
Adaptive Workflow Processing and Execution in Pegasus

Kevin Lee1, Norman W. Paton1, Rizos Sakellariou1,
Ewa Deelman2, Alvaro A. A. Fernandes1, Gaurang Mehta2

1School of Computer Science
University of Manchester

Oxford Road, Manchester M13 9PL, U.K
{klee, norm, rizos, alvaro}@cs.man.ac.uk

2University of Southern California
Information Sciences Institute

Marina Del Ray, CA 90292, USA
{deelman, gmehta}@isi.edu

Abstract

Workflows are widely used in applications that require co-
ordinated use of computational resources. Workflow defini-
tion languages typically abstract over some aspects of the
way in which a workflow is to be executed, such as the level
of parallelism to be used or the physical resources to be de-
ployed. As a result, a workflow management system has re-
sponsibility for establishing how best to execute a workflow
given the available resources. The Pegasus workflow man-
agement system compiles abstract workflows into concrete
execution plans, and has been widely used in large-scale e-
Science applications. This paper describes an extension to
Pegasus whereby resource allocation decisions are revised
during workflow evaluation, in the light of feedback on the
performance of jobs at runtime. The contributions of this pa-
per include: (i) a description of how adaptive processing has
been retrofitted to an existing workflow management system;
(ii) a scheduling algorithm that allocates resources based on
runtime performance; and (iii) an experimental evaluation of
the resulting infrastructure using grid middleware over clus-
ters.

1 Introduction

A number of workflow environments have been devel-
oped in recent years to provide support for the specification
and execution of scientific workflows. We distinguish scien-
tific workflows (as supported, for example, by Pegasus [9],
Askalon [11], Taverna [18], Kepler [2] and Triana [19]), being
typically compute and/or data intensive, as opposed to busi-
ness workflows, which are beyond the scope of this paper.
Workflow languages are used to provide a high-level charac-
terization of the pattern of activities that need to be carried out
to support a user task. Workflows written in such languages

typically leave open a number of decisions as to how a work-
flow is enacted, such as where the workflow is to be run, what
level of parallelism is to be used and what resources are to
be made available to the workflow. As a result, a collection of
decisions must be made before a workflow can be enacted, for
example by a compilation process that translates a workflow
from an abstract form into a more concrete representation that
resolves various of the details as to how the workflow is to
make use of available resources.

Most existing workflow systems provide static approaches
for mapping (e.g. [5, 21]) on the basis of information that
provides a snapshot of the state of the computational environ-
ment. Such static decision making involves the risk that deci-
sions may be made on the basis of information about resource
performance and availability that quickly becomes outdated.
As a result, benefits may result either from incremental com-
pilation, whereby resource allocation decisions are made for
part of a workflow at a time (e.g. [9]), or by dynamically re-
vising compilation decisions that gave rise to a concrete work-
flow while it is executing (e.g. [14, 10, 16, 22]). In principle,
any decision that was made statically during workflow com-
pilation can be revisited at runtime (e.g. [17]).

Proposals that describe adaptive approaches to mapping
(e.g., [14]) are often quite intrusive, in that the adaptive be-
haviour of their engine exercises fine-grained control over the
workflow engine, implying that significant effort may be re-
quire to incorporate such capabilities into existing mainstream
workflow systems. In contrast, the work described in this
paper implements adaptivity as a separate module which is
loosely-coupled with an existing workflow system.

This paper describes an approach to adaptive resource allo-
cation and scheduling in the Pegasus workflow management
system [9]. Pegasus already accommodates uncertainty about
the runtime environment by incremental compilation, which
both defers certain decisions as to how workflow activities
are mapped to resources and forms the basis for fault tol-

1

erance, whereby a workflow partition, which is the unit of
incrementality, can be retried if it fails. In line with [14]
our adaptive system is purely reactive in that it monitors in-
formation and reacts to it. Thus, the emphasis is on adap-
tations on the basis of specific observable behaviour rather
than mechanisms to predict what future behaviour is going
to be. Our objectives in this work have been: (i) to dynami-
cally adjust resource allocation decisions in the light of run-
time feedback on the performance of the clusters onto which
workflows are being compiled; and (ii) to obtain that dynamic
behavior through minimal intervention into the existing Pega-
sus infrastructure. As a case study for the evaluation of our
adaptive system we consider resource allocation on clusters
that might be used by several users at the same time. This
allows us to introduce adaptivity into an environment whose
performance is not well known in advance, and in which there
is limited control over the execution of individual jobs; stud-
ies that focusing on the evaluation of scheduling heuristics
usually require more information about the environment than
is assumed here [20, 16, 22, 23]. Yet, without using sophisti-
cated heuristics, our adaptive engine yields demonstrable ben-
efits.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the technical context for this work by describ-
ing the Pegasus workflow management system. Section 3 de-
tails both what adaptations are carried out and how these have
been integrated with the Pegasus infrastructure. Section 4 de-
scribes the results of experiments conducted using both syn-
thetic and real-world scientific workflows. Section 5 draws
some overall conclusions.

2 Technical Context

The Pegasus Workflow Management System (Figure 1)
consists of the Pegasus workflow mapper [9] and the DAG-
Man [13] workflow executor for Condor. The Pegasus mapper
takes high-level descriptions of complex applications struc-
tured as workflows, automatically maps them to available cy-
berinfrastructure resources, and submits them to DAGMan for
execution. Pegasus has been used in a wide range of applica-
tions including earthquake science and astronomy.

The workflow mapping engine is a compiler that translates
between the high-level specifications and the underlying ex-
ecution system and optimizes the executables based on the
target architecture. The mapping includes finding the appro-
priate software and computational resources where the exe-
cution can take place, as well as finding copies of the data
indicated in the workflow instance. The mapping process can
also involve workflow restructuring geared towards optimiz-
ing the overall workflow performance as well as workflow
transformation geared towards data management and prove-
nance information generation. The result of the mapping pro-
cess is an executable workflow, which can be executed by a

Figure 1. Layered Architecture of the Pegasus
Workflow Management System.

workflow engine that follows the dependencies defined in the
workflow and executes the activities defined in the workflow
tasks. DAGMan, our workflow engine relies on the resources
(compute, storage, and network) defined in the workflow to
perform the necessary actions. As part of the execution, data
is generated along with associated metadata.

Mapping the workflow instance to an executable form in-
volves finding the resources that are available and can per-
form the computations, the data that is used in the work-
flow, and the necessary software. We assume that data may
be replicated in the environment and that users publish their
data products into some data registry. Pegasus uses the logi-
cal filenames referenced in the workflow to query a data reg-
istry service, such as the Globus Replica Location Service
(RLS) [6], to locate the replicas of the required data. Given
the set of logical filenames, RLS returns a corresponding set
of physical file locations. Optionally, Pegasus also adds tasks
to the workflow to register the final and intermediate work-
flow data products into the registry. In this way, new data
products can be easily discovered by the user, the community,
or another workflow. In order to be able to find the location
of the logical application component names (transformations)
defined in the workflow instance, Pegasus queries the Trans-
formation Catalog (TC) [8] and obtains the physical locations
of the transformations (on possibly several systems) and the
environment variables and libraries necessary for the proper
execution of the software. Pegasus also supports staging of
statically linked executables on demand. In that case, the exe-
cutables are treated as input data for the corresponding work-
flow tasks. The executables are transferred to the remote grid
sites along with other input data required.

Pegasus queries cyberinfrastructure monitoring services
(e.g., the Globus Monitoring and Discovery Service
(MDS) [12]) to find the available resources and their char-
acteristics (machine load, scheduler queue length, available

2

Figure 2. Pegasus Adaptive Support

disk space, and others). This information is combined with in-
formation from the Transformation Catalog to make schedul-
ing decisions. Schedulers are one of the pluggable compo-
nents of Pegasus. Up to now Pegasus included four different
scheduling algorithms: random, round-robin, min-min [5],
and HEFT [20]. In this work, we designed and incorporated
a new scheduler into Pegasus. As opposed to the static nature
of the existing four (and the large body of relevant work in the
literature, e.g., [23]), the key feature of our new algorithm is
that it takes into account runtime information.

Pegasus also uses information services to find the location
of the data movement services (e.g., GridFTP [1] or SRB [4])
that can perform wide-area data transfers, job managers [7]
that can schedule jobs on the remote sites, storage locations,
where data can be pre-staged, shared execution directories,
site-wide environment variables, etc. This information is nec-
essary to produce the executable workflow that describes the
necessary data movement, computation and catalog updates.
Registries of code and data as well as information services al-
low Pegasus to provide a level of abstraction to the user and
give the freedom to automatically optimize workflow execu-
tion.

3 Adaptive Pegasus

As stated in Section 1, the focus of this paper is on dy-
namically adjusting resource allocation decisions in response
to feedback on the performance of workflow execution. The
adaptive strategy used is structured around the MAPE func-
tional decomposition [15] which partitions adaptive function-
ality into four areas, Monitoring, Analysis, Planning and Ex-
ecution. The MAPE functional decomposition is a useful
framework for systematic development of adaptive systems,
and can be applied in a wide range of applications, includ-
ing different forms to workflow adaptation [17]. The use of
MAPE to structure the adaptive strategies in this paper is il-
lustrated in Figure 2, which shows how it is retrofitted with
minimal intervention to a Pegasus-planned executing work-
flow.

In the adaptation strategy described in this paper, an exe-

cuting workflow instance is monitored for the relevant events
at the assigned resources. These events are constantly anal-
ysed for patterns, which may lead to planning. Planning up-
dates the information available to Pegasus, and reruns Pega-
sus on the current workflow. The revised plan for the work
that remains to be done is compared with the current plan,
and the new plan is adopted if it is predicted to give an im-
proved overall response time. Changes to the workflow exe-
cution proposed by Planning are implemented in an execution
step that removes and replaces the executing workflow. The
following paragraphs discuss the components in Figure 2 in
more detail.

Monitoring: To monitor the progress of an executing
workflow, job queue, execute and termination events are
tracked. These, respectively, indicate when Condor submits
a task to the remote scheduler, when the remote scheduler in-
dicates that the task has started to execute, and when the re-
mote scheduler indicates that the task has completed. These
are sensed using a LogSensor that polls for new entries in the
DAGMan log file every 100 milliseconds. The DAGMan log
file records all events about the execution of a workflow and
its progress. Each entry of the log file is parsed to determine
if it contains an event of interest. These events are passed to
Analysis.

Analysis: The role of the analysis step is to establish
whether the workflow is performing according to expectations
when it was compiled. If expectations are not being met, then
it may be possible to improve on the plan that is being pur-
sued. To support the concise and declarative description of
patterns in the monitoring data, the CQL continuous query
language [3] is used to group and analyse the events produced
by monitoring. The CQL queries that implement the analysis
are given in Figure 3.

The queries look for a sustained substantial increase or de-
crease in batch queue (waiting) times per site compared to the
job batch queue predictions created by the scheduler. If there
is an output from this analysis, the planner is notified. In addi-
tion to determining if adaptations may be necessary, Analysis
also generates average queue times for each available site for
use by the scheduling algorithm. Queue times are derived us-
ing relevant event information from Monitoring.

Planning: When analysis detects a sustained change in
batch queue times for a site, re-scheduling may need to be
performed. To examine this, the Pegasus planner is called
to propose an alternative schedule taking into account recent
queue times.

To ensure that jobs are not unnecessarily repeated, the
replica catalogues used by Pegasus to share results within and
between workflows are updated with results already produced
by the workflow. This is because each job in a concrete work-
flow outputs its results as intermediate data in the form of a
file. The relevant folders on the execution sites are scanned
for intermediate results, which are added to the replica cata-

3

Input Streams:
events :
int timestamp, char event, char job

assignments :
char job, char site, int estimate

Queries:
jobqueued :
select timestamp, job from events
where event =′ ULOG SUBMIT ′;
register stream jobqueued

(int timestamp, char job);

jobexecuted :
select timestamp, job from events
where event =′ ULOG EXECUTE′;
register stream jobexecuted

(int timestamp, char job);

queuedtime :
select execute.timestamp − queued.timestamp,

execute.job
from jobqueued as queued, jobexecute as execute
where queued.job = execute.job;
register stream queuedtime

(int queuetime, char job);

queuetimeandestimate :
select queue.timestamp, queue.job, assignment.site,

assignments.estimate
from queuetime as queue,

jobassignments as assignments
where queue.job = assignments.job;
register stream queuetimeandestimate

(int timestamp, (char job, char site);

Analysis:
select “LongQueue”, site
from queuetimeandestimate[Rows 3]
where AVG(time − estimate) > threshold;
select “ShortQueue”, site
from queuetimeandestimate[Rows 3]
where AVG(estimate − time) > threshold;

Figure 3. Filtering monitoring events in CQL

logue.
As discussed in Section 2, Pegasus currently has four dif-

ferent schedulers which it uses to assign jobs to resources.
However, these were designed to schedule statically using
limited (or statically estimated) information about the perfor-
mance characteristics of execution resources. To enable adap-
tive behavior, a scheduling algorithm is needed that takes ac-
count of information gleaned by Monitoring. To this end, we
implemented a new scheduler which uses data collected about
the average queue times of each available site to decide where
to schedule each job in the workflow. Figure 4 shows this
scheduling algorithm that enables adaptivity.

The scheduler depends on the presence of historic data
containing the average queue times for each available site.
This is generated by Analysis; when no prior data on average

Input:
WorkflowW
List of Sites S
List of Average Queue Times SQ

1. Calculate PSs the proportion of the workflow each site s
should process.
for Site s ∈ S

PSs = (1/SQs)/
∑

i∈S
(1/SQi)

2. Calculate Nums the number of jobs each site s should process.
for Site s ∈ S

Nums = PSs ∗ size(W)

3. Create AS a queue of assignable sites.
for Site s ∈ S

for Int i = 1 to Nums

AS.push back(s)

4. Randomise the list of assignable sites.
AS.randomise()

5. Create Aj , the job to site assignment list.
for Job j ∈ W

Aj = AS.pop front()

Figure 4. Adaptive Scheduling Algorithm

site queue times is available a default value of 0 is used.
The scheduler allocates work to each site in inverse relation

to the average queue time since the start of the execution of
the workflow. It is as follows: Step 1 calculates the proportion
of a workflow (in number of tasks) that should be assigned to
each site, based on average batch queue times. Step 2 calcu-
lates the number of jobs each site should process, by multiply-
ing the number of jobs by the proportion each site should be
assigned. Steps 3 and 4 create a randomised list of sites based
on the number of jobs each site should be assigned from Step
2. Step 5 creates the final job-to-site assignment list.

Not every new schedule proposed by the scheduler is de-
ployed; new schedules are compared with the existing exe-
cuting schedule to see if they are predicted to improve on the
current plan. The cost of adaptation is also taken into account
when deciding whether or not to deploy a new schedule. If
it is decided to deploy it, the next component, execution, is
called.

In addition to returning a list of job assignments to sites,
the scheduler also generates a list of predicted batch queue
times for each job on each site. These predictions are later
used by Analysis to detect substantial deviations from actual
running times. The predicted batch queue time is the average
queue time for the site to which the job has been assigned.
These are made available to Analysis in the form of the as-
signments, input stream in Figure 3.

Execution: At the stage that execution is called, there is a
currently executing workflow. Execution stops the executing

4

Figure 5. A Linear Workflow

Figure 6. A Simple Montage Workflow [9]

workflow and deploys the new one using Pegasus commands.

4 Experimental Evaluation

4.1 Experiment Setup

The aim of the experimental evaluation is to explore the
effect of the adaptive approach on response time in a range of
scenarios. The experiments use two abstract workflow styles.
The first type is a linear workflow, whose general form is il-
lustrated in Figure 5. This is simply a DAG were each sub-
sequent task is dependent on the file created by the previous
task, and may contain any number of tasks. With these de-
pendencies present, the tasks in the workflow will execute in
series. In our experiments we considered an instance with 50
tasks. The second workflow type is that of a Montage work-
flow, which creates a large mosaic image from many smaller
astronomical images [9]. These can be of varying sizes de-
pending on the size of the area of sky of the mosaic. A sim-
ple Montage workflow is illustrated in Figure 6. The num-
bers represent the level of each task in the overall workflow.
This corresponds to the size used in our experiments (25 tasks,
equivalent to a 0.2 degree area).

In order to run the workflows, two clusters were used,
which we designate Cluster 1 and Cluster 2. The use of a
modest number of clusters does not change the nature or value
of the approach, as this level of resource availability is com-

mon. Cluster 1 has as submission site a 2.4Ghz Xeon with
2GB of RAM, and 8 worker nodes each with a 2.4Ghz Xeon
with 2GB of RAM connected together by Gigabit Ethernet.
Cluster 2 has as submission site a 2Ghz dual core Opteron
with 4GB RAM, and 112 worker nodes each with a dual core
1Ghz P3 with 4GB RAM connected together by 100 Megabit
Ethernet. All jobs are setup and submitted from the Cluster 1
submission site.

For each of the experiments, we submitted two workflows
in parallel, a non-adaptive one and an adaptive one. The
non-adaptive workflow uses simple round-robin scheduling,
whereas the adaptive workflow uses the adaptive scheduling
mechanism described in Section 3.

It should be noted that the resources, as detailed above, are
not dedicated to the experiments in this paper, so they may be
influenced by submissions from other users. However, in or-
der to test the effect of the adaptivity strategy better, in some
experiments, we also introduced additional (controlled) loads
to the clusters. Thus, we group the results of the experiments
according to the model for additional external load consid-
ered:

• No Additional External Load: For the purposes of the
experiment, no external load is applied; the clusters are
still, however, subject to third-party external load.

• Constant Additional External Load: For the duration
of the experiment, additional linear workflows are sub-
mitted to a cluster. This has the effect of providing a
constant additional external load above any third-party
load on the clusters.

• Temporary Additional External Load: For a period of
time specified in each experiment, linear workflows of
a specified size and number are submitted to a cluster,
creating a temporary increase in load.

At the end of each experiment, the log files were parsed to
produce the results. In order to illustrate long waiting times
in the queue for individual jobs of a workflow, the graphs pre-
sented plot both the queue time and execution time for each
job separately; even though this distinction may not be imme-
diately obvious in the case of experiments using workflows
with a relatively large number of tasks, the graphs still indi-
cate trends. The vertical axis of the graphs shows wall-clock
time in the form hours:minutes:seconds. For each experi-
ment, graphs for non-adaptive and adaptive workflow execu-
tion are plotted side-by-side to allow comparison.

4.2 No External Load

Experiment 1: The objective of this experiment is to com-
pare the adaptive and non-adaptive approaches where no ad-
ditional external load has been submitted to the clusters and
there is no historical information on cluster performance.

5

Figure 7. Results of Experiment 1

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

01:15:00

01:30:00

01:45:00

02:00:00

02:15:00

02:30:00

02:45:00

 5 10 15 20 25 30 35 40 45

T
im

e

Job ID

non-adaptive

Key
Job Queued

Job Executing

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

01:15:00

01:30:00

01:45:00

02:00:00

02:15:00

02:30:00

02:45:00

 5 10 15 20 25 30 35 40 45

T
im

e

Job ID

Adaptive

Key
Job Queued

Job Executing

Figure 8. Results of Experiment 2

Adaptive and non-adaptive linear workflows (50 tasks
each) are submitted in parallel, with access to Clusters 1 and
2, with no additional external load. The results are presented
in Figure 7, which shows that the adaptive workflow performs
less well than non-adaptive one. This is because it has to build
up knowledge about the execution environment that can form
the basis for informed adaptations. When enough knowledge
has been gained, an adaptation is performed, which is visi-
ble on the graph as a gap in the linear workflow execution.
The point in time when, as a result of an adaptation, a new
schedule is applied is denoted with an horizontal line in the
graph. The adaptive workflow adapts twice. The gains that
result from adaptation are too modest to make up for the cost
of adapting. This is because the clusters are performing simi-
larly and consistently across the execution, and thus the orig-
inal non-adaptive schedule is efficient.

Experiment 2: The objective of this experiment is to com-
pare the adaptive and non-adaptive approaches where no ad-
ditional external load has been submitted to the clusters and
historical information on cluster performance is available.

The same workflows are submitted as in Experiment 1.
With prior knowledge about the environment (from Experi-
ment 1), the results are as shown in Figure 8. No adaptations
are carried out for this run, and the adaptive and non-adaptive
workflows perform similarly.

00:00:00

00:03:00

00:06:00

00:09:00

00:12:00

00:15:00

00:18:00

00:21:00

00:24:00

00:27:00

00:30:00

 5 10 15 20 25

T
im

e

Job ID

non-adaptive

Key
Job Queued

Job Executing

00:00:00

00:03:00

00:06:00

00:09:00

00:12:00

00:15:00

00:18:00

00:21:00

00:24:00

00:27:00

00:30:00

 5 10 15 20 25

T
im

e

Job ID

Adaptive

Key
Job Queued

Job Executing

Figure 9. Results of Experiment 3

Experiment 3: The objective of this experiment is to com-
pare the adaptive and non-adaptive approaches with no addi-
tional external load in the presence of historical information
with a more complex workflow.

Adaptive and non-adaptive Montage workflows are sub-
mitted in parallel, with access to Clusters 1 and 2, with no
additional external load. Prior knowledge is available about
the environment (from Experiment 1). The results are shown
in Figure 9, which indicates that the clusters act as expected
and no adaptations are carried out for this run. Where tasks
are run in parallel in Figure 9, this reflects the inherent paral-
lelism of Montage (see the graph in Figure 6).

Summary: Once the adaptive infrastructure has been primed
with current information about the environment, it correctly
refrains from performing adaptations where none are re-
quired. The remainder of the experiments assume the avail-
ability of historical information about the clusters.

4.3 Constant External Load

Experiment 4: The objective of this experiment is to com-
pare the adaptive and non-adaptive approaches with addi-
tional external load on the smaller cluster.

The same linear workflows are submitted as in Experiment
1, with additional constant external load supplied by the sub-
mission of 50 linear workflows (100 tasks each) to Cluster 1 at
the start. The results are presented in Figure 10, which shows
that the adaptive workflow changes its schedule early in the
workflow execution, leading to a significant improvement in
response time of the adaptive workflow compared to the non-
adaptive workflow. The adaptive response time is 17% less
than that in the non-adaptive case.

Experiment 5: The objective of this experiment is to com-
pare adaptive and non-adaptive approaches with constant ex-
ternal load on a small cluster with a complex workflow.

Adaptive and non-adaptive Montage workflows are sub-
mitted in parallel to Clusters 1 2, with additional constant ex-
ternal load supplied by submitting 50 linear (100 task each)

6

Figure 10. Results of Experiment 4

Figure 11. Results of Experiment 5

workflows to Cluster 1 at the start. The results are presented in
Figure 11, which shows that the adaptive workflow changed
the schedule early on in the workflow execution, leading to
a significant improvement in performance when compared
to the non-adaptive workflow. By moving work away from
the heavily loaded Cluster 1, long queue times have been
avoided, especially for the jobs with Job Id 10, 11, 14 and
15. The adaptive response time is 38% less than that in the
non-adaptive case.

Summary: The constant external load is handled well by the
adaptive scheduling scheme; few adaptations are required, but
these provide lasting benefits, and significant response time
improvements are observed.

4.4 Temporary External Load

Experiment 6: The objective of this experiment is to com-
pare adaptive and non-adaptive approaches with temporary
external load on a small cluster with a linear workflow.

The same workflows are used as in Experiment 1, with a
temporary external load supplied by submitting 50 linear (10
tasks each) workflows to Cluster 1 at 60 minutes into the ex-
periment. The results of the experiment are shown in Figure
12, in which one adaptation is performed just after 60 min-
utes and another when the temporary workflows complete af-
ter 120 minutes. The adaptation has reduced average queue

Figure 12. Results of Experiment 6

Figure 13. Results of Experiment 7

times during the time of additional load, by moving jobs away
from the heavily loaded cluster. The adaptive response time
is 7% less than that in the non-adaptive case.

Experiment 7: The objective of the experiment is to compare
adaptive and non-adaptive approaches with temporary exter-
nal load on a small cluster with a complex workflow.

Adaptive and non-adaptive Montage workflows are sub-
mitted in parallel, with access to Clusters 1 and 2, with tem-
porary external load supplied by submitting 50 linear (10 task)
workflows to Cluster 1 at 10 minutes into the experiment. The
results of the experiment are shown in Figure 13. The results
show that an adaptation is performed only once, after 3 min-
utes. The adaptive workflows jobs are then typically subject
to shorter queue times than the non-adaptive one. Even after
the temporary workflows are complete no more adaptations
are performed due to the jobs performing well on Cluster 2
(which has a generally lower queue time when neither cluster
is loaded). The adaptive response time is 21% less than that
in the non-adaptive case.

Summary: A temporary external load impedes the progress
of a static workflow less than one that is present all the time,
so the potential improvements available from the adaptive
techniques are reduced compared with the constant external
load case. However, adaptation takes place when the tempo-
rary external load is introduced, and in one case when it is

7

removed, providing significantly reduced response times.

5 Conclusions

We have presented an approach to adaptive workflow pro-
cessing that: (i) adds adaptive scheduling to an existing work-
flow infrastructure with minimal intrusion; (ii) illustrates the
use of the MAPE functional decomposition from the au-
tonomic computing community in a new setting, including
the use of stream queries for identifying patterns of inter-
est in monitoring events; and (iii) demonstrates significant
performance improvements in experiments involving differ-
ent forms of imbalance and workflows, even though the en-
vironment provides limited fine-grained control over the exe-
cution timing of individual jobs. Adaptive workflow process-
ing promises to provide more robust performance in uncertain
environments. Our experiments also indicate that workflows
with a higher degree of inherent parallelism, such as Mon-
tage, may benefit more from adaptation. Finally, our work
has demonstrated that effective adaptation can be added to
an established grid workflow infrastructure at modest devel-
opment cost, making use of existing facilities for monitoring
and control.

Acknowledgments: We acknowledge the support of the
UK Engineering and Physical Science Research Council. The
ISI work was supported by the National Science Foundation
under grants: CNS-0615412 and OCI-0722019.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Data management and transfer in high-performance
computational grid environments. Parallel Computing Jour-
nal, 28(5):749–771, 2002.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and
S. Mock. Kepler: An extensible system for design and exe-
cution of scientific workflow. In in 16th Intl. Conf. on Scien-
tific and Statistical Database Management (SSDBM’04), 21-
23 June, 2004.

[3] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. The
VLDB Journal, 15(2):121–142, 2006.

[4] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In CASCON’98, 1998.

[5] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy. Task scheduling strategies for workflow-based
applications in grids. In IEEE Symposium on Cluster Comput-
ing and the Grid (CCGrid 2005). IEEE Press, 2005.

[6] A. Chervenak et al. Giggle: A framework for constructing
sclable replica location services. Proceedings of Supercom-
puting 2002 (SC2002), November 2002.

[7] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A resource management architecture
for metacomputing systems. Lecture Notes in Computer Sci-
ence, 1459:62–82, 1998.

[8] E. Deelman et al. Transformation catalog design for griphyn.
Technical Report, GriPhyN-2001-17, www.griphyn.org, 2001.

[9] E. Deelman et al. Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems. Scientific
Programming, 13(3):219–237, 2005.

[10] R. Duan, R. Prodan, and T. Fahringer. Run-time optimisation
of grid workflow applications. In Proc. Intl. Conference on
Grid Computing, pages 33–40. IEEE Press, 2006.

[11] T. Fahringer et al. Askalon: A development and grid com-
puting environment for scientific workflows. In in Workflows
for eScience, Scientific Workflows for Grids. Springer Verlag,
ISBN: 978-1-84628-519-6, 2005.

[12] S. Fitzgerald. Grid information services for distributed re-
source sharing. In Proc. 10th IEEE Intl Symposium on High
Performance Distributed Computing, 2001.

[13] J. Frey, T. Tannenbaum, M. Livny, I. T. Foster, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. In HPDC, pages 55–63, 2001.

[14] T. Heinis, C. Pautasso, and G. Alonso. Design and evaluation
of an autonomic workflow engine. In 2nd International Con-
ference on Autonomic Computing, pages 27–38. IEEE Com-
puter Society, 2005.

[15] J. Kephart and D. Chess. The Vision of Autonomic Comput-
ing. IEEE Computer, 36(1):41–50, 2003.

[16] J.-H. Lee, S.-H. Chin, H.-M. Lee, T. Yoon, K.-S. Chung, and
H.-C. Yu. Adaptive workflow scheduling strategy in service-
based grids. In GPC, pages 298–309. Springer, 2007.

[17] K. Lee, R. Sakellariou, N. W. Paton, and A. A. A. Fernandes.
Workflow adaptation as an autonomic computing problem. In
2nd Workshop on Workflows in Support of Large-Scale Science
(Works 07) in Proceedings of HPDC, pages 29–34, 2007.

[18] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Green-
wood, T. Carver, K. Glover, M. Pocock, A. Wipat, and P. Li.
Taverna: a tool for the composition and enactment of bioinfor-
matics workflows. Bioinformatics, 20(17):3045–54, 2004.

[19] I. Taylor, M. Shields, I. Wang, and A. Harrison. The tri-
ana workflow environment: Architecture and applications. In
Workflows for e-Science, pages 320–339, 2007.

[20] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting. IEEE Trans. Parallel Distrib. Syst., 13(3):260–274,
2002.

[21] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of
scientific workflows in the askalon grid environment. In in
SIGMOD Record Volume 34(3), 2005.

[22] Z. Yu and W. Shi. An adaptive rescheduling strategy for grid
workflow applications. In IPDPS, pages 1–8. IEEE Press,
2007.

[23] H. Zhao and R. Sakellariou. Advance reservation policies for
workflows. In Workshop on Job Scheduling Strategies for Par-
allel Processing (JSSPP), pages 47–67. LNCS 4376, Springer-
Verlag, 2006.

8

