
����������
�������

Citation: Warade, M.; Schneider,

J.-G.; Lee, K. Measuring the Energy

and Performance of Scientific

Workflows on Low-Power Clusters.

Electronics 2022, 11, 1801. https://

doi.org/10.3390/electronics11111801

Academic Editor: Farhad Rachidi

Received: 6 May 2022

Accepted: 30 May 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Measuring the Energy and Performance of Scientific Workflows
on Low-Power Clusters
Mehul Warade ∗ , Jean-Guy Schneider and Kevin Lee

School of Information Technology, Deakin University, Geelong, VIC 3220, Australia;
jeanguy.schneider@deakin.edu.au (J.-G.S.); kevin.lee@deakin.edu.au (K.L.)
* Correspondence: mehul.warade@research.deakin.edu.au

Abstract: Scientific problems can be formulated as workflows to allow them to take advantage of
cluster computing resources. Generally, the assumption is that the greater the resources dedicated
to completing these tasks the better. This assumption does not take into account the energy cost
of performing the computation and the specific characteristics of each workflow. In this paper, we
present a unique approach to evaluating the energy consumption of scientific workflows on compute
clusters. Two workflows from different domains, Astronomy and Bioinformatics, are presented
and their execution is analyzed on a cluster of low powered small board computers. The paper
presents a theoretical analysis of an energy-aware execution of workflows that can reduce the energy
consumption of workflows by up to 68% compared to normal execution. We demonstrate that there
are limitations to the benefits of increasing cluster sizes and there are trade-offs when considering
energy vs. performance of the workflows and that the performance and energy consumption of any
scientific workflow is heavily dependent on its underlying structure. The study concludes that the
energy consumption of workflows can be optimized to improve both aspects of the workflow and
motivates the development of an energy-aware scheduler.

Keywords: cluster computing; evaluation framework; energy-aware; parallel algorithm; workflow
engine; workflow

1. Introduction

Scientific computation can be structured as a series of small tasks within a workflow [1].
Workflows are executed by workflow engines which manage the data, task dependencies,
and reporting [2–4]. Workflow engines generally use all resources available to them, such
as all the nodes and RAM available on a compute cluster. Workflows provide a very useful
abstraction, allowing scientists to concentrate on optimising the computation without
worrying about how it will run. Workflow engines also enable scientists to use centrally
managed cluster infrastructure without having to understand the details of the underlying
infrastructure. Because of this abstraction, and the fact that most scientists do not manage
their infrastructure, it is difficult for them to be able to understand the environmental
impact of their computation.

The execution of scientific workflows can be optimised to improve the performance
of the computation and, therefore, reduce the time it takes for a scientist to obtain a result.
Workflows can be optimised for timeliness [5], performance [6], or data provenance [7]. This
is often achieved by modelling and analysing the workflow [8]. There is increasing use of
cloud computing infrastructure to improve execution time and resource accessibility [9,10].
It is also possible to perform adaptive workflow processing and execution by taking into
account the current progress of the workflow and the load on the cluster [11–13]. None of
these approaches take into account the energy cost of scientific workflow computation and,
therefore, the environmental impact.

It has been shown that there is a trade off between computational response time
and the energy used when executing computational-intensive workloads on clusters [14].

Electronics 2022, 11, 1801. https://doi.org/10.3390/electronics11111801 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11111801
https://doi.org/10.3390/electronics11111801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3436-7957
https://orcid.org/0000-0002-9827-5496
https://orcid.org/0000-0002-2730-9150
https://doi.org/10.3390/electronics11111801
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11111801?type=check_update&version=2

Electronics 2022, 11, 1801 2 of 27

This often means that using more cluster resources results in minimal computational
improvements but large energy overheads. Scientific workflows have a complex structure
that has many dependencies, complex file management, and computation characteristics
that make the trade offs less clear [15].

The aim of the work presented in this paper is to provide an analysis of the energy
consumption of scientific workflows on compute clusters. It presents an investigation of the
energy vs. performance trade offs for different workflows, different sizes of those workflows
and different sizes of clusters. The approach is to evaluate the performance and energy
consumption of different sizes of scientific workflows on varying sizes of clusters. For these
experiments, a cluster of small board computers is used to enable rapid experimentation.
Results are analysed in depth to investigate the relationship between the energy and power
consumption of workflow execution on clusters. The work also showcases the areas of
improvement in the workflows and proposes a need for an architecture that will perform
energy-aware execution of the workflows.

We have opted to use a cluster of small board computers as a proxy for “industry-scale”
clusters as it offers us greater flexibility with configurations, minimal (and known) overhead
of the operating system running on each node, and fine-grained access to run-time metrics
such as energy usage data on a per node basis [16]. Once we have a good understanding of
the energy usage patterns on a cluster of small board computers, we can then extrapolate
and generalize these patterns to other cluster architectures. Others have used the same
approach of using small board computers for similar types of experiments (e.g., [17,18]).

The key contributions of this paper are as follows: (i) the design and implementation of
a reliable approach for energy monitoring of compute clusters; (ii) the use of this approach
to monitor the energy impact of a scientific workflow stack, which includes the workflow
engine, graph manager and job scheduler; (iii) a detailed energy analysis of the impact
of cluster size and usage with varying complexity of scientific workflows; and (iv) the
motivation of energy-aware scheduling as a solution for the energy efficient execution of
scientific workflows on compute clusters.

The remainder of this paper is as follows. Section 2 provides an overview of the
issues associated with evaluating the energy usage of computation executed on compute
clusters. In Section 3, we provide an overview of the experimental setup used in this paper.
Sections 4 and 5 present the experiments, results and discussion for workflows in two
domains—Astronomy and Bioinformatics. Section 6 presents detailed analysis and areas
of improvement in the workflows and provides a concrete evidence to support further
investigation into energy-aware execution of workflows and finally Section 7 provides
conclusions and future work.

2. Evaluating Energy Usage in Computation

There is increasing interest in sustainable and energy efficient computing and recent
work focuses on approaches for energy awareness for scheduling tasks on multi-core
machines [19] and also identical parallel machines [20]. For larger computation tasks,
approaches for energy-aware modelling and workload predication hope to optimise data
centers [21]. For more fine grained control, there are approaches to optimise virtual machine
placement based on energy-efficiency [22]. These demonstrate that there is a desire to
analyse and optimise computation for energy in distributed computation environments. For
scientific workflow execution in the cloud, energy-aware job management [23] and energy-
aware resource allocation [24] focus on trying to take into account energy considerations as
well as performance in cloud environments. The focus of this paper is on High-Performance
Computing (HPC), and in particular compute clusters.

HPC focuses on achieving the best performance for computationally intensive tasks [14].
Due to this, huge data centers have been established to supply the required computational
power to tackle the ever increasing processing demand. These provide high computation
power but also consume a lot of energy and cost a lot to maintain. Energy sustainability is
emerging as an issue that needs addressing and hence there is a need to focus on computing

Electronics 2022, 11, 1801 3 of 27

systems that have an energy budget or are energy efficient [25]. To support this, it is
important to be able to measure the energy impact of computation which can be achieved
at both hardware and software levels.

Two novel algorithms called SPSS-EB (Static Provisioning-Static Scheduling under
Energy and Budget Constraints) and SPSS-ED (Static Provisioning-Static Scheduling under
Energy and Deadline Constraints) were introduced for effective scheduling of resources and
tasks to reduce energy consumption in cloud-based distributed computing systems [26].

A bi-objective optimisation problem is identified and a reformulated algorithm is
introduced aiming to reduce the make span and energy consumption of the Multi Objective
Heterogeneous Earliest Finish Time (MOHEFT) scheduling algorithm [27]. They achieved
an 85% reduction in energy in some cases while achieving a 3.3% reduction in the make
span of the workflows by using realistic energy consumption and performance models
for task execution. New task schedulers focusing on the inter-dependency of tasks were
introduced to achieve similar results [28]. They achieved a 22.7% reduction in energy at no
cost to the make span of the algorithm.

Under-volting the processor is a reduction in power provided to a processor in order
to reduce its frequency and minimise energy consumption at a penalty to its processing
time. A scheduling algorithm which makes use of this concept is introduced to reduce
the energy consumption of scientific workflows [29]. Another study introduced two
new task scheduling algorithms called Enhancing Heterogeneous Earliest Finish Time
(EHEFT) and Enhancing Critical Path on a Processor ECPOP for shutting down inefficient
processors and effective rescheduling the tasks [30]. Both the studies concluded that
their scheduling algorithms are effective at minimising energy consumption at reasonable
expense of execution time.

It is ideal to find a balance between execution time and energy consumption. A novel
framework is introduced which provides comparative analysis of energy-time data of a
parallel computation [14]. Scheduling algorithms have also been introduced to meet time
deadlines of a computation while minimising the energy consumption [8,29].

Ghose et al. propose and evaluate energy-efficient scheduling policies for cloud-based
distributed computing [31]. The policies are divided based on the allocation of virtual
machines in the cloud and their performances are compared with the state-of-the-art
energy efficient scheduling policy EnReal [24]. They concluded that their policies perform
significantly better than EnReal and achieved a 70% energy reduction.

A novel hardware setup called the PiStack was introduced to improve the energy
efficiency and thermal output of computing clusters [17]. This was achieved through a
reduction in cluttering by powering the nodes through the cluster case and introducing
heartbeat functionality for each node. They concluded that even though small board com-
puter clusters provided lower performance than high performance computing platforms,
they can be an effective energy-efficient alternative and provide higher performance-per-
dollar spent.

3. Experimental Setup

For the purposes of this study, a cluster of small board computers was built to use
with a common workflow management software. To confirm the proper functioning of the
cluster, the workflows were executed and the results were compared with the workflow
execution on a single threaded PC. This was mainly performed to confirm that the workflow,
individual jobs and the cluster were functioning as intended. In this section, we describe
the hardware, frameworks and workflow management systems used for the experimental
setup to submit and execute workflows on the cluster.

3.1. Cluster Hardware

The Raspberry Pi Foundation (https://www.raspberrypi.org/about/, accessed on
6 May 2022) is a UK based charity responsible for the manufacturing and development of
Raspberry Pi boards. The latest board released was the Raspberry Pi Model 4B which uses

https://www.raspberrypi.org/about/

Electronics 2022, 11, 1801 4 of 27

Broadcom BCM2711, Quad core ARM Cortex-A72 processor with a reported peak perfor-
mance of 13.5 GFLOPS (http://web.eece.maine.edu/~vweaver/group/green_machines.
html, accessed on 6 May 2022), and a Gigabit Ethernet connection, as well as USB, USB-C,
and Micro HDMI ports. Users can choose from either 2 GB, 4 GB or 8 GB of RAM—for the
purpose of our experiments, we chose the 2 GB variant.

A cluster of 12 Raspberry Pi 4B nodes was built for this study. A standard x86 Linux-
based PC (8 core with Linux Mint OS (https://linuxmint.com/, accessed on 6 May 2022)
acted as a master node. The computing nodes and the master node were connected through
2 Netgear GS110TP switches. The nodes are powered through Power over Ethernet (PoE)
which enables monitoring of their energy usage through the switches internal sensors (cf.
Figure 1).

Figure 1. Computing Nodes setup.

Traditionally, a Raspberry Pi is booted from an image flashed to an SD card. For ease of
experimentation and better control over the boot sequence, it was decided to use network
booting of a lightweight OS (DietPi) for each node in the cluster. Each client requests the
boot instructions from a DHCP server (in this case, the Master node). The DHCP server
assigns an IP address to each client and provides boot instructions over the network. When
the network is booting, it is common practice to store boot files and the root file-system on
the server and have the clients use the Network File System Protocol (NFS) to access files.

3.2. Scientific Workflows

Computational scientists are increasingly using workflows to manage the growing
complexity of data intensive simulations and analysis. Workflow technologies are respon-
sible for scheduling tasks, managing dependencies, and staging data for the execution
sites [32]. A scientific workflow can be defined as a description of computational tasks
and the dependencies between them and is generally described as a directed acyclic graph
(DAG), where the vertices represent tasks and the edges represent data or control dependen-
cies [33]. A task in a workflow is defined as the smallest divisible unit of work [34]. Tasks
are generally non-interactive executable computer programs performing computation on
input data to generate output data. A scientific workflow’s data comprises of structured,
unstructured, binary, and text-based data structures [34]. Tasks are blocked until the data
becomes available or await completion of all of its preceding tasks.

3.3. Condor Management Software

The cluster management software chosen for this paper is HTCondor [35] or Condor
which is a batch job scheduler and resource management system for high-throughput
computing on distributed resources. Condor matches jobs with available resources and
specialises in check-pointing, recovery and migration of jobs [36].

http://web.eece.maine.edu/~vweaver/group/green_machines.html
http://web.eece.maine.edu/~vweaver/group/green_machines.html
https://linuxmint.com/

Electronics 2022, 11, 1801 5 of 27

HTCondor’s Directed Acyclic Graph Manager (DAGMan) is a meta-scheduler for
Condor jobs [37]. DAGMan supervises workflow execution and submits tasks which are
ready for execution to HTCondor. The main job of DAGMan is to handle the dependencies
between the jobs. Jobs are classified into parent and children where child jobs cannot be
executed until their parents have completed. In case of failure, DAGMan compiles a rescue
graph from which execution can be resumed [34].

3.4. Workflow Engine

For our work, we chose to use the Pegasus workflow engine, a Workflow Management
System (WMS) developed to overcome the shortcomings of DAGMan such as cleanup,
set-up of auxiliary tasks and workflow optimisation [2,34]. Pegasus is designed to work
on top of DAGMan to overcome these shortcomings and is able to generate a workflow
from a metadata description of the desired data product with the aid of artificial intelli-
gence planning techniques [36]. Pegasus uses an XML-based language workflows called
dax in which the workflow’s tasks and data are explicitly listed. Pegasus converts this
static planning into executable Condor jobs which are then submitted to the DAGMan for
execution. Pegasus provides four different scheduling strategies—Random, Round-Robin,
Group and HEFT [33]. While Pegasus was designed for executing workflows using grid
infrastructures, support for cloud computing has also been implemented [33].

3.5. Experiment Software Setup

Figure 2 illustrates the software setup used and implemented for the purposes of
this study. The x86 Linux PC hosted the two main software systems used—FEPAC [14]
and Pegasus [2]. FEPAC was previously developed by the authors to monitor the energy
usage of parallel computation on clusters as a generic solution for energy monitoring of
computation. In contrast, in this work it is used to monitor the energy consumption of
scientific workflow execution. FEPAC is used to extract the energy data for each node
from the Netgear switches and store it into an MySQL database whereas Pegasus is used
to submit and execute workflows on the cluster. Detailed logs from Pegasus assist in
pinpointing the time when a particular job of the workflow is being executed and on which
node. The energy values in the database stored by the FEPAC framework and the detailed
logs generated by Pegasus are cross-linked using the timestamps synced with the master
node’s system clock.

Figure 2. Data Collection Experiment Setup

4. Astronomy Workflow Energy Evaluation

In this section, we present an in-depth experimental evaluation of the performance
and energy consumption of a scientific workflow in the domain of Astronomy on a low-
power cluster. The experiments vary the workflow size and cluster size to investigate
how different factors affect the performance and energy consumption, respectively. The
experiments in this section are based on the experimental setup from Section 3.

Electronics 2022, 11, 1801 6 of 27

4.1. Workflow Description

The scientific workflow used for the experimental evaluation in this paper is the
Montage workflow [38,39]. Montage is a software toolkit used in astrophotography to
combine Flexible Image Transport System format (FITS) images of the sky into composite
images called mosaics. The toolkit preserves the calibration and positional fidelity of the
original input images. A workflow comprising of a number of tasks to develop a relevant
mosaic of the sky based on the input parameters is being evaluated in this paper.

Figure 3 illustrates the Montage workflow as a directed acyclic graph (DAG). The
Montage DAG has eight levels of jobs which have dependencies from prior levels. For
example, the mProject jobs have no dependencies, but prevents dependent mDiffFit jobs
from executing until they have finished. Similarly, the mConcatFit job can only be executed
once all dependent mDiffFit jobs are completed.

Figure 3. A Simple Montage Workflow used in this study.

Montage has been classified as an input/output-bound workflow [40] compared to
other scientific workflows. However, in our experience, its internal complexity is much
more varied, with different job types having different requirements of I/O, memory or
CPU. These characteristics make Montage a reasonable representation of more general
scientific workflows.

Note that Figure 3 only shows the computation jobs that execute on cluster nodes.
To manage the workflow, Pegasus creates many other data transfer and logging jobs
that execute before and after each computation job. This evaluation focuses on the main
execution jobs as the energy impact on the other jobs are minimal and can be mostly
removed with caching.

4.2. Workflow Complexity

The Montage toolkit can be used to generate workflows of varying sizes depending
on the requirements of a scientist. The varying size of a Montage workflow is specified in
(i) degrees of the sky and (ii) the colour channels which the final images should be generated
from. Table 1 illustrates the number of jobs for different sizes of the Montage workflow.

Electronics 2022, 11, 1801 7 of 27

The workflows listed are 0.5, 1.0, 1.5, and 2 degrees; all containing three colour channels
of RGB.

Table 1 shows that as the size of the workflow increases, the overall number of jobs
also increases. Some of the job numbers remain constant (e.g., mConcatFit, mBgmodel) as
these jobs are associated with merging results from other jobs. Other job numbers increase
(e.g., mProject, mDiffFit) with an increased workflow size as these jobs are associated
with computation that increases as the size of the workflow becomes larger.

Table 1. Number of each job vs. Montage workflow size.

Montage Job
Workflow Size

0.5 Deg. 1 Deg. 1.5 Deg. 2 Deg.

mProject 12 48 108 192

mDiffFit 18 360 1890 6048

mConcatFit 3 3 3 3

mBgmodel 3 3 3 3

mBackground 12 48 108 192

mImgtbl 3 3 3 3

mAdd 3 3 3 3

mViewer 4 4 4 4
Total jobs 58 472 2122 6448

4.3. Montage Computation Characteristics

Like any scientific workflow, Montage has specific characteristics to its structure.
In particular, Montage has some jobs, such as mProject, that are computationally more
intensive than others. Depending on the size of the workflow being executed, there are
more of these particular jobs. The combination of the size of workflow and the number of
cluster nodes have a direct impact on the job queue time.

To illustrate this, six experiments have been performed by varying the size of the
workflow and the size of the cluster. The workflow size is varied from 0.5 to 1.0 and then
1.5 degrees. The cluster size was set to 1 node and 6 nodes, respectively, with each node
having 4 hardware threads (for a maximum of 24 hardware threads with 6 nodes).

Figures 4–6 illustrate the execution of Montage 0.5, 1.0 and 1.5 degree workflows on
1 node and 6 node low-power clusters. The cluster was setup and data was collected based
on the experimental setup detailed in Section 3. The Y-axis in these three figures denotes
the execution time (hours:minutes:seconds) of the corresponding workflows.

The graphs illustrates two metrics for each individual Montage job. Job Queued is the
time from the job being ready to execute (i.e., its dependencies in the DAG being met) to the
time it starts executing. Job Queued measures the delay or queue time due to a temporary
lack of resources. Job Executing measures the time the job starts executing until it completes
the task and is removed from the cluster.

Electronics 2022, 11, 1801 8 of 27

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

01:15:00

01:30:00

01:45:00

02:00:00

02:15:00

02:30:00

02:45:00

 0 10 20 30 40 50

T
im

e

Job ID

Key
Job Queued

Job Executing

(a)

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

01:15:00

01:30:00

01:45:00

02:00:00

02:15:00

02:30:00

02:45:00

 0 10 20 30 40 50

T
im

e

Job ID

Key
Job Queued

Job Executing

(b)

Figure 4. Execution of a 0.5 degree workflow on a 1 node vs. 6 node cluster: (a) 0.5 degree Montage
on a small cluster; (b) 0.5 degree Montage on a large cluster.

00:00:00

00:30:00

01:00:00

01:30:00

02:00:00

02:30:00

03:00:00

03:30:00

04:00:00

04:30:00

05:00:00

05:30:00

 0 50 100 150 200 250 300 350 400 450

T
im

e

Job ID

Key
Job Queued

Job Executing

(a)

00:00:00

00:30:00

01:00:00

01:30:00

02:00:00

02:30:00

03:00:00

03:30:00

04:00:00

04:30:00

05:00:00

05:30:00

 0 50 100 150 200 250 300 350 400 450

T
im

e

Job ID

Key
Job Queued

Job Executing

(b)

Figure 5. Execution of a 1.0 degree workflow on a 1 node vs. 6 node cluster: (a) 1.0 degree Montage
on a small cluster; (b) 1.0 degree Montage on a large cluster.

00:00:00

02:00:00

04:00:00

06:00:00

08:00:00

10:00:00

12:00:00

 0 500 1000 1500 2000

T
im

e

Job ID

Key
Job Queued

Job Executing

(a)

00:00:00

02:00:00

04:00:00

06:00:00

08:00:00

10:00:00

12:00:00

 0 500 1000 1500 2000

T
im

e

Job ID

Key
Job Queued

Job Executing

(b)

Figure 6. Execution of a 1.5 degree workflow on a 1 node vs. 6 node cluster: (a) 1.5 degree Montage
on a small cluster; (b) 1.5 degree Montage on a large cluster.

Electronics 2022, 11, 1801 9 of 27

Figure 4 illustrates that a 0.5 degree workflow has some queuing of the mProject
jobs on 1 cluster node (cf. Figure 4a). This is due to the workflow having 12 parallel-
capable mProject jobs, but the cluster only has 4 threads to execute them. Consequently,
the remaining mProject jobs have to wait until the first one is complete. The remainder
of the workflow proceeds as expected. Executing the same 0.5 degree workflow on a
6 node cluster results in no queuing of parallel-capable jobs as there are 24 threads available
compared to 12 mProject jobs (cf. Figure 4b).

This is echoed in Figure 5 for the 1.0 degree workflow which shows a large amount
of queuing (cf. Figure 5a) when there are a lot less cluster nodes/available threads than
jobs. This is a lot more pronounced compared to the 0.5 workflow due to there being
48 mProject jobs vs. 4 threads. For the 1.0 degree workflow, there is even queuing in the
6 node cluster as there are 24 cluster threads vs. 48 mProject jobs.

This pattern is even more pronounced as the workflow size is increased to 1.5 degrees
(cf. Figure 6). When there is only a single cluster node, the majority of mProject jobs are
queued for a long time; this is due to there being 108 jobs and only 4 cluster threads. When
the number of cluster nodes is increased to 6 there is less but still substantial queuing.

4.4. 1.0 Degree Workflow Results

In the previous section, we showed that Montage workflows provide an interesting
and relatively complex workload with which to analyse the computation and energy
consumption characteristics of workflows on clusters. In this section, we present the results
of experiments for a medium size workflow, Montage 1.0 degrees, with a cluster of 1 to
12 nodes.

Figure 7 illustrates both the execution time and energy consumption of a Montage
1.0 degree workflow on varying sizes of clusters. The left Y-axis is time in seconds from
the first workflow job being queued to the last job completing—we do not include any
activities on the Master node. The X-axis indicates the number of cluster Nodes from 1 to
12; note that each node has 4 hardware threads, so the number of available threads varies
from 4 to 48 in increments of 4. The right Y-axis indicates the total energy consumption in
Watt-hours as collected as discussed in Section 3.

30
40

50
60

70
En

er
gy

 (w
at

t-h
r)

5,
00

0
10

,0
00

15
,0

00
20

,0
00

Ti
m

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8 9 10 11 12
Nodes

Time (seconds) Energy (watt-hr)

1 Degree
Montage Workflow

Figure 7. Execution time vs. energy consumption of a Montage 1.0 degree workflow on varying size
of cluster.

The results shown in Figure 7 illustrate that the execution time decreases with more
nodes being added. Increasing the cluster size from 1 node to 2 nodes reduces the execution
time from 19,544 s (approximately 5 h and 25 min) to 10,675 s (approximately 3 h), hence
resulting in a speed-up of 1.83. However, increasing the cluster to 3 and 4 nodes only
reduces the execution time to 7622 and 6384 s, respectively. After 5 nodes (execution time
of 5702 s) little reduction in execution time is achieved and the curve flattens out. The

Electronics 2022, 11, 1801 10 of 27

maximum speed-up compared to 1 node is 4.81 achieved with 11 nodes, hence falling
considerably short of a linear speed-up.

The reason why the speed-up flattens out is two-fold. First, the more nodes we add the
higher the management overhead to trigger job executions and transferring data to/from
the nodes. Second, the reduction in execution time largely depends on parallel execution
of the computationally intensive mProject jobs. Whereas the median execution time of a
single mProject job is around 1500 s (irrespective of the number of nodes used), the other
seven job types have a much smaller execution times, with medians of around 65 s (for
mBackground) and 15 s (for mDiffFit) for the two job types with a non-constant number of
instances. The largest contributing factor to speed-up for the Montage 1.0 degree workflow
lies in the parallel execution of mProject jobs—far less gain can be achieved by executing
the remaining jobs on an increased number of nodes.

When looking at total energy consumption, it increases steadily in a mostly linear way
as the number of nodes increases. A single node uses a total of around 35 Watt-hours, and
each additional node adds around 2–3 extra Watt-hours. It should be noted that this is
dependent on the length of the execution time, which is reducing with each node being
added, as illustrated on the left Y-axis. This is, therefore, illustrating that the main difference
in total energy consumption is the overhead for each node. These results illustrate that
increasing the number of nodes reduces the total time taken, but also comes at the cost of
cluster node overhead, at least for a Montage 1.0 degree workflow.

To further investigate the characteristics of the Montage 1.0 degree workflow execution,
Figure 8 illustrates the total energy consumption of the workflow on a 6 node cluster. For
each point in time (X-axis), the current energy consumption for all 6 nodes is summed up
and presented on the graph. It illustrates that the energy consumption varies significantly
over the lifetime of the execution of a single workflow. The initial ‘stepped’ delay is due
to the time it takes to obtain the data in the correct location before computation can start.
The cluster is being maxed out between 500 and 2800 s by mostly executing mProject
jobs. From this point onwards, many job dependencies are being completed and less-CPU
intensive jobs are executed, hence there is a reduction in the overall energy consumption.
A statistical analysis has shown that there is a strong correlation between the total number
of mProject jobs being executed and the total energy consumption (Pearsons correlation
coefficient r = 0.995 with p < 0.01) but only very weak correlations between energy
consumption and the execution of the other workflow jobs.

20
25

30
35

40
45

En
er

gy
 (W

at
t)

0 1000 2000 3000 4000 5000
Time (seconds)

1.0 Degree - 6 Nodes

Figure 8. Energy consumption of a Montage 1.0 degree workflow on a 6 node cluster.

A further analysis shows that the cluster nodes are not all executing the same workload.
Consider Figure 9 that illustrates the energy consumption and jobs split for individual
cluster nodes for a Montage 1.0 degree workflow on a 6 node cluster. For each of the
sub-graphs, the left-hand Y-axis is the energy consumption at a point in time (used by
the blue ‘energy’ line). The right-hand Y-axis is the number of jobs of the three types of
Montage jobs (mProject, mDiffFit, and mBackground) at specific points in time. It shows

Electronics 2022, 11, 1801 11 of 27

that over the duration of the workflow, the pattern is generally the same, with the larger
energy consumption being correlated to CPU-intensive jobs. The later parts of the workflow
execution is mostly dedicated to data-aggregation which is distinctly less CPU-intensive
and, therefore, uses less energy.

0
1

2
3

4
N

um
be

r o
f T

as
ks

3
4

5
6

7
En

er
gy

 (W
at

t)

0 1000 2000 3000 4000 5000
Time (seconds)

Energy mProject
mDiffFit mBackground

(a)

0
1

2
3

4
N

um
be

r o
f T

as
ks

3
4

5
6

7
En

er
gy

 (W
at

t)

0 1000 2000 3000 4000 5000
Time (seconds)

Energy mProject
mDiffFit mBackground

(b)

0
1

2
3

4
N

um
be

r o
f T

as
ks

3
4

5
6

7
En

er
gy

 (W
at

t)

0 1000 2000 3000 4000 5000
Time (seconds)

Energy mProject
mDiffFit mBackground

(c)

0
1

2
3

4
N

um
be

r o
f T

as
ks

3
4

5
6

7
En

er
gy

 (W
at

t)

0 1000 2000 3000 4000 5000
Time (seconds)

Energy mProject
mDiffFit mBackground

(d)
0

1
2

3
4

N
um

be
r o

f T
as

ks

3
4

5
6

7
En

er
gy

 (W
at

t)

0 1000 2000 3000 4000 5000
Time (seconds)

Energy mProject
mDiffFit mBackground

(e)

0
1

2
3

4
N

um
be

r o
f T

as
ks

3
4

5
6

7
En

er
gy

 (W
at

t)

0 1000 2000 3000 4000 5000
Time (seconds)

Energy mProject
mDiffFit mBackground

(f)

Figure 9. Execution of a Montage 1.0 degree workflow on 6 node cluster: (a) Node 1—Energy
consumption over workflow execution time; (b) Node 2—Energy consumption over workflow
execution time; (c) Node 3—Energy consumption over workflow execution time; (d) Node 4—Energy
consumption over workflow execution time; (e) Node 5—Energy consumption over workflow
execution time; (d) Node 6—Energy consumption over workflow execution time.

Figure 9 further illustrates that the execution of mProject jobs (the ‘red’ lines in the
sub-graphs) is “interrupted” by mDiffFit jobs (the ‘green’ lines in the sub-graphs). This is
due to the fact that the scheduling of jobs follows a depth-first strategy that prioritises jobs
“lower” in the workflow DAG. Consequently, if mProject and mDiffFit jobs are queued,
priority is given to the mDiffFit jobs and they are executed before any queued mProject
jobs. This effect is particularly visible for nodes 2 and 4.

4.5. 0.5 Degree Workflow Results

To investigate the energy cost of much smaller workloads on varying size clusters,
a series of experiments with a Montage 0.5 degree workflow were performed. As given
in Table 1, we have far fewer mProject, mDiffFit and mBackground jobs that need to
be executed and, consequently, a much smaller execution time is expected. Figure 10
illustrates the execution time vs. energy consumption result of our experiments with a
Montage 0.5 degree workflow.

Electronics 2022, 11, 1801 12 of 27

10
15

20
25

30
35

En
er

gy
 (w

at
t-h

r)

2,
00

0
3,

00
0

4,
00

0
5,

00
0

6,
00

0
7,

00
0

Ti
m

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8 9 10 11 12
Nodes

Time (seconds) Energy (watt-hr)

Figure 10. Execution time vs. energy consumption of a Montage 0.5 degree workflow on varying
sizes of cluster.

Similar to the 1.0 degree workflow, we observed a reduced execution time for 2 nodes
(4187 s) and 3 nodes (2614 s) compared to 1 node (6696 s), resulting in a speed-up of 1.60
and 2.56, respectively. This is mainly due the 12 computationally-intensive mProject jobs
being executed on 8 available threads (for 2 nodes) and 12 threads (for 3 nodes). However
from 4 nodes onwards, we do not observe a further reduction in the execution time—the
execution time remains mostly constant. A closer inspection of the data showed that due
to job dependencies, jobs are only ever run on the same 3 nodes and any further available
nodes remain inactive during the duration of the workflow execution.

When looking at total energy consumption, it increases steadily in a mostly linear way
when more nodes are added (similar to the 1.0 degree workflow). The main difference is
that, as discussed above, only 3 nodes are used for workflow execution—the additional
nodes run “idle”, but contribute to the overall energy use. The workflow is too small for a
cluster of more than 3 nodes and any additional nodes just increase the overall energy used
but do not reduce the execution time.

4.6. 1.5 Degree Workflow Results

To investigate the cluster performance for a much larger workflow, a series of exper-
iments with a Montage 1.5 degree workflow were performed. Figure 11 illustrates the
execution time vs. energy consumption of a 1.5 degree montage workflow on varying sizes
of cluster.

50
10

0
15

0
20

0
En

er
gy

 (w
at

t-h
r)

10
,0

00
20

,0
00

30
,0

00
40

,0
00

50
,0

00
Ti

m
e

(s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 10 11 12
Nodes

Time (seconds) Energy (watt-hr)

Figure 11. Execution time vs. energy consumption of a Montage 1.5 degree workflow on varying size
of cluster.

Electronics 2022, 11, 1801 13 of 27

We have a very similar pattern as shown in Figure 7: a speed-up in execution time
from 1 node (45,548 s—12 h and 39 min) to 6 nodes (15,868 s), followed by a flattening of
the execution time curve with only marginal improvements. The maximal speed-up we
observed (for 12 nodes) is 3.34 compared to the execution time for 1 node. As we have
108 computationally-intensive but parallelisable mProject jobs to execute, we would have
anticipated a much better speed-up than what we have observed. Let us look into the
reasons for this behaviour in more detail.

Figure 12 illustrates the energy consumption and jobs split for a 1.5 degree workflow
on a 6 node cluster. In contrast to Figure 9 where we illustrated the energy consumption
and job split for each of the 6 nodes, Figure 12 presents a summation across all nodes. We
can clearly see the depth-first execution strategy adopted by the workflow engine by the
interleaving of mProject and mDiffFit jobs (starting at 1496 s). The higher priority of
mDiffFit jobs results in a complete pause of mProject jobs for several minutes (between
6793 and 8530 s) where only queued mDiffFit jobs are executed. Once they are completed,
the execution of the remaining 34 mProject jobs resumes. Montage workflows for 0.5 degree
and 1.0 degree did not result in an execution behaviour where mProject jobs were paused
across all nodes and for such an extended period of time, respectively.

0
5

10
15

20
25

N
um

be
r o

f T
as

ks

20
25

30
35

40
45

En
er

gy
 (W

at
t)

0 5000 10000 15000
Time (seconds)

Energy mProject
mDiffFit mBackground

Figure 12. Execution of a Montage 1.5 degree workflow on a 6 node cluster.

All mDiffFit jobs depend on the completion of 2 specific mProject jobs only. Hence
at 6793 s, many mDiffFit jobs are ready for execution. However, during this period, a
median of 4 mDiffFit jobs are executed (a maximum of 10) but there are always many
more queued jobs that, based on our interpretation, should be executable. We are yet to
fully understand why not more mDiffFit jobs are running in parallel—this is something
that requires further investigation as part of future work.

Next, let us consider Table 2, which summarises execution patterns of the three job
types with a varying number of instances (mProject, mDiffFit and mBackground). More
specifically, the table shows for how many time intervals some of these jobs are running—
this gives us an idea of how long it takes, for example, to run all 108 mProject jobs—as
well as the percentage thereof of the duration of the entire workflow.

From 3 nodes onwards, we observe an almost linear speed-up for the execution time
of all mProject jobs. Hence, the workflow engine does exploit the increasing number
of available compute resources quite effectively for mProject. On the other hand, the
execution time for all mDiffFit jobs is stable around 10,000 s, irrespective of the number
of available nodes. There is less time for mDiffFit jobs to interleave with mProject (the
times both types of jobs are being executed together reduces steadily the more nodes are
added) and the gain of a faster execution of all mProject jobs is offset by the reduction
in overlapping executions—the times when only mDiffFit jobs are executed increase as
more nodes are added. As these two job types combined contribute the most towards the
overall execution time, this explains the lack of significant reduction in execution time from
6 nodes onwards.

Electronics 2022, 11, 1801 14 of 27

Table 2. Montage jobs and their execution patterns on a 1.5 degree workflow.

Activities 1 Node 3 Nodes 6 Nodes 9 Nodes 12 Nodes

Total (seconds) 45,584 22,038 15,868 13,916 13,654

mProject > 0 44,193 96.9% 20,097 91.2% 9787 61.7% 6586 47.3% 5600 41.0%

mProject > 0
running alone 33,791 74.1% 10,362 47.0% 3643 23.0% 1584 11.4% 1918 14.0%

mDiffFit > 0 9774 21.4% 10,176 46.2% 10,217 64.4% 10,153 73.0% 9014 66.0%

mDiffFit > 0
running alone 420 0.9% 724 3.3% 3852 24.3% 4787 34.4% 5044 36.9%

mProject > 0
and mDiffFit > 0 9354 20.5% 9449 42.9% 5970 37.6% 5002 35.9% 3682 27.0%

mProject > 0
or mDiffFit > 0 44,613 97.9% 20,824 94.5% 14,034 88.4% 11,737 84.3% 10,932 80.1%

mBackground > 0 1031 2.3% 970 4.4% 933 5.9% 892 6.4% 860 6.3%

mBackground > 0
running alone 292 0.6% 565 2.6% 688 4.3% 786 5.6% 781 5.7%

We observed a steady decline in the execution times for all mBackground jobs but not
to the same extent as for mProject. Therefore, our experiments for a Montage 1.5 degree
workflow showed that only mProject jobs were effectively parallelised when more nodes
were added. There was a marginal speed-up for mBackground but a mostly constant
execution time for mDiffFit, respectively.

This is further illustrated in Figure 13. We show the number of active jobs (or tasks)
when at least one mProject job is running (i.e., mProject > 0) compared to the number of
active jobs when no mProject job is running (i.e., mProject = 0), for both 6 (maximum of
24 threads) and 12 nodes (maximum of 48 threads), respectively, in the form of a Violin
plot. Figure 13 clearly shows that the workflow engine gets close to using up all available
compute threads when mProject jobs are being executed (Median of 22 and 41 for 6 and
12 nodes, respectively) but fails to do so when no mProject jobs are running (Median of 3
and 4, respectively). As the execution time for all mProject jobs gradually decreases the
more nodes are added, more and more the cluster becomes underutilised.

0
10

20
30

40
50

N
um

be
r o

f T
as

ks

mProject = 0 mProject > 0 mProject = 0 mProject > 0
6 Nodes

12 Nodes

1.5 Degree

Figure 13. Total number of executing jobs when mProject jobs are running (right) vs. no mProject
jobs running (left)—comparison 6 nodes vs. 12 nodes.

Apart from mProject, none of the Montage jobs effectively uses the available resources.
Fewer nodes are active outside mProject execution. For a both a 6 and 12 nodes cluster,
3 nodes would suffice about 70% of the time with 4–5 nodes required for the remaining 30%.

Electronics 2022, 11, 1801 15 of 27

This explains the almost linear increase in the total energy consumption (cf. Figure 11)—
additional nodes are used extensively whilst mProject jobs are running, but are either used
scarcely or not at all otherwise. They still contribute to the overall energy consumption
even when running “idle”—an energy-aware scheduler could either switch these nodes off
or make them available for other users.

As part of future work, we will investigate why the workflow engine cannot execute
more mDiffFit and mBackground jobs in parallel. Increased parallelism for these two job
types could lead to improved utilisation of the cluster, a reduced execution time in the
order of 20% to 30% for larger Montage workflows and, consequently, a better energy
usage footprint.

4.7. Discussion

An experimental evaluation of the Montage workflow execution on a small board
compute cluster was presented in this section. Analysis of data produced through these
experiments has unveiled some interesting results which are discussed in the remainder of
this section.

4.7.1. Impact of Cluster Size

The presented experiments have shown that, as expected, increasing the cluster size
has a significant impact on the computation time for workflows with many parallelisable
jobs. Increasing the size of the cluster from 1 node (4 threads) to 2 nodes (8 threads) will
result in an almost halving of the computation time (ie linear speed-up). This pattern
generally holds for all workloads, and extends to 3 and 4 cluster nodes. These gains due to
increasing cluster size does not continue past around 5–6 cluster nodes (20–24 threads) for
the chosen workflows though. Increasing the number of cluster nodes beyond this has a
small impact on the overall computation time of the workflow. This is the case even with
large workflows with a large number of parallelisable jobs. This pattern can generally be
attributed to a number of factors, including increasing dependencies between workflow
jobs, the overhead of coordinating more cluster nodes, and the increased data transfer
needed, respectively.

We conclude that, for any workflow that requires some level of coordination and/or
synchronisation amongst jobs, there will be a point were adding further compute nodes
will only result in a marginal reduction in computation time.

4.7.2. Impact of Cluster Configuration

The experience of configuring and analysing various cluster configurations has shown
that there are many factors that effect computation performance and energy. Configuring a
cluster to be efficient requires a lot of effort. In this paper, the experiments used the default
configuration for Condor and effort was made to minimise the data transfer needed for
jobs to execute. As all nodes where configured using NFS, minimising transfers had a large
impact on the overall performance. Experiments have shown that when considering energy,
the overhead of running nodes has the biggest impact for larger cluster sizes as there are
diminishing returns with regards to run-time performance.

From our experiments we conclude that for most energy efficiency, it is best to either
use a node to the maximum or have this node not present at all. Consequently, this
may require further work in adjusting workflow scheduling in order to make them more
“energy aware”.

4.7.3. Impact of Workflow Structure

The results presented in this paper show that the greatest impact on the workflow
execution time is the structure and size of a workflow. Increasing the size of the workflow
will increase the workload and the amount of computation required. However, increasing
the workflow size also increases the number of jobs that integrate and, therefore, depend
on the results from previous jobs. Overall, when profiling jobs, the most important are

Electronics 2022, 11, 1801 16 of 27

computationally intensive jobs as these not only require the most computation, but also
delay dependent jobs the most.

4.7.4. Performance vs. Energy

The focus of this paper is analysing the impact on performance and energy of varying
sizes of clusters and workflows. The expectation was that there would be a trade-off
between performance and energy consumption. Although this has been shown to be true
for small sizes of cluster, this does not continue for larger sizes of cluster. For larger cluster
sizes, regardless of workflow size, increasing the number of nodes does not continue to
improve the performance of workflows beyond a threshold. As illustrated in Table 2,
adding further nodes to our 12 node cluster will not result in an improvement of the overall
run-time performance for a Montage 1.5 degree workflow. We stipulate that a similar
pattern will emerge if we increase the Montage workflow to 2.0 degrees and beyond.

5. Bioinformatics Workflow Energy Evaluation

In this section, we present an experimental evaluation of the performance and energy
consumption of a scientific workflow in the domain of Bioinformatics on a low-power
cluster. The experiments vary the workflow size and cluster size to investigate how different
factors affect the performance and energy consumption, respectively. The experiments in
this section use the experimental setup as described in Section 3.

5.1. Workflow Description

The Bioinformatics workflow used for the experimental evaluation in this section
is based on the data collected by the 1000 Genomes Project [41,42]. The purpose of this
workflow is to analyse the data and cross-match the whole datasets for mutations. The
workflow also identifies mutational overlaps in order to evaluate potential disease-related
mutations. The extracted data, along with the mutation’s sift scores (calculated by the
Variant Effect Predictor [43]), can help researchers in discovering the exact mutation which
is the cause for a certain disease in a person. The workflow also provides visualisation of
the data for easier understanding and future analysis, respectively.

Figure 14 illustrates a directed acyclic graph (DAG) of the Bioinformatics workflow
being evaluated in this section. The DAG has three levels of jobs which have dependencies
from prior levels. For example, the individuals jobs have no dependencies, but prevent
the dependent individual_merge jobs from executing until they have finished. Similarly,
a frequency job can only be executed once all dependent sifting jobs are completed.
Similar to Section 4, Figure 14 only shows the computation jobs that execute on cluster
nodes and not the jobs that are running on the master node.

Figure 14. A Simple Bioinformatics Workflow.

5.2. Workflow Complexity

The Bioinformatics workflow used in this paper uses seven sets of population data
to calculate, analyse and report on the different relationships between individuals and
genetic variation. The workflow generates a wide range of plots and co-relation data for

Electronics 2022, 11, 1801 17 of 27

easy analysis by the researchers. The workloads are categorised on the size of population
data that the workflow computes on. Table 3 illustrates the different number of jobs for
different sizes of the workloads.

Table 3. Number of each job vs. Bioinformatics workflow size.

Bioinformatics
Workflow

Workflow Size

Small
10 k Data

Medium
20 k Data

Large
30 k Data

individual 50 50 50

sifting 1 1 1

individual_merge 1 1 1

frequency 7 7 7

mutation_overlap 7 7 7

The parallelisable individual jobs can be set depending on the resources available.
Most of the experiments conducted in this paper set the number of individual jobs to 50 so
as to accommodate for maximum resources available (12 nodes, 4 threads each = 48 parallel
jobs). Apart from the individual jobs, the number of jobs for the Bioinformatics workflow
do not change in relation to the size of workload.

The frequency and mutation_overlap jobs are dependent on the demographic data
(population cohorts). As the whole 1000 Genome Project consists of data from seven
populations, the number of these jobs are always constant to seven for each chromosome
and for any size of workload. The sifting and individual_merge jobs are always one for
each chromosome as the individual_merge job requires output of all individual jobs to
be able to merge them into one single data. Moreover, the sifting job is independent of
the whole workflow and can execute on its own without the need to parallelise.

5.3. Workflow Characteristics

The Bioinformatics workflow has many characteristics which are specific to the work-
flow. In particular, there are two different input variables that can be controlled by the
user—the size of workflow (the data to be computed) and the number of parallel jobs.
Depending on the user’s need and the resources available there can be more or less of these
jobs. The combination of the number of jobs and the size of workflow directly relates to the
queuing of the jobs, the execution time, and the energy consumption of the workflow.

The computing nodes used in this experiment have 2 GB of RAM available on them.
The workflow loads the whole data-set into memory. This meant that the workflow was
limited by the memory capacity of the nodes. After removing the memory used by the
OS and other necessary processes, we are left with 1.6 GB of RAM for computation. This
translates to less than 400 MB of RAM for each thread in the computing nodes. This was
the highest limit of data that the workflow could process. After analysis of the data, it was
found that 1 MB of data was equal to 100 lines of individual data in the file. After testing a
few different sizes of workload, the sizes of data to be used in experiments were finalised
to 10 k for small workload, 20 k for medium workload and 30 k for large workload. Any
data bigger than 30 k or 320 MB would crash the workflow.

5.4. Bioinformatics Workflow on a Single Node—Results

The results of varying the number of parallelisable jobs on a single node cluster for
a large workflow (30 k data) are presented in this section. This is mainly performed
to showcase the optimal number of parallel jobs to be executed on a single node when
comparing the time of execution with the energy consumption of the workflow.

Figure 15 illustrates both the execution time and energy consumption of a large
workload Bioinformatics workflow on varying numbers of parallel jobs. The left Y-axis

Electronics 2022, 11, 1801 18 of 27

denotes time in seconds and the right Y-axis indicates the energy consumption used by the
node for the duration of the execution. It is important to note that the energy data does
not take into account the energy of the master node. The X-axis indicates the number of
parallel jobs being queued on the node.

15
20

25
30

35
40

45
50

55

10
,0

00
20

,0
00

30
,0

00
40

,0
00

Ti
m

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8 9 10
Number of individual jobs

time energy

En
er

gy
 C

on
su

m
pt

io
n

(W
at

t-h
r)

30k data and varying job number
Bioinformatics Workflow

Figure 15. Varying number of jobs on 1 node cluster for 30 k data.

The results shown in Figure 15 illustrate that the execution time decreases with the
number of parallel jobs until all 4 threads are being used. The time decreases from 40,595 s
(approximately 11 h and 16 min) to 12,821 s (approximately 3 h and 33 min), hence resulting
in a speedup of 3.16. As it can be seen, the energy consumption closely relates to the
number of jobs being executed. After four jobs, the time and the energy consumption
deteriorates from 12,821 s (approximately 3 h and 33 min) to 19,721 s (approximately 5 h
and 28 min) which is a 53% increase. Similar results can be found for energy consumption
as well.

The major reason for this observation can be that a node only has 4 hardware threads
for parallel computation and any jobs more than four leads to queuing and higher overheads
of scheduling jobs, transferring files and merging. The optimal performance of the nodes
in a cluster can be achieved when the number of jobs to be scheduled on any node equals
the number of hardware threads available [14]. This is also illustrated in Figure 15 and
concludes that to achieve the sweet spot between energy consumption and execution time,
the computing power of a single node needs to be completely utilised before scheduling
jobs on any other nodes.

5.5. 10 k Workload Results

To investigate the energy consumption of a small workload on varying size of cluster,
a series of experiments with varying data sizes were performed on the Bioinformatics
workflow. As seen from Table 3, the number of jobs do not change as compared to any
other workload but the amount of computation by each job increases when the workload
increases. In this section, we present the results of the Bioinformatics workflow with a
small sized workload (10 k data with 50 individual jobs) being executed on 1 to 12 nodes.

Figure 16 illustrates both the execution time and energy consumption of a Bioinfor-
matics workflow with 10 k data workload on varying size of cluster. The left Y-axis is the
execution time in seconds. The right Y-axis is the energy consumption of the nodes in Watt-
hours collected as discussed in Section 2. The X-axis indicates the cluster configuration,
i.e., how many nodes were used to compute. Moreover, no jobs on the master node were
considered as they were mainly folder creation and file transfers.

Electronics 2022, 11, 1801 19 of 27

0
20

40
60

80
en

er
gy

6,
00

0
7,

50
0

9,
00

0
10

,5
00

Ti
m

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8 9 10 11 12
Nodes

time energy

En
er

gy
 C

on
su

m
pt

io
n

(W
at

t-h
r)

10k data and 50 individual jobs
Bioinformatics Workflow

Figure 16. Bioinformatics Workflow—Time vs. Energy Consumption for 10 k.

The results shown in Figure 16 illustrate that the execution time decreases with more
nodes being used for computation. This is expected as more computation power should
result in faster workflow execution. The lowest execution time in the experiment was
recorded for 8 nodes as 5866 s (approximately 1 h and 37 min) which was 44.05% lower
than that of 1 node (10,484 s; 2 h and 54 min).

A steady increase in energy consumption was observed similar to Section 4. A single
node used around 14.34 Watt-hours during the computation and every additional node
increases the energy consumption by around 4.5 Watt-hours. As the energy consumption
takes into account the execution time of the workflow, the difference between the energy
consumption between two nodes is due to the increased overhead of computing on ad-
ditional nodes. The results illustrate that faster execution of workflow by increasing the
number of nodes comes at a cost of increased energy consumption. This led to further
investigation on finding the sweet spot between execution time and energy consumption.
Reasons for the increased energy consumption and ideas to reduce it were also discussed.

The increase in energy consumption is almost linear and further investigation into the
data shows that the reason for the increase is totally different than that found in Section 4.
The linear increase is a result of just 1 thread being used and the majority of the nodes being
idle during the execution of individual_merge job. As illustrated in Figures 14 and 17,
individual_merge job acts as a bottleneck for the workflow and the workflow cannot
proceed further unless the job has been completed. This job utilises just 1 thread out of all
the computing power available. Due to this, during the execution of this job, most of the
nodes are idle. They still contribute to the total energy consumption of the cluster but do
not help in the workflow execution.

Figure 17. Number of Active Threads per node for a Bioinformatics Workflow with 20 k Data, 6 Nodes
and 50 Jobs.

Electronics 2022, 11, 1801 20 of 27

Further analysis showed that, for 1 node execution, the individual_merge job was
being executed for 4032 s (approximately 1 h and 7 min) while the total execution time
was 10,484 s (2 h and 54 min) for the workflow. This meant that for almost 38.45% of
the execution time, the majority of the cluster was idle and consuming energy without
contributing to the computation. The results become more prominent as we increase the
number of nodes. The total execution time for a 12 node cluster is 5976 s (approximately
1 h and 39 min) and individual_merge job monopolises 4132 s (approximately 1 h and
8 min) for itself. This results in the majority of the cluster being idle for 69.15% of the time.

5.6. 20 k Workload Results

An investigation of a medium size workload on the Bioinformatics workflow was
conducted using 20 k data points. As given in Table 3, the number of jobs stays the same for
this set of experiments but the work performed by each job increases by 100% as compared
to the small workload.

Similar to Figure 16, a reduction in the execution time of the workflow was observed
when more nodes were added. The execution time gradually decreases till 12 nodes. The
maximum difference of 55% increase in time between the 1 node execution (14,924 s—
approximately 4 h and 8 min) and the 12 nodes execution (6645 s—approximately 1 h and
50 min) was 8279 s (approximately 2 h and 17 min), resulting in a speed up of approx-
imately 2.25. When analysing the total energy consumption, similar patterns as shown
in Figure 16 were seen in this experiment. Energy consumption increases by 267.9% for
12 node execution when compared with 1 node execution. This increase is observed as
the reduction in the execution time does not compensate for the increase in the averaged
energy consumption of the cluster when a new node is added.

5.7. 30 k Workload Results

To further investigate the performance of the Bioinformatics workflow, a series of
experiments were performed with a large workload of 30 k data points. As the number of
jobs was the same, this means the computation for each job increased by 200% as compared
to the smaller workload.

A steady decline in the execution time is observed between 1 node (19,013 s—approximately
5 h and 16 min) and 7 node (7740 s—2 h and 9 min). A speed-up of 2.45 or a 59.3% decrease
in the execution time was achieved from these experiments. After node 7, the execution
time stabilises and only 5–6% variation between the execution times is observed. The
energy consumption of the experiments followed the same reasoning as Figure 16. The
nodes are idle for the majority of the time and this leads to the idle energy consumption
values tainting the actual energy consumption of the cluster during the computation.

5.8. Discussion

An experimental evaluation of a Bioinformatics workflow has been presented in
the previous sections. The data obtained from these experiments presented a number of
discoveries and results regarding the workflow and how it is executed. These results are
discussed in the remainder of this section.

5.8.1. Impact of Cluster Size and Configuration

The results presented show that the cluster size and configuration significantly impact
the execution time of the workflow. Generally, increasing the size of the cluster from 1 node
(4 threads) to 2 nodes (8 threads) will result in an almost halving of the computation time
but due to the particular characteristics and the bottlenecks of the jobs in this workflow,
a non-linear speed-up was observed for the different workload executions. For example,
increasing from 1 node to 2 nodes resulted in a 19% and 29% decrease in execution time for
10 k and 20 k data workload, respectively. Similarly, a 35% decrease is observed for 30 k
data workload.

Electronics 2022, 11, 1801 21 of 27

The gains obtained are marginal and not prominent past 5–6 cluster nodes (20–24 threads)
for the chosen workflow. This can be due to a large number of factors, including increased
overheads, dependencies, data transfer, etc. As for the energy efficiency of the cluster,
efforts were undertaken to reduce the data transfer and dependencies of the jobs without
affecting the underlying workflow or condor configurations. These proved to be unfruitful
as the gains were quickly diminished by the bottlenecks inherent to the workflow. These
are discussed in the next section.

We conclude that for any workflow to maximise the execution time and energy ef-
ficiency, it is best to utilise all the available computing power of a single node before
scheduling jobs on other nodes. A workflow with inter-dependent jobs will always come
to a point when adding more computation power will result in a very small increase in
performance. Moreover, for any workflow with a bottleneck, further work is required to
make it “energy aware”. This can include altering the scheduling of the jobs, changing the
default dependencies, changing the cluster configuration, etc.

5.8.2. Impact of Workflow Structure

The workflow structure has a huge impact on all the aspects of its execution. A poorly
implemented workflow can be very inefficient leading to long execution times and wasted
resources. In this paper, the Bioinformatics workflow has a constant number of jobs for
any workload. This meant that increasing the workload led to a direct increase in the
computation required. A spike in the energy usage of the cluster is observed when a
computational job is being executed.

The results presented in this paper show that there is a huge bottleneck during the
execution of a single job in the Bioinformatics workflow. This leads to a delay in the
dependent jobs which results in a waste of energy and computing resources. This bottleneck
can be removed by energy-aware execution and scheduling of the workflow. This will
require changes to the workflow and the underlying scheduler. These changes and their
gains are beyond the scope of this paper and will be researched in future.

5.8.3. Performance vs. Energy

The experiments performed in this section present the impact of varying sizes of
cluster and workflow on the performance and energy consumption of the workflow. The
expectation was that there would be a gain in performance of the workflow at an expense
of the energy consumption. This was observed to be true but an in-depth analysis of the
workflow showed that there is a way to optimize the workflow in order to gain more energy
savings or execution time. For larger cluster sizes, no considerable performance gain was
observed for the increase in energy expenditure. We stipulate that similar results will be
observed on the execution of the Bioinformatics workflow with different workloads.

5.9. Results Compared to the Literature

In this paper, the approach taken is to analyse the energy usage of the workflow
as a whole. This is in contrast to [44] which focused on the individual jobs and the
factors affecting their execution. Results were consistent between both approaches with
both identifying that execution can be optimised for energy without a huge reduction
in performance by identifying and reducing the overheads and dependencies between
the jobs.

The workflows chosen in this paper reflect two distinct areas of scientific computing
and have different computational characteristics. Montage is I/O intensive and Bioinfor-
matics is CPU intensive [45]. There is not much overlap between these domains and hence
the results obtained can be considered relatively generic. Refs. [46,47] follow a similar
approach in which they analyse two different workflows with different characteristics to
provide conceptual results that can be applied generically to any workflow executions.

In this paper, we perform experiments based on varying the size of the workflow and
therefore the workload. This is performed mainly to analyse the effect of execution time

Electronics 2022, 11, 1801 22 of 27

and energy consumption of varying complexities. Refs. [48,49] focus on executing three
workflows on a single cluster configuration. Their results are similar to the ones obtained
in this study. Our study expands on these previous studies by varying the configuration of
the cluster and the workflows. This provides a comprehensive set of results which can help
generalise the concepts to multiple workflows.

We have performed a detailed analysis of the computation/energy characteristics
alongside analysing the detailed structure of the workflow. Ref. [50] focuses on the structure
of workflows along with the inter-dependencies of the jobs to find the trade-off between
make span and cost. Analysing the workflow as a whole along with its structure has allowed
us to understand the workflow in depth and similar factors affecting the performance and
energy of the workflow.

6. Energy-Aware Workflow Execution

The results from previous experiments motivate a need for energy-aware execution of
workflows on compute clusters in order to result in better trade-offs between run-time
performance and energy consumption. In this section, we further support the cause through
detailed analysis of the workflows and proposing policies which can act as a rule base
on development of a novel energy-aware workflow execution software/scheduler. We
show that the policies, when implemented, can help in reducing the energy footprint of the
workflows by theoretically implementing them in our experiments.

6.1. Workflow Analysis

To complement what was concluded in Sections 4 and 5, we investigated the number
of active threads per node during the execution of the workflows as a measure of how much
the resources of the cluster are being utilised (cf. Figures 17 and 18).

Figure 18. Number of Active Threads per node for a Montage 1.0 degree workflow on 6 cluster nodes.

For both figures, usage of all 4 threads is indicated by ‘orange’ dot and usage of
3 threads is indicated by ‘green’ dot. ‘red ’ and ‘blue’ colored dots are used to indicate
usage of two and one threads, respectively. The y-axis denotes the individual node and the
x-axis the timestamp at any given instant. The analysis only considers the jobs which were
executed on the nodes and not the local jobs such as file/folder creation, file transfers, etc.

For the Montage workflow, we analysed the 1 degree workload on a 6 node cluster.
During the first part of workflow execution where mostly mProject jobs are executed, each
node uses all 4 available threads. However, in the second part of the execution (i.e., post
mProject), neither 4 nor 3 threads were being used completely, but most nodes have only
two or even one active threads.

For the Bioinformatics workflow, a workload of 20 k data was provided to the work-
flow to be executed on 6 nodes. As expected, during the execution of individuals jobs,

Electronics 2022, 11, 1801 23 of 27

all threads from all nodes were being used and the number of jobs exceeds the number of
available threads. However, during the second part of execution, only 1 thread was being
utilised. This job individual_merge takes up the majority of the workflow execution time
in which most of the nodes are idle. During the third part of workflow execution, 4 nodes
are being utilised with a mix of 3 and 2 threads each.

We are yet to fully understand the execution behaviour of these two workflows as there
are instances when the jobs could be queued better in order to save more energy or time.
For example, during the second part of the Montage workflow, the 17 jobs to be executed
which could have been been scheduled on just 4–5 nodes and 1 node could have been
turned off to save energy. Fine grain analysis of the job dependencies, scheduler settings,
etc., is required to further understand and explain a particular execution of workflow.

In conclusion, using a set of rules (or “policies”) to govern the execution of jobs and the
configuration of cluster can help improve the energy consumption of the workflow. These
policies can vary in a wide range from scheduling jobs on particular nodes to changing the
configuration of the cluster based on the energy budget of the workflow, respectively.

6.2. Optimising Energy Usage

To investigate the actual impact of the different policies, we analysed the execution
data of one use case of each workflow. These policies are explained further in this section.
The analysis of the data can be seen in Figures 19 and 20).

30
40

50
60

70

4,
00

0
8,

00
0

12
,0

00
16

,0
00

20
,0

00
Ti

m
e

(s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 10 11 12
nodes

Time
Normal Execution
Nodes turned off at the last job
Nodes switched of after 10 seconds

En
er

gy
 C

on
su

m
pt

io
n

(W
at

t-h
r)

Time vs Energy for different policies
Montage Workflow - 1 degree

Figure 19. Time vs. Energy for Montage workflow as per different policies.

20
40

60
80

6,
00

0
9,

00
0

12
,0

00
15

,0
00

Ti
m

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8 9 10 11 12
nodes

Time
Normal Execution
Nodes turned off at the last job
Nodes switched of after 10 seconds

En
er

gy
 C

on
su

m
pt

io
n

(W
at

t-h
r)

Time vs Energy for different policies
Bioinformatics Workflow - 20k data

Figure 20. Time vs. Energy for Bioinformatics workflow as per different policies.

Electronics 2022, 11, 1801 24 of 27

The workload being used to compare between the policies for Montage and Bioinfor-
matics workflows are 1.0 degree and 20 k data, respectively. For both figures, the x-axis
denotes the number of nodes. The left and right y-axis denote the execution time of the
workflow and energy consumption for the particular policy, respectively.

The “maroon” colored line depicts the energy consumption when the workflow is
executed normally as their authors intended it to be. There is no changes made to the
workflows. The “green” line denotes the execution of workflow in which the nodes are
turned off at the end of their last job. This includes the idle time in between the first job and
the last job on each node. Finally, the “yellow” color line shows the energy consumption
when the policy to turn nodes off after 10 s of inactivity is applied. This gives us a lower
bound of energy consumption as we do not incorporate the impact of re-starting nodes (if
required). This analysis only considers the jobs which were executed on the nodes and not
the jobs on the master node such as file/folder creation, file transfers, etc.

In the case of Montage, our experiments have shown that the “optimal” number of
nodes is not a constant and may vary during the execution of a workflow (as is shown
Figure 18). An intelligent scheduler could exploit this and use fewer nodes for parts of a
workflow execution without impacting overall run-time performance. This can reduce the
energy consumption as shown in Figure 19.

For a Montage 1.0 degree workflow on 6 nodes, for example, if we excluded the impact
of nodes 2 and 4 once they become inactive (cf. Figure 18), we would get a reduction of
approximately 10% in overall energy consumption. For a Montage 1.5 degree workflow
on 12 nodes, a similar exclusion of inactive nodes would result in an approximate 25%
reduction. Figure 19 shows the same and can help in identifying the optimal cluster
configuration and execution time. The maximum reduction in energy consumption that
was seen during our experiments was 30% for 12 nodes.

The Bioinformatics workflow has a single process that runs on its own for a consider-
able amount of time with all other nodes being inactive. Some of these nodes will be needed
again in the third part of the execution. This property of the workflow can be exploited
and can lead to significant savings in energy consumption as illustrated in Figure 17. For
12 nodes, for example, we get a 68% energy saving when the nodes are turned off after 10 s
of inactivity.

Our observations show that for any size of workflow, there is a point of cluster
size which is optimal from both a performance and an energy consumption perspective.
Moreover, the scheduling of jobs can be further optimised to provide a boost in the energy
savings. The traditional workflows are not fully optimised to save energy or time. Our
observations motivate a development of an energy-aware architecture/program that will make
use of policies and smart scheduling in order to result in better trade-offs between run-time
performance and energy consumption. This will also result in improved energy costs of a
workflow while preserving performance.

7. Conclusions and Future Work

In this paper, we have presented an approach to systematically analysing the execution of
scientific workflows on varying sizes of compute clusters. This approach focuses on analysing
the energy and performance of two existing workflows to determine their characteristics.

For this paper, a small board compute cluster consisting of 12 node Raspberry Pi
4B running condor and the Pegasus workflow engine was used. Workflow execution
of varying sizes of two workflows, Astronomical and Bioinformatics, on various sizes
of cluster, were analysed. The results show that although dedicating more resources to
workflow execution can result in substantial gains, there is always a point where using more
resources does not give an energy and/or performance gain. It further provides evidence
that shutting off cluster nodes when they are not being actively used substantially reduces
the overall energy-consumption of the workflow. It provides evidence that workflows can
be highly optimised to not only perform better but also maximise energy savings.

Electronics 2022, 11, 1801 25 of 27

The results in this paper motivate the need for the development of an energy-aware
architecture or scheduler that governs the execution of workflow and helps in reducing
energy costs. The work presented in this paper will be extended in a number of directions.
Firstly, we will investigate the execution of scientific workflows on different kinds of
processing nodes in order to gain insights into the energy consumption patterns of different
kinds of node architectures. Improving the precision of the energy monitoring equipment
can help in fine-grain analysis of the impact of different workloads on energy consumption.
Finally, we also plan to investigate a variety of workflows in different domains. The end
goal is to use the knowledge of all the workflow executions to create a finely tuned energy-
aware recommender system for various workflow executions that can help scientists in
optimising their workflow and choose the configuration of clusters for execution depending
on their budget.

Author Contributions: Conceptualization, M.W.; experimentation, M.W.; methodology, M.W.; soft-
ware, M.W.; data curation, M.W.; data investigation, M.W., J.-G.S. and K.L.; writing—original draft
preparation, M.W.; writing—review and editing, J.-G.S., M.W. and K.L.; validation, J.-G.S. and K.L.;
supervision, J.-G.S. and K.L.; visualization, J.-G.S.; data analysis, J.-G.S.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taylor, I.J.; Deelman, E.; Gannon, D.B.; Shields, M. (Eds.) Workflows for e-Science: Scientific Workflows for Grids, 1st ed.; Springer:

London, UK, 2007; Volume 1.
2. Deelman, E.; Singh, G.; Su, M.H.; Blythe, J.; Gil, Y.; Kesselman, C.; Mehta, G.; Vahi, K.; Berriman, G.B.; Good, J.; et al. Pegasus: A

framework for mapping complex scientific workflows onto distributed systems. Sci. Prog. 2005, 13, 219–237. [CrossRef]
3. Hull, D.; Wolstencroft, K.; Stevens, R.; Goble, C.; Pocock, M.R.; Li, P.; Oinn, T. Taverna: A tool for building and running workflows

of services. Nucleic Acids Res. 2006, 34, W729–W732. [CrossRef]
4. Ludäscher, B.; Altintas, I.; Berkley, C.; Higgins, D.; Jaeger, E.; Jones, M.; Lee, E.A.; Tao, J.; Zhao, Y. Scientific workflow management

and the Kepler system. Concurr. Comput. Pract. Exp. 2006, 18, 1039–1065. [CrossRef]
5. Wang, J. Emergency healthcare workflow modeling and timeliness analysis. IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum.

2012, 42, 1323–1331. [CrossRef]
6. Wu, Q.; Datla, V.V. On performance modeling and prediction in support of scientific workflow optimization. In Proceedings of

the 2011 IEEE World Congress on Services, Washington, DC, USA, 4–9 July 2011; pp. 161–168.
7. Kim, J.; Deelman, E.; Gil, Y.; Mehta, G.; Ratnakar, V. Provenance trails in the wings/pegasus system. Concurr. Comput. Pract. Exp.

2008, 20, 587–597. [CrossRef]
8. Li, J.; Fan, Y.; Zhou, M. Performance modeling and analysis of workflow. IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2004,

34, 229–242.
9. Hoffa, C.; Mehta, G.; Freeman, T.; Deelman, E.; Keahey, K.; Berriman, B.; Good, J. On the use of cloud computing for scientific

workflows. In Proceedings of the 2008 IEEE Fourth International Conference on eScience, Indianapolis, IN, USA, 7–12 December
2008; pp. 640–645.

10. Liu, X.; Yuan, D.; Zhang, G.; Li, W.; Cao, D.; He, Q.; Chen, J.; Yang, Y. The Design of Cloud Workflow Systems, 1st ed.; SpringerBriefs
in Computer Science, Springer Science & Business Media; Springer: New York, NY, USA, 2012; p. 97. [CrossRef]

11. Lee, K.; Paton, N.W.; Sakellariou, R.; Deelman, E.; Fernandes, A.A.; Mehta, G. Adaptive workflow processing and execution in
pegasus. Concurr. Comput. Pract. Exp. 2009, 21, 1965–1981. [CrossRef]

12. Lee, K.; Paton, N.W.; Sakellariou, R.; Fernandes, A.A. Utility Driven Adaptive Workflow Execution. In Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and the Grid, Shanghai, China, 18–21 May 2009; pp. 220–227.

13. Lee, K.; Paton, N.W.; Sakellariou, R.; Fernandes, A. Utility functions for adaptively executing concurrent workflows. Concurr.
Comput. Pract. Exp. 2011, 23, 646–666. [CrossRef]

14. Warade, M.; Schneider, J.G.; Lee, K. FEPAC: A Framework for Evaluating Parallel Algorithms on Cluster Architectures. In
Proceedings of the 2021 Australasian Computer Science Week Multiconference, Online, 1–5 February 2021; pp. 1–10.

15. Bharathi, S.; Chervenak, A.; Deelman, E.; Mehta, G.; Su, M.H.; Vahi, K. Characterization of scientific workflows. In Proceedings
of the 2008 Third Workshop on Workflows in Support of Large-Scale Science, Austin, TX, USA, 17 November 2008; pp. 1–10.

16. Abrahamsson, P.; Helmer, S.; Phaphoom, N.; Nicolodi, L.; Preda, N.; Miori, L.; Angriman, M.; Rikkilä, J.; Wang, X.; Hamily, K.;
et al. Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud Cluster Experiment. In
Proceedings of the 5th International Conference on Cloud Computing Technology and Science, Bristol, UK, 2–5 December 2013.

http://doi.org/10.1155/2005/128026
http://dx.doi.org/10.1093/nar/gkl320
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1109/TSMCA.2012.2210206
http://dx.doi.org/10.1002/cpe.1228
http://dx.doi.org/10.1007/978-1-4614-1933-4
http://dx.doi.org/10.1002/cpe.1446
http://dx.doi.org/10.1002/cpe.1673

Electronics 2022, 11, 1801 26 of 27

17. Basford, P.J.; Johnston, S.J.; Perkins, C.S.; Garnock-Jones, T.; Tso, F.P.; Pezaros, D.; Mullins, R.D.; Yoneki, E.; Singer, J.; Cox, S.J.
Performance Analysis of Single Board Computer Clusters. Future Gener. Comput. Syst. 2020, 102, 278–291. [CrossRef]

18. Qureshi, B.; Koubaa, A. On Energy Efficiency and Performance Evaluation of Single Board Computer Based Clusters: A Hadoop
Case Study. Electronics 2019, 8, 182. [CrossRef]

19. Kassab, A.; Nicod, J.M.; Philippe, L.; Rehn-Sonigo, V. Green power aware approaches for scheduling independent tasks on a
multi-core machine. Sustain. Comput. Inform. Syst. 2021, 31, 100590. [CrossRef]

20. Kassab, A.; Nicod, J.M.; Philippe, L. Green Power Constrained Scheduling for Sequential Independent Tasks on Identical Parallel
Machines. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/Sustain-
Com), Xiamen, China, 16–18 December 2019; pp. 132–139.

21. Ji, K.; Zhang, F.; Chi, C.; Song, P.; Zhou, B.; Marahatta, A.; Liu, Z. A Joint Energy Efficiency Optimization Scheme Based on
Marginal Cost and Workload Prediction in Data Centers. Sustain. Comput. Inform. Syst. 2021, 32, 100596. [CrossRef]

22. Mishra, S.K.; Puthal, D.; Sahoo, B.; Jayaraman, P.P.; Jun, S.; Zomaya, A.Y.; Ranjan, R. Energy-efficient VM-placement in cloud data
center. Sustain. Comput. Inform. Syst. 2018, 20, 48–55. [CrossRef]

23. Khaleel, M.; Zhu, M.M. Energy-aware job management approaches for workflow in cloud. In Proceedings of the 2015 IEEE
International Conference on Cluster Computing, Chicago, IL, USA, 8–11 September 2015; pp. 506–507.

24. Xu, X.; Dou, W.; Zhang, X.; Chen, J. EnReal: An energy-aware resource allocation method for scientific workflow executions in
cloud environment. IEEE Trans. Cloud Comput. 2015, 4, 166–179. [CrossRef]

25. Cloutier, M.F.; Paradis, C.; Weaver, V.M. A raspberry pi cluster instrumented for fine-grained power measurement. Electronics
2016, 5, 61. [CrossRef]

26. Pietri, I.; Malawski, M.; Juve, G.; Deelman, E.; Nabrzyski, J.; Sakellariou, R. Energy-constrained provisioning for scientific
workflow ensembles. In Proceedings of the 2013 International Conference on Cloud and Green Computing, Karlsruhe, Germany,
30 September–2 October 2013; pp. 34–41.

27. Durillo, J.J.; Nae, V.; Prodan, R. Multi-objective workflow scheduling: An analysis of the energy efficiency and makespan
tradeoff. In Proceedings of the 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, Delft,
The Netherlands, 13–16 May 2013; pp. 203–210.

28. Watanabe, E.N.; Campos, P.P.; Braghetto, K.R.; Batista, D.M. Energy saving algorithms for workflow scheduling in cloud
computing. In Proceedings of the 2014 Brazilian Symposium on Computer Networks and Distributed Systems, Florianopolis,
Brazil, 5–9 May 2014; pp. 9–16.

29. Pietri, I.; Sakellariou, R. Energy-aware workflow scheduling using frequency scaling. In Proceedings of the 43rd International
Conference on Parallel Processing Workshops, Minneapolis, MN, USA, 9–12 September 2014; pp. 104–113.

30. Thanavanich, T.; Uthayopas, P. Efficient energy aware task scheduling for parallel workflow tasks on hybrids cloud environment.
In Proceedings of the 2013 International Computer Science and Engineering Conference (ICSEC), Nakhonpathom, Thailand, 4–6
September 2013; pp. 37–42.

31. Ghose, M.; Verma, P.; Karmakar, S.; Sahu, A. Energy efficient scheduling of scientific workflows in cloud environment. In
Proceedings of the 19th International Conference on High Performance Computing and Communications, 15th International
Conference on Smart City, 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Bangkok,
Thailand, 18–20 December 2017; pp. 170–177.

32. Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K. Characterizing and profiling scientific workflows. Future
Gener. Comput. Syst. 2013, 29, 682–692. [CrossRef]

33. Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Da Silva, R.F.; Livny, M.; et al.
Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [CrossRef]

34. Bux, M.N. Scientific Workflows for Hadoop. Ph.D. Thesis, Institute for Computer Science, Humboldt University, Berlin, Germany,
2018. [CrossRef]

35. Litzkow, M.J.; Livny, M.; Mutka, M.W. Condor-A Hunter of Idle Workstations; Technical Report; University of Wisconsin-Madison
Department of Computer Sciences: Madison, WI, USA, 1987.

36. Yu, J.; Buyya, R. A Taxonomy of Scientific Workflow Systems for Grid Computing. ACM Sigmod Rec. 2005, 34, 44–49. [CrossRef]
37. Couvares, P.; Kosar, T.; Roy, A.; Weber, J.; Wenger, K. Workflow management in condor. In Workflows for e-Science; Springer:

Berlin/Heidelberg, Germany, 2007; pp. 357–375.
38. Berriman, G.B.; Deelman, E.; Good, J.C.; Jacob, J.C.; Katz, D.S.; Kesselman, C.; Laity, A.C.; Prince, T.A.; Singh, G.; Su, M.H.

Montage: A grid-enabled engine for delivering custom science-grade mosaics on demand. In Optimizing Scientific Return for
Astronomy through Information Technologies; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2004,
Volume 5493, pp. 221–232.

39. Jacob, J.C.; Katz, D.S.; Berriman, G.B.; Good, J.; Laity, A.C.; Deelman, E.; Kesselman, C.; Singh, G.; Su, M.H.; Prince, T.A.;
et al. Montage: An Astronomical Image Mosaicking Toolkit; Astrophysics Source Code Library, Michigan Technological University,
Houghton, MI, USA, 2010; p. ascl-1010.

40. Juve, G.; Deelman, E.; Vahi, K.; Mehta, G.; Berriman, B.; Berman, B.P.; Maechling, P. Scientific workflow applications on Amazon
EC2. In Proceedings of the 2009 5th IEEE International Conference on e-Science Workshops, Oxford, UK, 9–11 December 2009;
pp. 59–66.

http://dx.doi.org/10.1016/j.future.2019.07.040
http://dx.doi.org/10.3390/electronics8020182
http://dx.doi.org/10.1016/j.suscom.2021.100590
http://dx.doi.org/10.1016/j.suscom.2021.100596
http://dx.doi.org/10.1016/j.suscom.2018.01.002
http://dx.doi.org/10.1109/TCC.2015.2453966
http://dx.doi.org/10.3390/electronics5040061
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.18452/19321
http://dx.doi.org/10.1145/1084805.1084814

Electronics 2022, 11, 1801 27 of 27

41. Clarke, L.; Fairley, S.; Zheng-Bradley, X.; Streeter, I.; Perry, E.; Lowy, E.; Tassé, A.M.; Flicek, P. The international Genome sample
resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res.
2016, 45, D854–D859. [CrossRef]

42. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68. [CrossRef]
43. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The ensembl variant effect

predictor. Genome Biol. 2016, 17, 122. [CrossRef] [PubMed]
44. Chen, W.; Deelman, E. Workflow Overhead Analysis and Optimizations. In Proceedings of the WORKS ’11 6th Workshop on

Workflows in Support of Large-Scale Science, Association for Computing Machinery, Seattle, WA, USA, 14 November 2011;
pp. 11–20. [CrossRef]

45. Chen, W.; Deelman, E. Integration of workflow partitioning and resource provisioning. In Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), Ottawa, ON, Canada, 13–16 May
2012; pp. 764–768.

46. Maurya, A.K.; Tripathi, A.K. Deadline-constrained algorithms for scheduling of bag-of-tasks and workflows in cloud computing
environments. In Proceedings of the 2nd International Conference on High Performance Compilation, Computing and
Communications, Hong Kong, China, 15–17 March 2018; pp. 6–10.

47. Medara, R.; Singh, R.S. Energy efficient and reliability aware workflow task scheduling in cloud environment. Wirel. Pers.
Commun. 2021, 119, 1301–1320. [CrossRef]

48. Konjaang, J.K.; Xu, L. Cost optimised heuristic algorithm (coha) for scientific workflow scheduling in iaas cloud environment. In
Proceedings of the 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD,
USA, 25–27 May 2020; pp. 162–168.

49. Meena, J.; Vardhan, M. Cost-effective Heuristic Workflow Scheduling Algorithm in Cloud Under Deadline Constraint. Recent
Adv. Comput. Sci. Commun. 2020, 13, 1302–1317. [CrossRef]

50. Shishido, H.Y.; Estrella, J.C.; Toledo, C.F.M. Multi-objective optimization for workflow scheduling under task selection policies in
clouds. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018;
pp. 1–8 .

http://dx.doi.org/10.1093/nar/gkw829
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
http://dx.doi.org/10.1145/2110497.2110500
http://dx.doi.org/10.1007/s11277-021-08263-z
http://dx.doi.org/10.2174/2213275912666190822113039

	Introduction
	Evaluating Energy Usage in Computation
	Experimental Setup
	Cluster Hardware
	Scientific Workflows
	Condor Management Software
	Workflow Engine
	Experiment Software Setup

	Astronomy Workflow Energy Evaluation
	Workflow Description
	Workflow Complexity
	Montage Computation Characteristics
	1.0 Degree Workflow Results
	0.5 Degree Workflow Results
	1.5 Degree Workflow Results
	Discussion
	Impact of Cluster Size
	Impact of Cluster Configuration
	Impact of Workflow Structure
	Performance vs. Energy

	Bioinformatics Workflow Energy Evaluation
	Workflow Description
	Workflow Complexity
	Workflow Characteristics
	Bioinformatics Workflow on a Single Node—Results
	10 k Workload Results
	20 k Workload Results
	30 k Workload Results
	Discussion
	Impact of Cluster Size and Configuration
	Impact of Workflow Structure
	Performance vs. Energy

	Results Compared to the Literature

	Energy-Aware Workflow Execution
	Workflow Analysis
	Optimising Energy Usage

	Conclusions and Future Work
	References

