updated, which can
result in an extremely high number of attempts.

6. Conclusions and Future Work

The focus of this paper is to add a layer of failure recovery to deployed container-based
IoT edge applications. A framework was proposed the monitors deployed IoT applications
and detects if either the IoT end node or IoT gateway has potentially failed. Once potential
failures have been detected, the deployment controller will rebuild the application and
deploy to containers in the effected node. The aim is to minimise downtime due to potential
failures. This paper evaluated an implementation of this approach through a series of
experiments testing different configurations for viability.

This paper argues that low latency IoT systems have a significantly higher fault
detection and recovery time due to the system being able to verify more frequently if a
device has yet to send a message for a specified number of seconds. The paper argues
that decreasing the chance of build errors is critical in ensuring a that the quality of
service remains consistent even when the devices require new redeployed software. It
has demonstrated the design and implementation of a framework that automatically
detects faults and attempts to automatically recover and as well as contains functionality to
automatically reconfigure and redeploy software to all or targeted IoT devices or gateways.
The proposed framework can be used to evaluate the occurrence of errors with an multi
tiered system and the average theoretical recovery time for when an IoT device or gateway
is down due to faults.



Electronics 2021, 10, 3047 17 of 19

The work in this paper can be expanded on by implementing and refactoring the
framework to be suitable to run on low powered devices. This paper had a primary focus
on varying many factors to see the significant changes and impacts that could be seen if
implemented on a real physical system. However, the paper uses higher tier technologies
such as Docker, Raspberry Pis and real-time socket streams with the intended purpose to
simulate the behaviour of low powered IoT devices and IoT gateways and the failures that
can occur. The paper still presents a general overview of how faults can affect any given
multi-tiered IoT application. The proposed framework for automatic failure recovery and
the simulation of a multi tiered IoT system can be improved by rate-limiting in the network
connection and processing power to closely mimic the behaviour of a lower powered
device and what behaviours can occur when faults arise within these systems.

Author Contributions: Conceptualization, K.O., K.L. and J.K.; methodology, K.O., K.L. and J.K.;
software, K.O.; validation, K.O., K.L. and J.K.; investigation, K.O.; resources, K.L.; data curation,
K.O.; writing—original draft preparation, K.O.; writing—review and editing, K.O., K.L. and J.K.;
visualization, K.O.; supervision, K.L. and J.K.; project administration, K.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.; Da Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
2. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
3. IoT Analytics, State of IoT 2021: Number of Connected IoT Devices Growing 9% to 12.3 Billion Globally, Cellular IoT Now Sur-

passing 2 Billion. Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 21 November 2021).
4. Wang, W.; Lee, K.; Murray, D. A global generic architecture for the future Internet of Things. Serv. Oriented Comput. Appl. 2017,

11, 329–344. [CrossRef]
5. Wang, W.; Lee, K.; Murray, D. Building a generic architecture for the Internet of Things. In Proceedings of the 2013 IEEE Eighth

International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, Australia, 2–5
April 2013; pp. 333–338.

6. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies,
protocols and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]

7. Ai, Y.; Peng, M.; Zhang, K. Edge computing technologies for Internet of Things: A primer. Digit. Commun. Netw. 2018, 4, 77–86.
[CrossRef]

8. Salman, O.; Elhajj, I.; Kayssi, A.; Chehab, A. Edge computing enabling the Internet of Things. In Proceedings of the 2015 IEEE
2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 603–608.

9. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE
Access 2018, 6, 6900–6919. [CrossRef]

10. Kua, J.; Armitage, G.; Branch, P. A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming Over HTTP. IEEE
Commun. Surv. Tutor. 2017, 19, 1842–1866. [CrossRef]

11. Kua, J.; Nguyen, S.H.; Armitage, G.; Branch, P. Using Active Queue Management to Assist IoT Application Flows in Home
Broadband Networks. IEEE Internet Things J. 2017, 4, 1399–1407. [CrossRef]

12. Kua, J.; Armitage, G.; Branch, P.; But, J. Adaptive Chunklets and AQM for Higher-Performance Content Streaming. ACM Trans.
Multimed. Comput. Commun. Appl. 2019, 15, 115. [CrossRef]

13. Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 2017,
5, 439–449. [CrossRef]

14. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018,
5, 1275–1284. [CrossRef]

15. Solaiman, E.; Ranjan, R.; Jayaraman, P.P.; Mitra, K. Monitoring internet of things application ecosystems for failure. IT Prof. 2016,
18, 8–11. [CrossRef]

16. Terry, D. Toward a new approach to IoT fault tolerance. Computer 2016, 49, 80–83. [CrossRef]
17. Moghaddam, M.T.; Muccini, H. Fault-tolerant iot. In Proceedings of the International Workshop on Software Engineering for

Resilient Systems, Naples, Italy, 17 September 2019; pp. 67–84.
18. Nishiguchi, Y.; Yano, A.; Ohtani, T.; Matsukura, R.; Kakuta, J. IoT fault management platform with device virtualization. In

Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 257–262.

http://doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1016/j.comnet.2010.05.010
https://iot-analytics.com/number-connected-iot-devices/
http://dx.doi.org/10.1007/s11761-017-0213-1
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1016/j.dcan.2017.07.001
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/COMST.2017.2685630
http://dx.doi.org/10.1109/JIOT.2017.2722683
http://dx.doi.org/10.1145/3344381
http://dx.doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/MITP.2016.90
http://dx.doi.org/10.1109/MC.2016.238


Electronics 2021, 10, 3047 18 of 19

19. Kodeswaran, P.A.; Kokku, R.; Sen, S.; Srivatsa, M. Idea: A system for efficient failure management in smart iot environments. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Applications and Services, Singapore, 26–30 June
2016; pp. 43–56.

20. Di Modica, G.; Gulino, S.; Tomarchio, O. IoT fault management in cloud/fog environments. In Proceedings of the 9th International
Conference on the Internet of Things, Bilbao Spain, 22–25 October 2019; pp. 1–4.

21. Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Lloret, J.; Kumar, S.; Shah, R.R.; Prasad, M.; Prakash, S. Virtualization in wireless sensor
networks: Fault tolerant embedding for internet of things. IEEE Internet Things J. 2017, 5, 571–580. [CrossRef]

22. Rullo, A.; Serra, E.; Lobo, J. Redundancy as a measure of fault-tolerance for the Internet of Things: A review. In Policy-Based
Autonomic Data Governance; Springer: Cham, Switzerland, 2019; pp. 202–226.

23. Ratasich, D.; Khalid, F.; Geissler, F.; Grosu, R.; Shafique, M.; Bartocci, E. A roadmap toward the resilient internet of things for
cyber-physical systems. IEEE Access 2019, 7, 13260–13283. [CrossRef]

24. Pahl, C.; Ioini, N.E.; Helmer, S.; Lee, B. An architecture pattern for trusted orchestration in IoT edge clouds. In Proceedings of the
2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 63–70.
[CrossRef]

25. Ahuja, S.P.; Wheeler, N. Architecture of fog-enabled and cloud-enhanced internet of things applications. Int. J. Cloud Appl.
Comput. (IJCAC) 2020, 10, 1–10. [CrossRef]

26. Hassan, N.; Gillani, S.; Ahmed, E.; Yaqoob, I.; Imran, M. The Role of Edge Computing in Internet of Things. IEEE Commun. Mag.
2018, 56, 110–115. [CrossRef]

27. Javed, A.; Heljanko, K.; Buda, A.; Främling, K. CEFIoT: A fault-tolerant IoT architecture for edge and cloud. In Proceedings of
the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 813–818. [CrossRef]

28. Silva, J.D.C.; Rodrigues, J.J.P.C.; Saleem, K.; Kozlov, S.A.; Rabêlo, R.A.L. M4DN.IoT-A Networks and Devices Management
Platform for Internet of Things. IEEE Access 2019, 7, 53305–53313. [CrossRef]

29. Dang, H.; Quan, L. SD-IoTR: An SDN-based Internet of Things reprogramming framework. IET Netw. 2020, 9, 305–314.
30. Bera, S.; Misra, S.; Roy, S.K.; Obaidat, M.S. Soft-WSN: Software-Defined WSN Management System for IoT Applications. IEEE

Syst. J. 2018, 12, 2074–2081. [CrossRef]
31. Wu, D.; Arkhipov, D.I.; Asmare, E.; Qin, Z.; McCann, J.A. UbiFlow: Mobility management in urban-scale software defined IoT. In

Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015;
pp. 208–216.

32. Medjek, F.; Tandjaoui, D.; Djedjig, N.; Romdhani, I. Fault-tolerant AI-driven Intrusion Detection System for the Internet of Things.
Int. J. Crit. Infrastruct. Prot. 2021, 34, 100436. [CrossRef]

33. Power, A.; Kotonya, G. A microservices architecture for reactive and proactive fault tolerance in iot systems. In Proceedings of
the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania,
Greece, 12–15 June 2018; pp. 588–599.

34. Grover, J.; Garimella, R.M. Reliable and Fault-Tolerant IoT-Edge Architecture. In Proceedings of the 2018 IEEE SENSORS, New
Delhi, India, 28–31 October 2018; pp. 1–4. [CrossRef]

35. Hasan, M.; Al-Turjman, F. Optimizing Multipath Routing with Guaranteed Fault Tolerance in Internet of Things. IEEE Sens. J.
2017, 17, 6463–6473. [CrossRef]

36. MTBF, MTTR, MTTA and MTTF: Understanding a Few of the Most Common Incident Metrics. Available online: https:
//www.atlassian.com/incident-management/kpis/common-metrics (accessed on 24 November 2021).

37. Engelhardt, M.; Bain, L.J. On the mean time between failures for repairable systems. IEEE Trans. Reliab. 1986, 35, 419–422.
[CrossRef]

38. Kimura, M.; Yamada, S.; Osaki, S. Statistical software reliability prediction and its applicability based on mean time between
failures. Math. Comput. Model. 1995, 22, 149–155. [CrossRef]

39. Michlin, Y.H.; Grabarnik, G.Y. Sequential testing for comparison of the mean time between failures for two systems. IEEE Trans.
Reliab. 2007, 56, 321–331. [CrossRef]

40. Michlin, Y.H.; Grabarnik, G.Y.; Leshchenko, E. Comparison of the mean time between failures for two systems under short tests.
IEEE Trans. Reliab. 2009, 58, 589–596. [CrossRef]

41. Glynn, P.W.; Heidelberger, P.; Nicola, V.F.; Shahabuddin, P. Efficient estimation of the mean time between failures in non-
regenerative dependability models. In Proceedings of the 25th conference on Winter Simulation, Los Angeles, CA, USA, 12–15
December 1993; pp. 311–316.

42. Zagirnyak, M.; Prus, V. Use of neuronets in problems of forecasting the reliability of electric machines with a high degree of mean
time between failures. Prz. Elektrotechniczny (Electr. Rev.) 2016, 92, 132–135. [CrossRef]

43. Suresh, N.; Jayant, N. ‘Mean time between failures’: A subjectively meaningful video quality metric. In Proceedings of the
2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006;
Volume 2.

44. Duane, J. Learning curve approach to reliability monitoring. IEEE Trans. Aerosp. 1964, 2, 563–566. [CrossRef]
45. Rushdi, A.M.A.; Hassan, A.K.; Moinuddin, M. System reliability analysis of small-cell deployment in heterogeneous cellular

networks. Telecommun. Syst. 2020, 73, 371–381. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2017.2717704
http://dx.doi.org/10.1109/ACCESS.2019.2891969
http://dx.doi.org/10.1109/FMEC.2018.8364046
http://dx.doi.org/10.4018/IJCAC.2020010101
http://dx.doi.org/10.1109/MCOM.2018.1700906
http://dx.doi.org/10.1109/WF-IoT.2018.8355149
http://dx.doi.org/10.1109/ACCESS.2019.2909436
http://dx.doi.org/10.1109/JSYST.2016.2615761
http://dx.doi.org/10.1016/j.ijcip.2021.100436
http://dx.doi.org/10.1109/ICSENS.2018.8589624
http://dx.doi.org/10.1109/JSEN.2017.2739188
https://www.atlassian.com/incident-management/kpis/common-metrics
https://www.atlassian.com/incident-management/kpis/common-metrics
http://dx.doi.org/10.1109/TR.1986.4335491
http://dx.doi.org/10.1016/0895-7177(95)00191-4
http://dx.doi.org/10.1109/TR.2007.896679
http://dx.doi.org/10.1109/TR.2009.2020102
http://dx.doi.org/10.15199/48.2016.01.32
http://dx.doi.org/10.1109/TA.1964.4319640
http://dx.doi.org/10.1007/s11235-019-00615-2


Electronics 2021, 10, 3047 19 of 19

46. Liu, J.; Zhang, Q. Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 2018,
6, 12825–12837. [CrossRef]

47. Liu, C.F.; Bennis, M.; Poor, H.V. Latency and reliability-aware task offloading and resource allocation for mobile edge computing.
In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–7.

48. Liu, C.F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge
computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [CrossRef]

49. Han, B.; Wong, S.; Mannweiler, C.; Crippa, M.R.; Schotten, H.D. Context-awareness enhances 5G multi-access edge computing
reliability. IEEE Access 2019, 7, 21290–21299. [CrossRef]

50. Silva, I.; Leandro, R.; Macedo, D.; Guedes, L.A. A dependability evaluation tool for the Internet of Things. Comput. Electr. Eng.
2013, 39, 2005–2018. [CrossRef]

51. Benson, K.E.; Wang, G.; Venkatasubramanian, N.; Kim, Y.J. Ride: A resilient IoT data exchange middleware leveraging SDN and
edge cloud resources. In Proceedings of the 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and
Implementation (IoTDI), Orlando, FL, USA, 17–20 April 2018; pp. 72–83.

52. Qiu, T.; Luo, D.; Xia, F.; Deonauth, N.; Si, W.; Tolba, A. A greedy model with small world for improving the robustness of
heterogeneous Internet of Things. Comput. Netw. 2016, 101, 127–143. [CrossRef]

53. Kwon, J.H.; Kim, E.J. Failure Prediction Model Using Iterative Feature Selection for Industrial Internet of Things. Symmetry 2020,
12, 454. [CrossRef]

54. Dinh, N.T.; Kim, Y. An efficient availability guaranteed deployment scheme for IoT service chains over fog-core cloud networks.
Sensors 2018, 18, 3970. [CrossRef] [PubMed]

55. Makhshari, A.; Mesbah, A. IoT bugs and development challenges. In Proceedings of the 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), Madrid, Spain, 22–30 May 2021; pp. 460–472.

http://dx.doi.org/10.1109/ACCESS.2018.2800032
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://dx.doi.org/10.1109/ACCESS.2019.2898316
http://dx.doi.org/10.1016/j.compeleceng.2013.04.021
http://dx.doi.org/10.1016/j.comnet.2015.12.019
http://dx.doi.org/10.3390/sym12030454
http://dx.doi.org/10.3390/s18113970
http://www.ncbi.nlm.nih.gov/pubmed/30445782

	Introduction
	Background
	Edge Computing
	IoT Software Management
	Fault Tolerance in IoT
	Theories, Metrics and Measurements for System Reliability

	Proposed Framework for IoT Failure Recovery
	Experiment Setup
	Experimental Evaluation
	Scenario 1: IoT Device Redeployment
	Scenario 2: IoT Gateway Redeployment
	Scenario 3: IoT Device Sensor Fault Detection
	Scenario 4: IoT Device Redeployment Failure Detection
	Scenario 5: IoT Gateway Redeployment Failure Detection

	Conclusions and Future Work
	References

