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Abstract

Goal accomplishment tracking is the process of
monitoring the progress of a task or series
of tasks towards completing a goal. Goal
accomplishment tracking is used to monitor goal
progress in a variety of domains, including
workflow processing, teleoperation and industrial
manufacturing. Practically, it involves the constant
monitoring of task execution, analysis of this data
to determine the task progress and notification
of interested parties. This information is usually
used in a passive way to observe goal progress.
However, responding to this information may prevent
goal failures. In addition, responding proactively
in an opportunistic way can also lead to goals
being completed faster. This paper proposes an
architecture to support the adaptive planning of tasks
for fault tolerance or opportunistic task execution
based on goal accomplishment tracking. It argues
that dramatically increased performance can be
gained by monitoring task execution and altering
plans dynamically.

1 Introduction

The aim of many automated and semi-automated
systems is to achieve a defined goal. A goal can be
defined as a desirable state of the world (Ghallab,
Nau & Traverso 2004). Goals are domain-specific
and can be physical (Small, Mann & Lee 2013),
business-centric (Marks, Mathieu & Zaccaro 2001)
or computing related (Deelman, Singh, Su, Blythe,
Gil, Kesselman, Mehta, Vahi, Berriman, Good, Laity,
Jacob & Katz 2005). Completing a goal amounts to
choosing and then performing those actions that are
required to change the state of the world from the
current state to the desirable goal state. A complex
goal is completed through the navigation of a plan
consisting of a tree of interdependent tasks, with each
parent task relying on the fulfilment of all its child
tasks.

A completed goal might lead to a physical action,
a log entry, a human notification or a trigger for
another process. To achieve a goal it is normal
that a series of tasks must be accomplished, often
in a workflow (Deelman et al. 2005, Ghallab, Nau
& Traverso 1995). Knowing the current state of the
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goal progress is important to determine if everything
is going smoothly or if there is a problem.

Goal accomplishment tracking is used to monitor
a series of tasks that are intended to meet a goal.
Tasks are monitored, intermediate and final results
are analysed and the progress of the goal is calculated.
The outcome of this process is normally a simple
completion notification. Monitoring of sub-goals is
useful in a number of fields, such as monitoring
tasks in scientific workflow execution (Deelman
et al. 2005), monitoring of teams in business team
management (Marks et al. 2001) and monitoring
robotic exploration (Small et al. 2013).

Goal accomplishment tracking can be applied to
any area that uses a series of tasks to attempt to
meet a high-level goal. For a simple goal with a small
number of tasks, Goal accomplishment tracking can
be used to give a simple indication of progress, by e.g.
parsing log files. For a complex workflow based goal,
it can be used to reveal complex task relationships.

Although generally used for passive informational
reasons, goal accomplishment tracking has the
potential to trigger a response in the event of a goal
completion being at risk. It can also trigger responses
in the event of a potential opportunity to improve
the goal completion time. These events are likely
when there are incorrect assumptions in the task
descriptions or unforeseen environmental changes.

Reacting to problems and opportunities involves
changing what is currently happening in terms
of the task plan. This could mean a number
of different actions (Lee, Sakellariou, Paton &
Fernandes 2007), including creating new tasks,
removing tasks, choosing alternate implementations
or reallocating resources - all of which could be called
adaptive or autonomic planning (Ghallab et al. 2004).
Adaptive planning in this scenario broadly takes
into account the current environmental conditions
together with the current plan and creates a new plan.
This new plan usually takes into account domain-
specific constraints such as resource performance and
cost (Lee, Paton, Sakellariou & Fernandes 2011).

This paper proposes the use of goal
accomplishment tracking as a trigger for adaptive
planning in automated systems. In the event of the
discovery of a problem or opportunity, an adaptive
planner is triggered to analyse the current progress
of task execution and calculate a new plan. This
has potential to not only react to potential goal
failures, but also taking advantage of opportunities
to dramatically decrease the time needed to achieve
a goal.

The remainder of this paper is structured as
follows. Section 2 presents a background on goal-
based systems. Section 3 introduces goal tracking.
Section 4 discusses the role of planning and introduces



adaptive planning. Section 5 introduces a proposed
architecture for supporting adaptive planning as
the result of goal accomplishment tracking analysis.
Section 6 presents a case-study based evaluation that
gives contexts to the proposed approach. Finally
Section 7 presents some conclusions and discusses
future work.

2 Background

The idea of goal-seeking as a principle to guide
intelligent behaviour emerged early in the history
of artificial intelligence, and with it the notion of
goal satisfaction. Only a few years after the birth
of the science, notions of analysing problems by
means-end analysis, or recursive simplification of
compounds to constituents elementary enough to
be solved by trivial means were being formulated
in the hope of discovering general-purpose methods
for problem solving (McCarthy 1963, Newell &
Simon 1961). Once the language of plans, goals,
world-states and operators was established, ideas
about how to automatically generate plans - ordered
sequences of operators capable of systematically
transforming observed world-states into desireable
world-states began to appear (Winston 1984). In this
context, notions of tracking goal accomplishments
are normally expressed in rather general perceptual
terms, with the details only discussed at the level of
particular implementations, if at all. A separation
between planning and monitoring in robots was
proposed by Munson (Munson 1971), and later
expanded in (Noreils & Chatila 1995), but in these
works, monitoring occurred in the execution loop
of the robot, working at a level too low to satisfy
any need for distributed, multi-agent coordination.
Both of these monitoring systems also focused on
error detection rather than success detection: unless
an error was detected, the robot was assumed
to have succeeded in its task. The monitoring
proposed here is geared toward detecting success first
and foremost, only initialising error detection and
potential replanning if success is not achieved.

SRI’s Shakey represented an important
embodiment of this kind of deliberative planning -
also called the sense-plan-act paradigm - in a physical
robot (Nilsson 1984) capable of carrying out plans
in controlled static environment of wooden boxes. It
showcased Stanford’s classical automated planning
system, STRIPS (Fikes & Nilsson 1972), which could
break down task-oriented command expressions
into ordered sequences of actions selected from the
robot’s repertiore, which it would then execute.
Although Shakey was slow and could not deal with
dynamic, complex environments, later developments
of the sense-plan-act concept began to tackle these
problems. Additional layers would be introduced in
the planning part, any of which might draw on the
world model. Some layers were intended to generate
future plans - hierarchies of goals. These plans
would be decomposed into simpler commands before
being sent to lower levels for execution. Lower layers
would then further decompose the commands into
actionable tasks which would ultimately be passed
on to actuators at the lowest level. The sensing
layer is designed to keep the internal representation
of the world up to date. This was discovered to be
difficult to do in any realistic dynamic enviroment,
and intervening planning layers were later added to
suggest changes to plans based on recent changes to
the world model.

It is usually convenient to represent goals in

the same form as observed states of the world as
provided by sensors. Checking the accomplishment
of a goal might then be as simple as comparing
it with a current set of world-state representations.
For example, if a robot is equipped with a sensor
which returns its position in two-dimensional space,
a locational goal might be specified as ‘robot at(250,
300)’. This can be directly compared to the output
of the sensor, which might return ‘robot at(240,
300)’. A more sophisticated arrangement would
involve abstracting the goal to ‘robot at(waypoint)’
and providing additional knowledge defining the
waypoint in terms of a number of sensory tests and
satisfaction condition with respect to those tests. In
this case, the waypoint is associated with a set of
GPS coordinates of an area within which the target
is found, a specific barcode known to be present at
the target an image pattern to be matched against
a known landmark through the use of an on-board
camera. The satisfaction condition is that the current
GPS coordinates must be within bounds, and that a
match on either of the other sensory indicators would
be sufficient. Such straightforward arrangements
would not always suffice, because the relationship
between sensory data and actual world states is not
always this simple. Not only does the sensitivity,
range and signal-to-noise ratio characteristics of a
given sensor affect the interpretation of its signals, but
the satisfaction or failure of some goals might involve
a subtle alteration in sensed properties, possibly
including necessary state progressions or alternatives.
Some of the literature on robot perception deals
with the control of uncertainty introduced by these
complications (Thrun, Beetz, Bennewitz, Burgard,
Cremers, Dellaert, Fox, Haehnel, Rosenberg, Roy
et al. 2000, Minguez, Lamiraux & Montesano 2005).

Futhermore, not all goals are the same, but may
have different natures based on their objective and
relation to processing. In this paper we distinguish
three types of goals: i) achieve goals, which are
simple expressions denoting a desired world state to
be reached; ii) maintenance goals, which need to be
protected (i.e. their accomplishment tests must not
be allowed to fail); iii) and opportunistic goals those
associated with a watch for particular events or world-
states, the presence of which is considered favourable.

All sense-plan-act systems depend on the system’s
ability to keep track of the state of the world. In
mathematical abstractions, data from a simulation,
model or from the real states of other software
elements, could be fed in at each planning cycle. In
physical robots, input would be made via a perceptual
system informed by electronic sensors, and updated
at every sensor sweep. Early models assumed the
availability of complete and accurate information
about the world (Schwartz, Sharir & Hopcroft
1987, Canny 1988, Latombe 1996). In systems
that realistically modelled the real world, it quickly
became clear that building and maintaining world
models of sufficient breadth, detail and accuracy,
and doing it quickly enough to be useful, were
very difficult problems. In distributed systems,
the problem is further complicated by the need
to reconcile the possibly different world-models of
multiple agents or robots, so that cooperation can
be achieved. Difficulties of this kind eventually
led some robotics researchers to move away from
the sense-plan-act paradigm, first to the idea
of entirely model-free, reactive systems, such as
behaviour-based control (Brooks 1986, Mahadevan
& Connell 1992) then to control based on simpler,
more tractable mathematical formalisms, such as
probability theory (Cassandra, Kaelbling & Kurien



1996, Thrun et al. 2000), and later to hybrid systems
which attempted to combine the strengths of low-
level reactive control with those of a command
layer that could reason about plans (Gat et al.
1998, Montemerlo, Becker, Bhat, Dahlkamp, Dolgov,
Ettinger, Haehnel, Hilden, Hoffmann, Huhnke et al.
2008). These typically used minimal interlayer
communication pipelines to try to reconcile the two
dissimilar approaches.

But there are ways of improving the efficiency and
reducing the burden of world-state modelling without
abandoning the traditional deliberative paradigm.
An update of the Shakey system, which overcome
its well-known failure in dynamic environments
by interleaving sensory layers and planning layers
and by using a superior logic formalism that
avoids the frame problem was proposed (Shanahan
2000). The STRIPS planning language has also
been improved (Bonet & Geffner 1999), but the
defacto standard planning language is now perhaps
the Planning Definition Domain Language (PDDL-
3 or a variant of it) (Gerevini & Long 2005)
by virtue of its use in the International Planning
Competitions (Gerevini, Haslum, Long, Saetti &
Dimopoulos 2009). Given sufficient computational
resources, the world modelling problem can be
delegated to specialised modules organised in
layers. The best of these designs is probably
4D/RCS (Schlenoff, Albus, Messina, Barbera,
Madhavan & Balakirsky 2006). The 4-Dimensional
Reactive Control System architecture is a six-deep
hierarchy of goal-directed, sensory intelligent control
processes. Based on the idea that several different
representations of the world can be be combined
in synergistic ways, the system uses procedural
knowledge represented as production rules, while
declarative knowledge is represented in classes, frames
and semantic nets. It also includes signals, images,
and maps in its knowledge-base. Representation-
crossing processes maintain a close coupling between
iconic and symbolic data structures in real-time. This
system has been the basis of a number of projects such
as the US National Institute of Standards reference
architecture for autonomous vehicles.

Erann Gat argued that the difficulty of timely
and accurate world modelling is due to improper
control of the time scales and levels of accuracy
over which model assumptions are presumed to
hold true. By leaving rapidly-changing states of
affairs out of plans, modeling world states at non-
specific abstract levels for overall guidance, and then
relegating the detailed control of actions to sensor-
based action programs, these difficulties could be
greatly reduced (Gat 1993). His control architecture
based on these ideas, ATLANTIS, proved successful
in simulations and a number of real-world robots (Gat
1991). Another idea is based on an analysis of
the complexity of computing a control strategy
for sensory-motor tasks under various levels of
sensor and movement uncertainty. According to
Erdmann (Erdmann 1995), in the case of perfect
sensors, the problem is relatively easy (polynomial
time on the number of object constraints) easy, even
under uncertain action control. This led to the
concept of building a backchaining planner based on
the ideal of perfect sensors, and designing these to be
specific to a given task. Since actual construction
of perfectly informative sensors is impossible, the
question becomes one of how tolerant the planner is of
real, imperfect sensors that approximate the ideal. He
concluded that such sensors should recognise actions
that fall within ’cones of progress’ toward goal end-
points, rather than states themselves. It is not clear

that this idea ever went any further, possibly because
few researchers in this area are active in sensor design.

When tasks are distributed in multi-agent or
multi-robot systems, keeping track of goals becomes
more complicated, even while more computional
power becomes available for the purpose. Our
approach is to quickly and efficiently compile logical
expressions that are highly constrained by available
sensors and easy-to-specify, abstract knowledge of
their relationship to important world-states. These
goal accomplishment sensing opportunities are tasks
that can be offered to multiple agents or robots in a
distributed system. One or more of these may take on
a single or multiple goal accomplishment detections
over the duration of plan execution.

3 Goal Accomplishment Tracking

All sufficiently complex automated and semi-
automated (those with human intervention) activities
require the use of a plan which describes what is to
be done. Different domains use different types of
plans, but they all fundamentally consist of a set of
interdependent sequential sub-goals. They all have in
common the aim of achieving a final result or Goal.

In robotics, a plan consists of a set of observabl
world-states which the robot can accomplish by
means of navigation, manipulation and perception,
to e.g. perform a maintenance activity (Small et al.
2013). In scientific computing, a plan consists of
a set of executable tasks connected together in a
workflow to be executed on large-scale computational
resources (Deelman et al. 2005).

A useful way of abstracting these activities
generically is to represent them as a goal tree. Figure
1 illustrates this view of an activity in terms of
goals and sub-goals. There are two types of goal-
trees showed here: a linear one and an acyclic
directed graph or workflow. Before each goal state
is achieved, each goat state it is dependent on must
have successfully been achieved.

Sub-

Goal 1
Goal

Linear Goal Tree

Goal

Workflow Goal Tree

Sub-

Goal 2

Sub-

Goal 3

Sub-

Goal 1

Sub-

Goal 2

Sub-

Goal 3

Sub-

Goal 4

Sub-

Goal 5

Figure 1: Plans, Tasks and Goals

A goal-tree has goals, represented as nodes of the
goal tree, of the form< n, gs, ti >, where n is the id
of the goal, gs is a description of the goal target state
and t is a set of i of goal accomplishment tests. For a
goal to be considered accomplished, some or all i of t
tests need to be successful. At this stage the goal is
accomplished and the process for completing the next
goal can begin.

There are broadly, three types of goals (Small et al.
2013).



• Achieve goals (Dastani, Riemsdijk & Meyer
2006) are simple expressions denoting a desired
world state to be reached.

• Maintenance goals (Dastani et al. 2006) are
goals that need to be protected (i.e. their
accomplishment tests must not be allowed
to fail). Maintenance goals require extra
monitoring after they have been initially
accomplished, placing an extra burden on the
monitoring system.

• Opportunistic goals are goals associated with
a watch for particular events or world-states,
the presence of which is considered favourable.
Opportunistic goals mirror maintain goals, in
that rather than demand checks for threats to
goals, they encourage checks for contingencies
favourable to goal accomplishment.

To track the progress of a goal-tree with respect
to the overall goal, the progress of each goal must
be monitored. The overall progress of the plan can
be called goal accomplishment tracking as it refers to
the plans progress towards the overall goal - this is
distinct from goal tracking which is concerned with
the goals themselves. This means testing at intervals
all of the tests in t to determine their progress towards
the accomplished state. When some or all of the tests
indicate the goal is accomplished, then it is complete.

To determine the goal accomplishment progress
whilst the plan is being enacted, the status of
each goal must be calculated. This is domain-
specific and generally involves the keeping of a goal
completion log which is updated each time a task
completes. This is quite a coarse-grained data source
for determining the overall progress of the goal,
ignoring any progress during execution. More fine-
grained detail of the progress of the goals can only
be achieved by measuring the course of the execution
directly.

Monitoring goal progress during task execution
can be done in two different ways, i) by using
programmed checkpoints as part of the mechanism
used to complete the goal itself or ii) by observing
the world. Programmed checkpoints depend on data
from the entity that is attempting to support the
completion of the goal. The entity, such as a physical
robot or a software program, needs to report back at
regular intervals on the progress towards the goal.

The progress of a particular goal can also be
determined not just in an active way, but also in
a passive way through observation, not necessarily
from the entities attempting to achieve the goal.
Depending on the task, a variety of sensors can be
used to measure progress. For example, for a robot
navigation task by Euclidean distance between pairs
of way points, a GPS sensor on the robot can be
used to provide an estimate of the task progress.
Likewise, the progress of a data processing task can
be determined by the memory or storage usage. The
most effective way of determining the progress of
tasks towards the overall goal may be a combination
of these two approaches.

This information provides a rich source of data to
search for patterns in the activities execution. The
most likely pattern - other than a normal execution -
is that of a problem or fault with the activity. This
is often due to unforeseen environmental conditions
in the particular domain or incorrect assumptions in
the goal-tree itself. In robotic navigation, a GPS
black spot could cause a navigation task failure. In
scientific workflow execution a task could be delayed
due to resource contention from other workflows. All

of these issues could be seen as a risk to the timeliness
of individual tasks and the overall goal.

In addition to looking for potential problems
during the execution of a goal-tree, if the progress
of goals is being actively monitored then there is the
possibility of looking for opportunities. Opportunities
might arise during the execution of a goal-tree to
improve the performance or accuracy of the tasks,
and their implementation by altering it. Such an
occurrence might be due to the plan being too
conservative, activities already being completed by
a third party or implementations completing more
than one goal simultaneously. Taking advantage of
opportunities as they arise might reduce the time it
takes to reach the goal or make the cost less than
expected.

Goal accomplishment tracking alone cannot deal
with potential problems or opportunities other than
notifying a supervisor or supervisory system. Any
supervisory system must take into account all plan
and environmental factors and decide what to do.
This paper takes the view that in this context, a
goal tracking system would create triggers upon the
discovery of plan problems or opportunities. These
triggers would result in continued execution, halting
of the plan, human intervention or adaptive planning.

4 Planning and Adaptive Planning for Goals
Achievement

Planning is the activity of functionally decomposing
goals and mapping them into a series of concrete tasks
to produce a concrete plan as illustrated in Figure 2.
This can lead to a plan with physical tasks, human
interaction, software execution, or a combination of
these. For example, a robotic navigation exercise
with a location-based goal will be planned to have a
series of tasks to get the robot to that location, such
as following a particular path or turning the wheels
at a specific speed. Planning a scientific computing
activity such as building maps of the sky (Deelman
et al. 2005) will involve a plan containing tasks for
moving data around, normalising data sources and
executing many programs on remote machines.

Sub-
Goal

Sub-
Goal

Sub-
Goal

Goal

Goal Tree

State State State
Goal
State

Task tree

Planning

Abstract
Plan

Concrete
Plan

Task Task Task

Figure 2: Using Planning to produce a task plan from
a goal tree

These activities share the same aim; at the end
of this planning process, the plan should be concrete
and usable; with the result of its execution leading to
the successful accomplishment of the goal. Planning
can be either a manual or automatic process. In a
manual planning process a person must define the
task to be completed at each stage of the plan. The
intelligence of task implementation (the robot, human
or software), determines how precisely the tasks need
to be described. Manual planning is common in areas
involving people or for those goals involving plans



that rely on replay, such as with repeating tasks of
industrial robots in controlled environments.

In the process of planning, an abstract goal
tree with nodes of type < n, gs, ti >, needs
to be converted to an actionable and concrete
plan. For the purposes of this paper, a plan
may be described as having nodes of the form <
t, sstart, send, afunction, ahuman, ainstruction > where t
is the id of the task, sstart is a description of the start
state and send is a description of the desired end state.
The remaining items are actions, afunction, ahuman,
ainstruction which are lists of software functions,
human actions or physical instructions respectively.

An edge in a plan is of the form
< t1, s

end
1 , t2, s

start
2 > and expresses a dependency

between the target goal state send1 of a task t1 and
the initial state sstart2 of a task t2. A task is a logical
path from one goal state gs1 to another goal state
gs2. The successful completion of the task would
lead the system to progress from gs1 to gs2. This
is illustrated in Figure 2 as the transitions in the
goal tree between sub-goals being planned as tasks
in between states of the system.

Automated Planning is the activity of producing a
plan in an automated way with no human interaction.
To perform automated planning, a piece of software,
called a planner, must take into account the final goal,
the goal tree, the environmental conditions and the
availability of resources. The planner will calculate
the most efficient plan possible, and may take into
account secondary issues such as resource contention
or cost.

An extension of automated planning is that of
adaptive planning. Adaptive planning is the task
of re-planning whilst the plan is in the process
of executing. So, unlike design-time planning, an
adaptive planner will also take into account the
current state of the goals and sub-goals. During
execution of the plan, environmental changes cause
the plan which was potentially optimal to become
sub-optimal, thus making it desirable to create a new
plan. When re-planning, it is important to take into
account the work that has already been done, so as
not to repeat effort. But note that a system that
efficiently handles opportunistic goals should not be
troubled much by this, since it would quickly detect
existing accomplishment and move onto the next work
that was still needed.

Adaptive planning in response to task execution
performance takes intro account the environmental
conditions that can affect the task. In the area
of workflow execution (Lee, Paton, Sakellariou,
Deelman, Fernandes & Mehta 2009, Lee et al. 2011)
adaptive planning is useful as there is ongoing
and dynamic contention for cluster-based computing
resources. Any decision that is made statically during
a planning or automated planning process can be
revised during adaptive planning (Lee et al. 2007).
Adaptations can be initiated and deployed for many
reasons, including:

• Changes in the environment e.g. availability of
resources.

• Changes to the goal or sub-goals e.g. if an
unexpected obstacle appears to the goal.

• Changes due to the availability of tasks e.g. to
available robots or people

Changes to the environment, such as changes in
weather or road surface in robotics, or availability
of processing resources in workflow execution, may

prompt adaptive planning. Dynamic changes to goals
or sub-goals are possible during runtime, forcing
adaptive planning to meet the new goals. Finally,
changes to the availability of agents to support goal
accomplishment will force adaptive planning so that
the available agents are utilised. Adaptations could
be initiated for different reasons, including reactive
(based on monitoring events) and proactive (based
on prediction of future performance). In the approach
and system proposed in this paper, adaptations are
initialised for opportunistic performance and fault
tolerance reasons.

Adaptive planning in support of goal
accomplishment, shares techniques in common
with other adaptive and autonomic computing
areas (Kephart & Chess 2003). The main
characteristic of adaptive and autonomic computing
work is the use of a feedback loop to structure the
implementation of the adaptive support software.
This feedback loop, which has the primary purpose
of collecting data and using it to aid in the adaptive
planning process is implemented differently in
different adaptive systems, but fundamentally occurs
in four phases. The Monitoring stage collects
information about the environment, agents and
progress towards the goal. The Analysis phase uses
the collected information to determine if there are
opportunities or problems which might benefit from
adaptive planning. The Planning phase will explore
the range of possible alternative plans to determine
which plan should be used. Finally, the Execution
phase deploys the new plan.

In the context of this paper, the monitoring phase
involves the collection of a variety of information
during runtime. The information that must be
collected involves the current progress towards the
goal - this information can be collected actively
from participating agents, but also passively by using
sensors observing the environment. Information
about the environmental conditions is also collected
and flagged if the environment has changed.
The state of the agents performing tasks are
also monitored. The analysis phase looks for
goals potentially heading for failure as well as
potential opportunities as with Erdmann’s “cones of
progress” (Erdmann 1995). In these events, Planning
is undertaken adaptively based on the available up-to-
date information. Execution involves the replacement
of tasks aiming to lead to completed goals.

5 A Proposed Architecture for Goal
Accomplishment Tracking based Adaptive
Planning

5.1 Overview

For activities that can be abstracted as a series
of goals in a goal-tree, goal accomplishment
tracking introduces the possibility of revealing the
ongoing progress towards the goal. This fine-
grained information allows the detection of potential
problems and opportunities that can effect progress
towards the final goal. Acting on these triggers
could lead to faults being detected and rectified,
and opportunities being acted on, reducing the
time to goal. This section introduces a proposed
architecture for retro-fitting adaptive planning to
existing systems using goal accomplishment tracking
to produce these triggers. Section 5.2 introduces the
proposed architecture. Section 5.3 discusses the range
of potential adaptive planning types. Section 5.4
provides a summary.



5.2 The Proposed Architecture

Figure 3 illustrates a layered view of the
proposed approach of adaptive planning with
goal accomplishment tracking. The lowest layer is
the execution layer, which includes the world in which
the system operates, the system agent information
and sensors that provide observational data. This is
passed up to a supervision layer which includes goal
accomplishment tracking and sensor management.
The management of the plan is handled in the layer
above. The plan manager can only manage a current
plan, so to support adaptive planning another layer
is needed above plan management - as illustrated in
Figure 3. The progress tracker receives updates from
the execution layer and uses the trigger mechanism
to call the adaptive planner.

Plan Management

Supervision

Execution

Progress
Tracker

AgentsWorld

Plan 
Manager Next Goal

(Desired World State)

Progress
Updates

Sensory
Data

(World State)

Sensors

Adaptive Planning
Adaptive 
Planner

Re-planning
Request

Plan
Updates

Figure 3: Layered approach to adaptive planning with
goal accomplishment tracking

Figure 4 illustrates a proposed component-
based architecture for adaptive planning using goal
accomplishment tracking. The figure illustrates that
the Target System is being managed using a plan and
data is being collected from sensors for the purpose
of goal accomplishment tracking.

Target System

Goal Accomplishment Tracking

Plan Managing

Plan

Sensors

plan manager 
(main executable)

Name server

plan parser

progress tracker
(main executable)

goal test libraries

test runner

Goal Test 
Table

plan manager
functions

Adaptive Planning

Test Analysis Planner

Deploy new plan

Events

Triggers

Figure 4: Goal Accomplishment Tracking and
Adaptive Planning

The Goal Accomplishment Tracking components
track the progress of goals by using a set of goal test
libraries. The use of a library containing multiple
tests allows fine grained monitoring of goal progress.
This information is passed to the Plan Managing
components, which correlates it against the deployed

plan to determine the current state of the plan - and
therefore the goal accomplishment progress.

Adaptive Planning consists of two components
that support the analysis of the current progress of
the goal and adaptive planning. The test analysis
component and plan manager allow the adaptive
planner to react to problems and opportunities
triggered by goal accomplishment tracking. The
test analysis component creates triggers based on
goal accomplishment tracking and feeds these to an
adaptive planner. The adaptive planner takes into
account environmental conditions, the current state
of the goal-tree and produces a new plan which will
be used in further execution.

The Test Analysis component is illustrated in more
detail in Figure 5. It illustrates the processes involved
in the analysis phase of adaptive planning. In normal
operation, the goal accomplishment tracking sub-
system correlates progress updates from sensors with
the goal table to determine the goal accomplishment
status. When called, adaptive planning can use this
same data-set and dynamically re-plan at runtime.
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Figure 5: Analysis Phase of Adaptive Planning

5.3 Adaptive Planning

There are a range of potential adaptations, which
can result from the adaptive planning process in the
proposed architecture. These are broadly in two
groups, discussed in the following sections.

5.3.1 Goal to Task Mapping Adaptations

In mapping adaptations the mapping from the goal
tree to the concrete tasks changes depending on the
environment. Inspiration can be taken from previous
work in adaptive workflow processing (Lee et al. 2007)
which looks at adapting the execution of abstract
scientific workflows by using mapping and scheduling
adaptations. Possible mapping adaptations are:

• Change goal to task mapping. This changes
the current goal/concrete task mapping to use
different targets for t and a in the concrete plan.
In other words, this replaces the task(s) used to
implement the goal with a different task s′ or one
with different actions a′.

• Reduce the number of tasks for the goal
(task-reducing). This is where a task t is
mapped to fewer tasks t′1, . . . , t

′
1 and actions

a′1, . . . , a
′
1 than before. This may be appropriate



when, e.g., overheads per task instance are high
and the performance of one task have increased
to the point that the task need no longer be split
across as many task instances.

• Increase the number of tasks for a goal
(task-splitting). In this case, the number of
tasks t′1, . . . , t

′
n onto which a goal g is mapped

is increased. This may be useful, e.g., if more
resources are now available and overheads per
service instance are low.

• Remove a task A node <
t, sstart, send, afunction, ahuman, ainstruction >
can be removed if its removal does not
compromise the correctness of the workflow.
This may occur, for instance, if the goal is
already complete, negating the need for the
task.

• Change the agent performing the task.
This involves changing the agent who is
performing the task t or the actions a. Changing
the agent may be appropriate in the event of one
agent being more appropriate to complete a task
or a set of actions, or due to thr Incapacitation
of the active agent.

5.3.2 Task Scheduling Adaptations

There are also adaptations that manipulate the
scheduling of the tasks. Adaptive scheduling alters
the scheduling policy in response to changes in the
environment. Possible task scheduling adaptations
are as follows:

• Increase the level of parallelism of a
Task. For a Task t that is parallelisable, a
potentially useful adaptation is to increase its
parallelism level by scheduling more than one
task instance. This may be possible depending
on the availability of resources and the cost to
increase the parallelism.

• Decrease the level of parallelism of a Task.
It may otherwise be appropriate to decrease the
parallelism level of a task t by reducing the
number of task instances that are scheduled.
This may be appropriate if, e.g., the resources
for the goal have to be reduced (e.g., because
they must be reallocated to same other task with
higher priority).

• Restart Task. This may be appropriate if
changes have been made to the configuration of
a task t at a location l, and the task needs to be
restarted to activate the changes.

• Pause Task. This involves temporarily
stopping the execution of a task s or actions a.
The execution node can then be used to execute
other service(s) with the released resources.
Pausing services may be useful to control the
overall performance of workflow execution in
order to, e.g., enable other services to catch up.

• Move tasks between agents. For tasks that
can be executed by different agents, it may be
useful to move the task between agents. This
may be desirable if agents fail, become in demand
or become more expensive, or if it is beneficial to
optimise the overall task allocation.

This range of potential adaptations provides a rich
toolkit for acting upon triggers received from the goal-
accomplishment tracking system. Both problems and
opportunities can be reacted to through the use of
these adaptations.

5.4 Summary

This section has presented an approach to adaptive
planning for use with goal accomplishment tracking.
It has proposed an architecture for monitoring tasks
to determine goal progress and create triggers on
potential problems and opportunites. It has also
described the range of adaptations possible with this
approach.

6 Case study: Assisted Teleoperation

6.1 Overview

This section presents an adaptive planning feasibility
analysis of a system that uses goal accomplishment
tracking to achieve its goals. The chosen domain is
assisted teleoperation for the automatic maintenance
of physical equipment by robots. Automatic
maintenance of physical equipment requires a mobile
robot to periodically visit a number of worksites.
The robot may perform tasks such as photography,
gathering sensor data on environmental conditions,
physically probe the integrity of surfaces, joints
or attachments, remove panels and/or to change
out faulty components (Mann 2008). To perform
this task, a robot needs to be guided around
multiple worksites, aligning itself close to each one
in turn so as to be able to deal with important
objects. Section 6.2 describes the architecture of he
assisted teleoperation system and the modifications
necessary to enable opportunistic and reactive
adaptive planning. Section 6.3 describes the
opportunistic and reactive adaptations possible with
this scenario. Section 6.4 presents a summary.

6.2 System Description

To investigate the suitability of adaptive planning
for this case study, a working plan-based system was
analysed. The architecture of the system is illustrated
in Figure 6. It is implemented in Python, with
communication provided by Pyro middleware.

The system consists of three physical devices
communicating over a wireless network using a router
mounted in the mobile robot. These devices are
i) a 7-inch Android tablet with built-in joysticks
and buttons, ii) a laptop, and iii) a mobile field
robot. On the software side, communications
between components are organised via Python
Remote Objects (Pyro). Each component publishes
its services with Pyro, enabling inter-component calls.
There is also a video feed from the robot, which is
broadcast using UDP.

The mobile field robot, a heavily modified
Coroware Corobot, is built on top of a Lynxmotion
base with four driven wheels, with an Intel
D2700MUD Mini-ITX single-board computer running
Debian Linux. It is equipped with a wide angle
camera, a modified 5 DoF manipulator arm and is
equipped with a variety of sensors such as GPS and
IR rangefinders.

The human interface is centred around the
Android tablet, which displays plan progress, video,
and sensor readings from the robot. The operator can
use the joysticks and the touch screen to command the
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Figure 6: Case Study of Adaptive Planning in
Assisted Teleoperation

robot. The automated controller is mainly run on the
laptop, where it has access to the most processing
power. Some lightweight components are located
where they are most needed, cutting down latency
issues. This is the case for the inverse kinematics
module which is mostly called by and situated with
the teleoperation interface.

In this case study, one or more robots are tasked
with completing a series of maintainance tasks with
the supervision of a human operator. An example
plan for an assisted teleoperation-based maintainance
task is illustrated in Figure 7. This particular plan is
for the robotic replacement of a circuit board using
a motorised screwdriver. The main goal of changing
the board is split into four sub-goals; checking the
needed parts, a navigation exercise, removing the
panel and replacing it. Each sub-goal has a number of
corresponding tasks that have been initially planned
- which are assigned as either robot or human tasks.

In this implementation, plan progress is tracked
using two distinct components, the progress tracker,
and the plan manager. These components are
both run on the laptop. The progress tracker is a
Python implementation of the goal accomplishment
tracking architecture (Small et al. 2013), using the
SURF OpenCV library for video feed testing, simple
algorithmic tests for all other text-returning sensors,
and a CSV file to store the goal accomplishment
tests. The plan manager is a simple Python program
charged with updating the plan XML structure.
Adaptive planning is accomplished with Python
components also on the laptop.

6.3 Adaptive Planning for Assisted
Teleoperation

The proposed architecture allows the currently
allocated tasks and actions to be altered at runtime
to achieve the teleoperation goal. As described in
Section 6.2, there are a variety of sensors that can
be used to provide information suitable to support
the adaptation process. Figure 4 illustrates that
the goal tests in the goal test library provide data
to the Test Analysis component of the proposed
architecture. The Test Analysis component looks for
potential problems and opportunities in the current
progress of the goal completion. In the event of a
potential problem or opportunity being detected, a

trigger is sent to force adaptive planning. There are a
variety of possible adaptations that can be performed
in assisted teleoperation, these are described in two
categories here.

6.3.1 Goal to Task Mapping Adaptations for
Assisted Teleoperation

• Change the agent type who is performing a task.
This might mean assigning a robot to perform
a task which is currently assigned to a different
robot; or this might mean having a human
supervise a particular robotic activity which was
previously completed with no oversight.

• Reduce the number of tasks assigned to a goal.
This is most likely to be necessary when tasks
become unnecessary to complete a goal - for
instance, when a direct path is used instead of
the previous planned longer path.

• Increase the number of tasks assigned to a
goal. This is most likely to be necessary when
there is an unexpected obstacle in the path
of the teleoperated robot. The adaptation for
this would involve the addition of either an
automated task or a human to intervene in the
task.

• Removal of a task or group of tasks. If a goal is
deemed unnecessary, for instance if it has already
been completed by another entity, then a task or
group of tasks can be removed.

• Change the agent who is performing the task.
This involves the changing of the agent to an
agent of the same type. For example, this could
involve the replacing of a robot with another who
is performing better.

6.3.2 Task-Based Scheduling Adaptations for
Assisted Teleoperation

• Increase the level of parallelism of a task. In
this case study, if a task is not being performed
sufficiently well, more robots can be assigned to
the task.

• Decrease the level of parallelism of a Task.
Likewise, in this case study, if a task performance
is exceeding expectations, the number of robots
currently being assigned to the task can be
reduced, thus freeing up these resources for
elsewhere.

• Restart task. In the event of a task being
attempted with errors, the task can be restarted.
For example, if a circuit board is incorrectly
placed in a slot.

• Pause task. This is most likely in this case
study when some tasks require other tasks
to be completed first and this hasn’t been
anticipated. In this case the tasks and/or the
agent performing the task can be paused.

6.4 Summary

This section has presented a case study of
assisted teleoperation as a demonstration of the
possible effectiveness of adaptive planning with goal
accomplishment tracking. It has illustrated that
adaptive planning can be retrofitted to architectures
that are goal plan-based and that this can be
useful in looking for and reacting to problems and
opportunities.



Figure 7: Example Assisted Teleoperation Maintainance Plan

7 Conclusions and Future Work

This paper has argued that goal accomplishment
tracking combined with Adaptive Planning is a
powerful and flexible technique for supporting
goal plan-based automated and semi-automated
distributed systems. It has proposed an architecture
for monitoring the goal accomplishment progress
of systems, looking for potential problems or
opportunities and adaptively re-planning if necessary.
It demonstrated this approach through a case study
of assisted teleoperation. Future work will expand
the evaluation with different case studies, more
sensor sources and more complex adaptivity decision
reasoning. It will also look into proactive adaptations
to prevent any potential issues before they arise.
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