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Abstract 
Considerable research has been performed in applying 

run-time reconfigurable component models to wireless 

sensor networks. The ability to dynamically deploy or 

update software components has clear advantages in 

sensor network deployments, which are typically large 

in scale and expected to operate for long periods in 

dynamic environments. Realizing distributed 

reconfiguration in wireless sensor networks is 

complicated by the inherently asynchronous and 

unreliable nature of these systems. In such an 

environment, achieving quiescence is both costly and 

impossible to guarantee. Additionally, the success of 

reconfiguration actions cannot be determined with 

certainty. This paper advocates for a hierarchical, 

adaptive, graph-based approach to supporting 

reconfiguration. We argue that application developers 

should specify only high level reconfiguration graphs, 

which are then compiled, partitioned and enacted in 

an adaptive manner by a context aware distributed 

reconfiguration engine. 

 

1. Introduction 
Deploying a large-scale Wireless Sensor Network 

(WSN) using contemporary technology involves 

significant expense and development effort. WSNs are 

thus viewed as long-term infrastructure and are 

increasingly expected to support multiple applications. 

Furthermore, applications are increasingly making use 

of resources distributed across multiple WSNs. 

Reconfigurable component-based approaches hold 

significant promise for this application scenario as they 

allow for dynamic deployment of new functionality 

along with the modification of existing functionality to 

meet changing application requirements and 

environmental conditions. 

    Consider the following motivating example: a WSN 

is deployed by the company 'STORAGE_CO'. Initially, 

this WSN infrastructure supports an application to 

monitor the location of medical supplies held in a 

warehouse. After deployment, new regulations are 

introduced requiring that the temperature of medical 

supplies be monitored at all times. In a component-

based system, this requirement may be met by the 

dynamic deployment of a temperature monitoring 

component, rather than the wholesale replacement of a 

monolithic application (shown in Figure 1a). Later, in 

the same scenario, STORAGE_CO introduces new 

equipment into their warehouse which generates 

periodic interference and thus causes errors in location 

data provided by the WSN. In a component-based 

system, this problem may be addressed by re-wiring 

location components via a filter component (shown in 

Figure 1b). 

Figure 1: Example Reconfigurations 
 

 

The simple example discussed above illustrates the 

benefits of a reconfigurable component based approach 

in terms of managing changing application 

requirements and environmental conditions. However, 

successfully achieving dynamic reconfiguration is 

complicated by the characteristics of WSNs: 

 



� Asynchronous and Unreliable Communication: the 

low-power network protocols used in WSNs tend to be 

event-based and unreliable. Thus it is impossible to be 

certain whether a reconfiguration action has been 

attempted, or successfully enacted [1]. 

� Large Scale:  WSNs may be comprised of thousands 

of nodes and thus any reconfiguration approach must 

scale effectively. Partitioning reconfiguration graphs 

for delegation to agents close to the nodes being 

reconfigured has the potential to significantly improve 

scalability. 

� Multiple Owners: applications may require data from 

third party WSNs. In these cases reconfigurations 

cannot be executed directly, but should be partitioned 

and distributed to the appropriate organization to be 

enacted based upon their specific reconfiguration 

policies. 

� Dynamicity: the limited resources of sensor nodes 

coupled with the dynamic nature of WSN environments 

means that no central entity can be assumed to have 

perfect knowledge of available resources (including 

those on 3
rd

 party infrastructure). 
 

In this paper we introduce an architecture designed 

to provide support for the efficient execution of 

reconfiguration graphs in WSN environments. The 

proposed architecture models reconfiguration graphs 

using approaches inspired by scientific workflows. 

Scalability is ensured through decentralized and 

hierarchical execution of the reconfiguration graph and 

dynamicity is managed through adaptive execution of 

the workflow.  

The remainder of this paper is structured as follows: 

Section 2 provides background on distributed 

reconfiguration approaches for WSNs and adaptive 

workflow techniques. Section 3 discusses WSN 

reconfiguration as an adaptive workflow problem. 

Section 4 presents the proposed architecture. Section 5 

illustrates the appropriateness of this architecture 

through an example case-study. Finally, section 6 

presents some conclusions. 
 

2. Related Work 
As previously argued, reconfigurable component 

models are an excellent tool to support the dynamic 

deployment, modification and evolution of distributed 

applications. This can be used to effectively manage 

changing requirements [4]. This section firstly 

discusses the state-of-the-art in component models for 

WSN and then provides background on adaptive 

workflow techniques. 

2.1 Component Models for WSN 
Component models for WSN may be categorized as 

follows: 

� Monolithic: nodes are re-flashed and re-started, 

replacing all functionality during the update. 

� Application-based: units of functionality may be 

deployed at run-time but support is not provided for 

modifying relationships between functional units. 

� Script-based: these approaches allow developers to 

inject lightweight scripts to change the behavior of 

previously deployed functionality. 

� Component based: components may be dynamically 

deployed. Relationships between components may also 

be modified. 
 

Deluge [5] is a reliable epidemic code 

dissemination protocol that is used to support 

monolithic flashing of TinyOS [3] motes. Using 

monolithic re-flashing to achieve only small behavioral 

changes implies a high energy overhead due to 

unnecessary data transmission. Script-based 

approaches such as Maté [14] address this by allowing 

the injection of lightweight scripts which drive the 

execution of pre-deployed component functionality. 

The Sun SPOT [6] sensor platforms allow for 

application-based reconfiguration via the deployment 

of Java ME applications [12]. Contiki [13] provides 

similar support for the deployment of software 

modules. While application-based approaches offer 

advantages over monolithic approaches, relationships 

between applications are opaque and may not be 

reconfigured. DAViM [15] combine the benefits of an 

application-based reconfiguration approach with 

scripting to allow for fine-grained reconfiguration. The 

component-based reconfiguration approach employed 

in OpenCOM [4] and RUNES [2] provide rich support 

for reconfiguration, which may involve deploying or 

updating components as well as modifying component 

relationships. 

We believe that fine-grained component-based 

reconfiguration approaches hold most promise in WSN 

environments, though these approaches offer no 

support for achieving reconfiguration across 3
rd

 party 

platforms. In addition, these approaches assume that 

the reconfiguring entity has perfect knowledge of 

system state, which is impractical. Section 3 discusses 

how work from the field of scientific workflows may be 

applied to address these problems. 

2.2 Adaptive Workflow Techniques 
A workflow represents a group of interdependent 

tasks, wherein each task may only execute after all the 

tasks it depends on have successfully completed. When 

all tasks and their dependencies have completed, the 

workflow itself is judged to have completed. 

Grid-based scientific workflows [7] provide a 

particularly useful abstraction for the domain of WSN 



reconfiguration. The high level goals of a scientific 

workflow may be described in an abstract form, as a 

Directed Acyclic Graph (DAG). Such a workflow 

includes logical entities such as execution locations, 

logical data (e.g. a logical entity that will later be 

mapped to a physical location) and logical 

transformations (e.g. referring to the transformation of 

logical data to other logical data). A compilation stage 

combines this abstract workflow with specific 

mappings to locations, files and components. 

Describing WSN reconfigurations as a workflow 

allows us to apply the mature abstractions and 

conceptual mechanisms of the workflow-processing 

domain to address the problem of WSN 

reconfiguration. This is explored in detail in the 

following section. 

3. Modeling WSN Reconfigurations Using 

Adaptive Workflows 
Describing the reconfiguration as a high level 

workflow and compiling to an executable form rather 

than directly enacting the process has two critical 

advantages. Firstly, context-aware run-time 

optimization can be performed at compile-time. 

Secondly, abstract workflows allow developers to more 

easily model complex reconfigurations across 

heterogeneous platforms. 

At the compilation stage, the compiler ensures that 

the software is deployed in the most efficient way by 

considering current contextual data. At this point, 

implicit intermediate tasks may be reified (for example 

moving components to the location where they should 

be deployed). At this stage redundant tasks may also be 

removed from the workflow.   

Following compilation of the reconfiguration 

graph, workflow partitioning [9] will be used to split 

the master reconfiguration graph into smaller 

partitions, which are rendered concrete and distributed 

to Action Executors which have responsibility for 

achieving reconfigurations in a specific location. 

Action Executors serve two basic roles. Firstly, they act 

as units of virtual synchronicity [11], arbitrating the 

success or failure of reconfiguration actions based upon 

locally gathered contextual data. 

During execution of the reconfiguration graph, 

context-based adaptation occurs at two levels. At the 

network level, the Action Executor, uses contextual 

data relevant to a specific network is to arbitrate the 

success or failure of reconfiguration actions. For 

example, based upon previous performance, the Action 

Executor may modify the time-out it applies before 

judging that a reconfiguration message has not been 

received. Alternatively, the Action Executor may detect 

and prevent the application of redundant 

reconfiguration actions. 

At the global level, the master workflow executor is 

informed of reconfiguration progress in terms of the 

success or failure of concrete action, and based upon 

the success or failure of reconfiguration actions 

reported by Action Executors will adapt in a number of 

ways including: Selecting alternative reconfiguration 

targets, recompiling the graph using new context data 

or introducing fault tolerance [10]. 

4. System Architecture 
This section describes an architecture designed to 

support the adaptive enactment of reconfiguration 

graphs in WSN environments. Figure 2 illustrates this 

architecture. It consists, broadly, of a centralized 

compilation and partitioning stage (Figure 2, top) and a 

decentralized deployment and adaptation stage (Figure 

2, bottom) which is enacted locally on each sensor 

network. 

The reconfiguration process is as follows (the 

reader should refer to Figure 2). The high-level, 

abstract reconfiguration graph is compiled to a concrete 

change graph. A partitioner then splits the concrete 

graph into concrete partitions. These concrete 

partitions are transferred to Action Executers at the 

edge of the network, which each have responsibility for 

enacting changes on one WSN. The Action Executor 

builds on the approach described in [9], monitoring the 

state of the WSN using context-sensors (lightweight 

software components that provide status information), 

which are used to inform the adaptive behavior of the 

Action Executor, which may include: 

�Target selection: even when concrete, a target may 

specify that reconfiguration should be enacted on one 

of multiple physical nodes. Where this is the case, 

contextual information such as available battery level 

may be used to select the most appropriate node. 

�Redundant action removal: concrete partitions may 

include unnecessary operations (e.g. deploying a 

component to a location where an equivalent 

component is already deployed). The Action Executor 

will inspect the current network configuration, and 

where redundant operations are detected, they will not 

be enacted. 

�Providing Fault tolerance: based upon previously 

observed failure rates, an Action Executor may choose 

to repeatedly apply reconfiguration actions in order to 

ensure they are successful. 

�Enforcing Reconfiguration Policies: the owner of 

each Action Executor will specify a reconfiguration 

policy that will restrict the reconfigurations that 3
rd

 

parties may perform on their WSN infrastructure. 



 

 

Figure 2: Architecture 
 

 

5. Case Study Example 
This section illustrates the appropriateness of the 

previously introduced architecture for supporting 

reconfiguration of WSNs through a detailed case-study. 

This case-study shows how adaptive processing of the 

reconfiguration graph can be used to: i.) provide fault 

tolerance, ii.) eliminate redundant reconfiguration 

actions and iii.) modify the relationship between 

existing components. Section 5.1 provides details of 

the case-study scenario. Section 5.2 shows how 

adaptive graph processing at the global level can 

provide fault tolerance. Section 5.3 shows how 

adaptive graph processing by Action Executors can 

remove redundant reconfiguration actions. Finally, 

section 5.4 shows how this architecture can be used to 

modify the relationships between deployed 

components.  In each case, the XML reconfiguration 

graph is provided and the reconfiguration process is 

described in detail. 

5.1 Case-Study Scenario 
The appropriateness of our reconfiguration 

architecture will be illustrated through a stock tracking 

scenario. In this scenario, STORAGE_CO deploys 

sensor nodes in each of the packages that they are 

contracted to store. Packages are stored on pallets, 

which may be inspected at any time by customs 

officials equipped with mobile devices. Each pallet 

features one gateway node which runs an action 

executor and is responsible for all sensor nodes stored 

in the associated packages. Regulations state that at 

least half of all pallets stored in the warehouse should 

report environmental conditions when inspected. 

5.2 Providing Fault Tolerance 
The first stage in this scenario is for 

STORAGE_CO to deploy a ‘PACKAGE_STATE’ 

monitoring component to a subset of pallets in the 

warehouse (3 and 4). The XML reconfiguration graph 

for this operation is shown below: 
 

<?xml version="1.0" encoding="UTF-8"?> 

<reconfiguration-graph>  

  <deploy id="1">  

      <component>PACKAGE_STATE</component>  

      <location>PALLET_3</location>  

      <location>PALLET_4</location>  

  </deploy> 

 

  <connect id="2">  

      <origin>PALLET_3</origin>       

      <dest>BACK_END</dest>  

      <component>PACKAGE_STATE</component>  

      <component>STORAGE_MONITOR<component 

  </connect> 

  <connect id="3">  

      <origin>PALLET_4</origin>  

      <dest>BACK_END</dest>  

      <component>PACKAGE_STATE</component>  

      <component>STORAGE_MONITOR<component>      

  </connect>  

 

  <child ref="2">  

       <parent id="1">  

  </child>  

  <child ref="3">  

       <parent id="1">  

  </child>  

</reconfiguration-graph> 

 

Upon execution of the reconfiguration graph, the 

abstract XML above will be reified to a set of concrete 

actions. Specifically, the abstract location for 

‘PALLET_X’ will be converted to gateway addresses 

and the abstract concept deploy will be converted to a 

platform-specific deployment action. The concrete 

graph will then be partitioned and deployed to 

appropriate Action Executors. Where an Action 

Executor reports failure, the global reconfiguration 

executor will adapt to this contextual information.  

Thus, the original high level reconfiguration graph will 

be recompiled, taking into account what actions have 

been performed successfully and producing a concrete 

graph that only performs the operations that previously 

failed. Following successful component deployment the 

components will then be bound to the back-end 

package monitoring software of STORAGE_CO. 



5.3 Removing Redundant Reconfigurations 
During the deployment process outlined above, the 

Action Executor may also remove redundant actions in 

the concrete reconfiguration partition. Before each 

reconfiguration action is enacted, the Action Executor 

will inspect the specified location and check whether 

the current state matches the successful outcome of the 

reconfiguration action to be executed. Where this is the 

case, the redundant reconfiguration action will simply 

be omitted. In this specific instance, redundancy may 

be removed where a matching component (i.e. 

PACKAGE_STATE) is found to exist, and thus the 

component will not be re-deployed, conserving 

valuable resources. 

5.4 Modifying Component Relationships 
When a customs official with a mobile device 

arrives to inspect the packages stored by 

STORAGE_CO, a new reconfiguration graph will be 

submitted to connect PACKAGE_STATE components 

within range of the device to the MOBILE_MONITOR 

component running on the customs official’s mobile 

device. 
 

<?xml version="1.0" encoding="UTF-8"?> 

<reconfiguration-graph>  

  <connect id="1">  

      <origin>GLOBAL</origin>  

      <dest>MOBILE_USR</dest>  

      <component>MOBILE_MONITOR<component>  

      <component>PACKAGE_STATE</component>  

  </connect>  

</reconfiguration-graph> 

 

As before, upon execution of the reconfiguration 

graph, the abstract reconfiguration graph will be reified 

to a set of concrete actions and dispatched to the 

appropriate Action Executor to be enacted. New 

reconfiguration graphs will be dispatched by the 

custom official’s device as it comes within range of 

new packages / sensor motes in order to deal with 

mobility. 

5.5 Discussion 
While the case-study we have presented is simple, we 

believe that it illustrates the benefits of using a 

hierarchical, graph-based approach to achieving 

reconfiguration in WSN environments. In the above 

scenario, adaptive graph execution was used to provide 

fault tolerance, while local contextual data was applied 

to remove redundant reconfiguration operations. We 

expect that further benefits will be evident in multi-

owner WSN scenarios, where our decentralized design 

will allow each WSN administrator to specify an 

appropriate reconfiguration policy. 

The presented approach has concrete benefits in 

terms of relieving developers from the complexities of 

software deployment in unreliable network 

environments and, moreover, our XML reconfiguration 

specification language provides a simple, yet powerful 

mechanism for developers to specify their desired 

reconfiguration actions. 

Another critical advantage of our approach is that it 

allows for a clean separation of concerns between the 

planning of software deployments and their realization. 

The former should be based upon high level concerns 

and platform independent, while the latter should be 

tightly coupled to the specific WSN platform on which 

deployment is being enacted, such that contextual data 

can be efficiently exploited. 

It is also important to note that, while our case 

study focused upon a component based reconfiguration 

approach, our hierarchical, graph-based approach could 

equally be applied to scripted, application-based or 

even monolithic reconfiguration approaches. 

 

6. Conclusions and Future Work 
This paper has advocated for the use of runtime 

reconfigurable component models to manage the 

dynamism of WSN environments. We presented a 

hierarchical, adaptive, graph-based approach to 

enacting reconfiguration. This approach draws on 

existing techniques from the dynamic work-flow 

processing domain. The appropriateness of this 

approach was illustrated through a detailed WSN case-

study involving diverse reconfiguration actions. 

In the short term, our future work will focus upon 

realizing an implementation of the presented 

architecture. We will then quantitatively evaluate the 

potential benefits of an adaptive graph processing to 

enacting reconfiguration in WSN environments. 

In the longer term, we intend to explore the extent 

to which context-awareness can be used to 

automatically optimize reconfiguration graphs (for 

example to exploit currently deployed components).  

In summation, we believe that an adaptive, graph-

based approach to enacting reconfiguration in WSN 

holds great potential for lowering the burden on 

application developers, while allowing for optimization 

of reconfiguration graphs. 
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