
A Graph Based Approach to Supporting Reconfiguration in

Wireless Sensor Networks

Wouter Horré
1
, Kevin Lee

2
, Danny Hughes

1
, Sam Michiels

1
, Wouter Joosen

1

1
Distrinet,, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.

{ danny.hughes, wouter.horre, sam.michiels, wouter.joosen } @ cs.kuleuven.be

2
Dieter Schwarz Chair of Business Administration, E-Business and E-

Government, University of Mannheim, Mannheim, Germany.

lee@bwl.uni-mannheim.de

Abstract
Considerable research has been performed in applying

run-time reconfigurable component models to wireless

sensor networks. The ability to dynamically deploy or

update software components has clear advantages in

sensor network deployments, which are typically large

in scale and expected to operate for long periods in

dynamic environments. Realizing distributed

reconfiguration in wireless sensor networks is

complicated by the inherently asynchronous and

unreliable nature of these systems. In such an

environment, achieving quiescence is both costly and

impossible to guarantee. Additionally, the success of

reconfiguration actions cannot be determined with

certainty. This paper advocates for a hierarchical,

adaptive, graph-based approach to supporting

reconfiguration. We argue that application developers

should specify only high level reconfiguration graphs,

which are then compiled, partitioned and enacted in

an adaptive manner by a context aware distributed

reconfiguration engine.

1. Introduction
Deploying a large-scale Wireless Sensor Network

(WSN) using contemporary technology involves

significant expense and development effort. WSNs are

thus viewed as long-term infrastructure and are

increasingly expected to support multiple applications.

Furthermore, applications are increasingly making use

of resources distributed across multiple WSNs.

Reconfigurable component-based approaches hold

significant promise for this application scenario as they

allow for dynamic deployment of new functionality

along with the modification of existing functionality to

meet changing application requirements and

environmental conditions.

 Consider the following motivating example: a WSN

is deployed by the company 'STORAGE_CO'. Initially,

this WSN infrastructure supports an application to

monitor the location of medical supplies held in a

warehouse. After deployment, new regulations are

introduced requiring that the temperature of medical

supplies be monitored at all times. In a component-

based system, this requirement may be met by the

dynamic deployment of a temperature monitoring

component, rather than the wholesale replacement of a

monolithic application (shown in Figure 1a). Later, in

the same scenario, STORAGE_CO introduces new

equipment into their warehouse which generates

periodic interference and thus causes errors in location

data provided by the WSN. In a component-based

system, this problem may be addressed by re-wiring

location components via a filter component (shown in

Figure 1b).

Figure 1: Example Reconfigurations

The simple example discussed above illustrates the

benefits of a reconfigurable component based approach

in terms of managing changing application

requirements and environmental conditions. However,

successfully achieving dynamic reconfiguration is

complicated by the characteristics of WSNs:

� Asynchronous and Unreliable Communication: the

low-power network protocols used in WSNs tend to be

event-based and unreliable. Thus it is impossible to be

certain whether a reconfiguration action has been

attempted, or successfully enacted [1].

� Large Scale: WSNs may be comprised of thousands

of nodes and thus any reconfiguration approach must

scale effectively. Partitioning reconfiguration graphs

for delegation to agents close to the nodes being

reconfigured has the potential to significantly improve

scalability.

� Multiple Owners: applications may require data from

third party WSNs. In these cases reconfigurations

cannot be executed directly, but should be partitioned

and distributed to the appropriate organization to be

enacted based upon their specific reconfiguration

policies.

� Dynamicity: the limited resources of sensor nodes

coupled with the dynamic nature of WSN environments

means that no central entity can be assumed to have

perfect knowledge of available resources (including

those on 3
rd

 party infrastructure).

In this paper we introduce an architecture designed

to provide support for the efficient execution of

reconfiguration graphs in WSN environments. The

proposed architecture models reconfiguration graphs

using approaches inspired by scientific workflows.

Scalability is ensured through decentralized and

hierarchical execution of the reconfiguration graph and

dynamicity is managed through adaptive execution of

the workflow.

The remainder of this paper is structured as follows:

Section 2 provides background on distributed

reconfiguration approaches for WSNs and adaptive

workflow techniques. Section 3 discusses WSN

reconfiguration as an adaptive workflow problem.

Section 4 presents the proposed architecture. Section 5

illustrates the appropriateness of this architecture

through an example case-study. Finally, section 6

presents some conclusions.

2. Related Work
As previously argued, reconfigurable component

models are an excellent tool to support the dynamic

deployment, modification and evolution of distributed

applications. This can be used to effectively manage

changing requirements [4]. This section firstly

discusses the state-of-the-art in component models for

WSN and then provides background on adaptive

workflow techniques.

2.1 Component Models for WSN
Component models for WSN may be categorized as

follows:

� Monolithic: nodes are re-flashed and re-started,

replacing all functionality during the update.

� Application-based: units of functionality may be

deployed at run-time but support is not provided for

modifying relationships between functional units.

� Script-based: these approaches allow developers to

inject lightweight scripts to change the behavior of

previously deployed functionality.

� Component based: components may be dynamically

deployed. Relationships between components may also

be modified.

Deluge [5] is a reliable epidemic code

dissemination protocol that is used to support

monolithic flashing of TinyOS [3] motes. Using

monolithic re-flashing to achieve only small behavioral

changes implies a high energy overhead due to

unnecessary data transmission. Script-based

approaches such as Maté [14] address this by allowing

the injection of lightweight scripts which drive the

execution of pre-deployed component functionality.

The Sun SPOT [6] sensor platforms allow for

application-based reconfiguration via the deployment

of Java ME applications [12]. Contiki [13] provides

similar support for the deployment of software

modules. While application-based approaches offer

advantages over monolithic approaches, relationships

between applications are opaque and may not be

reconfigured. DAViM [15] combine the benefits of an

application-based reconfiguration approach with

scripting to allow for fine-grained reconfiguration. The

component-based reconfiguration approach employed

in OpenCOM [4] and RUNES [2] provide rich support

for reconfiguration, which may involve deploying or

updating components as well as modifying component

relationships.

We believe that fine-grained component-based

reconfiguration approaches hold most promise in WSN

environments, though these approaches offer no

support for achieving reconfiguration across 3
rd

 party

platforms. In addition, these approaches assume that

the reconfiguring entity has perfect knowledge of

system state, which is impractical. Section 3 discusses

how work from the field of scientific workflows may be

applied to address these problems.

2.2 Adaptive Workflow Techniques
A workflow represents a group of interdependent

tasks, wherein each task may only execute after all the

tasks it depends on have successfully completed. When

all tasks and their dependencies have completed, the

workflow itself is judged to have completed.

Grid-based scientific workflows [7] provide a

particularly useful abstraction for the domain of WSN

reconfiguration. The high level goals of a scientific

workflow may be described in an abstract form, as a

Directed Acyclic Graph (DAG). Such a workflow

includes logical entities such as execution locations,

logical data (e.g. a logical entity that will later be

mapped to a physical location) and logical

transformations (e.g. referring to the transformation of

logical data to other logical data). A compilation stage

combines this abstract workflow with specific

mappings to locations, files and components.

Describing WSN reconfigurations as a workflow

allows us to apply the mature abstractions and

conceptual mechanisms of the workflow-processing

domain to address the problem of WSN

reconfiguration. This is explored in detail in the

following section.

3. Modeling WSN Reconfigurations Using

Adaptive Workflows
Describing the reconfiguration as a high level

workflow and compiling to an executable form rather

than directly enacting the process has two critical

advantages. Firstly, context-aware run-time

optimization can be performed at compile-time.

Secondly, abstract workflows allow developers to more

easily model complex reconfigurations across

heterogeneous platforms.

At the compilation stage, the compiler ensures that

the software is deployed in the most efficient way by

considering current contextual data. At this point,

implicit intermediate tasks may be reified (for example

moving components to the location where they should

be deployed). At this stage redundant tasks may also be

removed from the workflow.

Following compilation of the reconfiguration

graph, workflow partitioning [9] will be used to split

the master reconfiguration graph into smaller

partitions, which are rendered concrete and distributed

to Action Executors which have responsibility for

achieving reconfigurations in a specific location.

Action Executors serve two basic roles. Firstly, they act

as units of virtual synchronicity [11], arbitrating the

success or failure of reconfiguration actions based upon

locally gathered contextual data.

During execution of the reconfiguration graph,

context-based adaptation occurs at two levels. At the

network level, the Action Executor, uses contextual

data relevant to a specific network is to arbitrate the

success or failure of reconfiguration actions. For

example, based upon previous performance, the Action

Executor may modify the time-out it applies before

judging that a reconfiguration message has not been

received. Alternatively, the Action Executor may detect

and prevent the application of redundant

reconfiguration actions.

At the global level, the master workflow executor is

informed of reconfiguration progress in terms of the

success or failure of concrete action, and based upon

the success or failure of reconfiguration actions

reported by Action Executors will adapt in a number of

ways including: Selecting alternative reconfiguration

targets, recompiling the graph using new context data

or introducing fault tolerance [10].

4. System Architecture
This section describes an architecture designed to

support the adaptive enactment of reconfiguration

graphs in WSN environments. Figure 2 illustrates this

architecture. It consists, broadly, of a centralized

compilation and partitioning stage (Figure 2, top) and a

decentralized deployment and adaptation stage (Figure

2, bottom) which is enacted locally on each sensor

network.

The reconfiguration process is as follows (the

reader should refer to Figure 2). The high-level,

abstract reconfiguration graph is compiled to a concrete

change graph. A partitioner then splits the concrete

graph into concrete partitions. These concrete

partitions are transferred to Action Executers at the

edge of the network, which each have responsibility for

enacting changes on one WSN. The Action Executor

builds on the approach described in [9], monitoring the

state of the WSN using context-sensors (lightweight

software components that provide status information),

which are used to inform the adaptive behavior of the

Action Executor, which may include:

�Target selection: even when concrete, a target may

specify that reconfiguration should be enacted on one

of multiple physical nodes. Where this is the case,

contextual information such as available battery level

may be used to select the most appropriate node.

�Redundant action removal: concrete partitions may

include unnecessary operations (e.g. deploying a

component to a location where an equivalent

component is already deployed). The Action Executor

will inspect the current network configuration, and

where redundant operations are detected, they will not

be enacted.

�Providing Fault tolerance: based upon previously

observed failure rates, an Action Executor may choose

to repeatedly apply reconfiguration actions in order to

ensure they are successful.

�Enforcing Reconfiguration Policies: the owner of

each Action Executor will specify a reconfiguration

policy that will restrict the reconfigurations that 3
rd

parties may perform on their WSN infrastructure.

Figure 2: Architecture

5. Case Study Example
This section illustrates the appropriateness of the

previously introduced architecture for supporting

reconfiguration of WSNs through a detailed case-study.

This case-study shows how adaptive processing of the

reconfiguration graph can be used to: i.) provide fault

tolerance, ii.) eliminate redundant reconfiguration

actions and iii.) modify the relationship between

existing components. Section 5.1 provides details of

the case-study scenario. Section 5.2 shows how

adaptive graph processing at the global level can

provide fault tolerance. Section 5.3 shows how

adaptive graph processing by Action Executors can

remove redundant reconfiguration actions. Finally,

section 5.4 shows how this architecture can be used to

modify the relationships between deployed

components. In each case, the XML reconfiguration

graph is provided and the reconfiguration process is

described in detail.

5.1 Case-Study Scenario
The appropriateness of our reconfiguration

architecture will be illustrated through a stock tracking

scenario. In this scenario, STORAGE_CO deploys

sensor nodes in each of the packages that they are

contracted to store. Packages are stored on pallets,

which may be inspected at any time by customs

officials equipped with mobile devices. Each pallet

features one gateway node which runs an action

executor and is responsible for all sensor nodes stored

in the associated packages. Regulations state that at

least half of all pallets stored in the warehouse should

report environmental conditions when inspected.

5.2 Providing Fault Tolerance
The first stage in this scenario is for

STORAGE_CO to deploy a ‘PACKAGE_STATE’

monitoring component to a subset of pallets in the

warehouse (3 and 4). The XML reconfiguration graph

for this operation is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<reconfiguration-graph>

 <deploy id="1">

 <component>PACKAGE_STATE</component>

 <location>PALLET_3</location>

 <location>PALLET_4</location>

 </deploy>

 <connect id="2">

 <origin>PALLET_3</origin>

 <dest>BACK_END</dest>

 <component>PACKAGE_STATE</component>

 <component>STORAGE_MONITOR<component

 </connect>

 <connect id="3">

 <origin>PALLET_4</origin>

 <dest>BACK_END</dest>

 <component>PACKAGE_STATE</component>

 <component>STORAGE_MONITOR<component>

 </connect>

 <child ref="2">

 <parent id="1">

 </child>

 <child ref="3">

 <parent id="1">

 </child>

</reconfiguration-graph>

Upon execution of the reconfiguration graph, the

abstract XML above will be reified to a set of concrete

actions. Specifically, the abstract location for

‘PALLET_X’ will be converted to gateway addresses

and the abstract concept deploy will be converted to a

platform-specific deployment action. The concrete

graph will then be partitioned and deployed to

appropriate Action Executors. Where an Action

Executor reports failure, the global reconfiguration

executor will adapt to this contextual information.

Thus, the original high level reconfiguration graph will

be recompiled, taking into account what actions have

been performed successfully and producing a concrete

graph that only performs the operations that previously

failed. Following successful component deployment the

components will then be bound to the back-end

package monitoring software of STORAGE_CO.

5.3 Removing Redundant Reconfigurations
During the deployment process outlined above, the

Action Executor may also remove redundant actions in

the concrete reconfiguration partition. Before each

reconfiguration action is enacted, the Action Executor

will inspect the specified location and check whether

the current state matches the successful outcome of the

reconfiguration action to be executed. Where this is the

case, the redundant reconfiguration action will simply

be omitted. In this specific instance, redundancy may

be removed where a matching component (i.e.

PACKAGE_STATE) is found to exist, and thus the

component will not be re-deployed, conserving

valuable resources.

5.4 Modifying Component Relationships
When a customs official with a mobile device

arrives to inspect the packages stored by

STORAGE_CO, a new reconfiguration graph will be

submitted to connect PACKAGE_STATE components

within range of the device to the MOBILE_MONITOR

component running on the customs official’s mobile

device.

<?xml version="1.0" encoding="UTF-8"?>

<reconfiguration-graph>

 <connect id="1">

 <origin>GLOBAL</origin>

 <dest>MOBILE_USR</dest>

 <component>MOBILE_MONITOR<component>

 <component>PACKAGE_STATE</component>

 </connect>

</reconfiguration-graph>

As before, upon execution of the reconfiguration

graph, the abstract reconfiguration graph will be reified

to a set of concrete actions and dispatched to the

appropriate Action Executor to be enacted. New

reconfiguration graphs will be dispatched by the

custom official’s device as it comes within range of

new packages / sensor motes in order to deal with

mobility.

5.5 Discussion
While the case-study we have presented is simple, we

believe that it illustrates the benefits of using a

hierarchical, graph-based approach to achieving

reconfiguration in WSN environments. In the above

scenario, adaptive graph execution was used to provide

fault tolerance, while local contextual data was applied

to remove redundant reconfiguration operations. We

expect that further benefits will be evident in multi-

owner WSN scenarios, where our decentralized design

will allow each WSN administrator to specify an

appropriate reconfiguration policy.

The presented approach has concrete benefits in

terms of relieving developers from the complexities of

software deployment in unreliable network

environments and, moreover, our XML reconfiguration

specification language provides a simple, yet powerful

mechanism for developers to specify their desired

reconfiguration actions.

Another critical advantage of our approach is that it

allows for a clean separation of concerns between the

planning of software deployments and their realization.

The former should be based upon high level concerns

and platform independent, while the latter should be

tightly coupled to the specific WSN platform on which

deployment is being enacted, such that contextual data

can be efficiently exploited.

It is also important to note that, while our case

study focused upon a component based reconfiguration

approach, our hierarchical, graph-based approach could

equally be applied to scripted, application-based or

even monolithic reconfiguration approaches.

6. Conclusions and Future Work
This paper has advocated for the use of runtime

reconfigurable component models to manage the

dynamism of WSN environments. We presented a

hierarchical, adaptive, graph-based approach to

enacting reconfiguration. This approach draws on

existing techniques from the dynamic work-flow

processing domain. The appropriateness of this

approach was illustrated through a detailed WSN case-

study involving diverse reconfiguration actions.

In the short term, our future work will focus upon

realizing an implementation of the presented

architecture. We will then quantitatively evaluate the

potential benefits of an adaptive graph processing to

enacting reconfiguration in WSN environments.

In the longer term, we intend to explore the extent

to which context-awareness can be used to

automatically optimize reconfiguration graphs (for

example to exploit currently deployed components).

In summation, we believe that an adaptive, graph-

based approach to enacting reconfiguration in WSN

holds great potential for lowering the burden on

application developers, while allowing for optimization

of reconfiguration graphs.

7. Acknowledgments
Wouter Horré is a PhD fellow of the Research

Foundation - Flanders (FWO). This research is

partially funded by the Interuniversity Attraction Poles

Programme Belgian State, Belgian Science Policy, and

by the Research Fund K.U.Leuven.

8. References

[1] Coulouris G., Dollimore J. and Kindberg T.,

Distributed Systems: Concepts and Design, Fourth

Edition, Addison-Wesley 2005.

[2] Costa P., Coulson G., Gold R., Lad M., Mascolo C.,

Mottola L., Picco G.P., Sivaharan T., Weerasinghe N.,

Zachariadis S., The RUNES Middleware for Networked

Embedded Systems and its Application in a Disaster

Management Scenario, in proc. of the 5th Annual IEEE

International Conference on Pervasive Computing and

Comunications (PERCOM’07), White Plains, New York,

19-23 March 2007, pp. 69–78.

[3] Hill J., Szewczyk R., Woo A., Hollar S., Culler D.,

Pister K., System Architecture Directions for Networked

Sensors, in ACM SIGPLAN, Vol. 35, No. 11, November

2000, pp. 93-104.

[4] Grace P., Coulson G., Blair G., Porter B., Hughes D.,

Dynamic Reconfiguration in Sensor Middleware, in the

proceedings of the 1
st
 International Workshop on

Middleware for Sensor Networks (MidSens'06),

Melbourne, Australia, November 2006, pp. 1 – 6.

[5] Hui J. W., Culler D., The Dynamic Behavior of a Data

Dissemination Protocol for Network Programming at

Scale. In proc. of the 2
nd

 International Conference on

Embedded Networked Sensor Systems (SenSys'04),

Baltimore, Maryland, USA, November 2004, pp. 81-94.

[6] Sun Microsystems, Small Programmable Object

Technology, “Inspiring Java developers to create a whole

new breed of devices and technologies - and accelerating

the growth of the ‘Internet of Things’”, available online

at: http://www.sunspotworld.com/vision.html

[7] Deelman E., Singh G., Sa M., Blythe J., Gil Y.,

Kesselman C., Mehta G., Karan V., Berriman G., Good J.,

Laity A., Jacob J., and Katz D., Pegasus: A framework for

mapping complex scientific workflows onto distributed

systems, in Scientific Programming, Vol. 13, No. 3, 2005,

pp. 219–237.

[8] Gurmeet S., Kesselman C., Deelman E., Optimizing

Grid-Based Workflow Execution, in Journal of Grid

Computing, Vol. 3, No. 3-4, 2005, pp. 201-219.

[9] Nichols J., Demirkan H., Goul M., Autonomic

Workflow Execution in the Grid, in IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and

Reviews, Vol. 6, No. 3, May 2006, pp. 353-364.

[10] Lee K., Paton N. W., Sakellariou R., Deelman E.,

Fernandes A. A. A., Mehta G., Adaptive Workflow

Processing and Execution in Pegasus, to appear in

Concurrency and Computation: Practice and Experience,

2009.

[11] Schiper A., Birman K., Stephenson P., Lightweight

causal and atomic group multicast, ACM Transactions on

Computer Systems, Vol. 9, No. 3, 1991, pp. 272-314

[12] Sun Microsystems, Java ME - the Most Ubiquitous

Application Platform for Mobile Devices, available online

at: http://java.sun.com/javame/index.jsp

[13] Dunkels A., Grönvall B., Voigt T., Contiki - a

Lightweight and Flexible Operating System for Tiny

Networked Sensors, in proc. of 29th IEEE International

Conference on Local Computer Networks (LCN’04),

Tampa, FL, USA, November 2004, pp. 455 – 462.

[14] Levis, P.; Gay, D. & Culler, D., Active Sensor

Networks, in proc. of the 2
nd

 USENIX/ACM Symposium

on Network Systems Design and Implementation

(NSDI'05), Boston, Massachusetts, USA, May 2005, pp.

343 – 356.

[15] Horré W., Michiels S., Joosen W., Verbaeten P.,

DAVIM: Adaptable Middleware for Sensor Networks,

IEEE Distributed Systems Online, 2008, Vol. 9, No. 1

