
CONCURRENCYANDCOMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2010)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1673

Utility functions for adaptively executing concurrent workflows

Kevin Lee∗,†, Norman W. Paton, Rizos Sakellariou and Alvaro A. A. Fernandes

School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

SUMMARY

Workflows are widely used in applications that require coordinated use of computational resources.
Workflow definition languages typically abstract over some aspects of the way in which a workflow is to
be executed, such as the level of parallelism to be used or the physical resources to be deployed. As a
result, a workflow management system has the responsibility of establishing how best to map tasks within
a workflow to the available resources. As workflows are typically run over shared resources, and thus face
unpredictable and changing resource capabilities, there may be benefit to be derived from adapting the
task-to-resource mapping while a workflow is executing. This paper describes the use of utility functions
to express the relative merits of alternative mappings; in essence, a utility function can be used to give a
score to a candidate mapping, and the exploration of alternative mappings can be cast as an optimization
problem. In this approach, changing the utility function allows adaptations to be carried out with a view
to meeting different objectives. The contributions of this paper include: (i) a description of how adaptive
workflow execution can be expressed as an optimization problem where the objective of the adaptation is
to maximize a utility function; (ii) a description of how the approach has been applied to support adaptive
workflow execution in execution environments consisting of multiple resources, such as grids or clouds,
in which adaptations are coordinated across multiple workflows; and (iii) an experimental evaluation of
the approach with utility measures based on response time and profit using the Pegasus workflow system.
Copyright � 2010 John Wiley & Sons, Ltd.

Received 13 January 2010; Revised 23 August 2010; Accepted 23 August 2010

KEY WORDS: scientific workflows; utility functions; adaptivity

1. INTRODUCTION

Workflow languages provide a high-level characterization of the pattern of activities that needs to
be carried out to support a user task. Workflows written in such languages typically leave open a
number of decisions as to how a workflow is enacted, such as where the workflow is to be run,
what level of parallelism is to be used and what resources are to be made available to the workflow
[1, 2]. As a result, a collection of decisions must be made before a workflow can be enacted, for

∗Correspondence to: Kevin Lee, School of Computer Science, University of Manchester, Oxford Road, Manchester
M13 9PL, U.K.

†E-mail: klee@cs.man.ac.uk

Copyright � 2010 John Wiley & Sons, Ltd.

K. LEE ET AL.

example by a compilation process that translates a workflow from an abstract form into a concrete
representation that resolves various details as to how the workflow is to make use of the available
resources.

Most existing workflow systems (e.g. [3, 4]) provide static approaches for mapping on the basis
of information that provides a snapshot of the state of the computational environment. Such static
decision making involves the risk that decisions may be made on the basis of information about
resource performance and availability that quickly becomes outdated. As a result, benefits may
result either from incremental compilation, whereby resource allocation decisions are made for
part of a workflow at a time (e.g. [5]), or by dynamically revising compilation decisions that give
rise to a concrete workflow while it is executing (e.g. [6–8]).

In principle, any decision that was made statically during workflow compilation can be revisited
at runtime [9]. Adaptations can be performed for different reasons, including (i) changes to the
executing environment, (ii) changes to the workflow description and (iii) adaptation to user (work-
flow submitter) requirements. Changes to the execution environment can be resources becoming
available, computation bottlenecks being detected or resources failing. The workflow description
can be changed in order to take advantage of new data or services becoming available. A user may
decide to change the overall task to, for example, require providence data to be collected or use
specific computational services. Furthermore, adaptations can be performed for different reasons,
including prospective (to improve future performance), reactive (to react to previous results) and
altruistic (to aid other areas of the workflow).

In common with adaptive and autonomic computing techniques in other areas [10], in this
paper, adaptive workflow execution involves a feedback loop, the implementation of which differs
from platform to platform, but in which various phases recur: monitoring records information
about workflow progress and/or the execution environment; an analysis activity identifies potential
problems and/or opportunities; a planning phase explores alternatives to the current evaluation
strategy; and, if adapting is considered beneficial, an execution step takes place whereby a revised
evaluation strategy is adopted. Adaptive workflow execution techniques may differ in all these
phases [9]. In this paper: monitoring captures progress information in the form of job completion
times and queue lengths; analysis identifies where monitoring information departs from expecta-
tions; planning uses utility functions to consider how different allocations of tasks to resources
may give rise to higher utility (in the form of reduced response times or increased profits); and
execution applies the updated resource allocations, reusing work carried out to date.

A software framework has been developed that assigns to each of these phases software compo-
nents, built by the authors, that are generic by design. These components can then be instantiated
to become the autonomic manager of a specific software artefact simply by being provided with
specifications of what to monitor, how to analyze the monitoring information, how to plan an
adaptation and how to execute the latter. In the case of this paper, the specific managed arte-
fact is a workflow engine, comprising a compiler from abstract to concrete workflows and a job
manager. Therefore, the specifications that are passed into the adaptivity framework to make its
behavior specific to the managed artefact cause the resulting system to behave in an autonomic
manner.

The context for this work is illustrated in Figure 1. In essence, workflows are submitted to
an autonomic workflow mapper, which adaptively assigns the jobs in the workflows to execution
sites. Each execution site queues jobs for execution on one or more computational nodes. Given
some objective, such as to minimize total execution times or, more generally, to optimize for some
Quality of Service (QoS) target, the autonomic workflow mapper must determine which jobs to

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

Autonomic
Workflow
Mapper

[tb]

Execution
Site

Execution
Site

workflows

jobs

jobs

feedback on progress
(job status in logs)

feedback on progress
(job status in logs)

Figure 1. High-level architecture.

assign to each of the available execution sites, revising the assignment during workflow execution
on the basis of feedback on the progress of the submitted jobs.

In this paper we describe two different utility measures, namely response time and profit, to
capture QoS targets within a consistent framework. To the best of our knowledge, our work is the
first to make use of the combination of utility functions and optimization algorithms for adaptive
workflow execution. In so doing, we bring to the table a declarative approach to dynamic scheduling
in which an optimization algorithm proposes assignments of tasks to resources that maximize
utility, following the strategy of Kephart and Das [11].

We note that the terms utility and utility function are used quite widely; in general terms,
a utility function is a function that computes a value that represents the desirability of a state.
However, approaches that seek to maximize some measure of utility differ in the way in which
utility informs decision making. For example, Huebscher and McCann [12] use utility functions
to express application requirements for component selection, in a setting where each component
provides the parameters that enable its utility to be computed (i.e. there is no search problem as
such, the utility function is essentially metadata that informs component selection). By contrast, in
workflow scheduling, Yu et al. [13], use a utility measure to give a value to assignments of tasks
to resources, in an adaptive scheduling system where the overall problem is divided into a number
of steps, which are addressed using heuristics or local searches. Thus, in contrast to the approach
used here, neither of these strategies use optimization methods to identify results that maximize
utility.

When a utility-based approach to autonomic computing is adopted following the strategy of
Kephart and Das [11], the following steps are followed by designers:

(1) Identify the property that it would be desirable to minimize or maximize—in the case of
workflows, useful utility measures may be cast in terms of response time, number of QoS
targets met, execution cost, etc.

(2) Define a function Utility(W,a) that computes the utility of an assignment of tasks to nodes, a,
for a set of workflows W expressed in terms of the chosen property. For workflow mapping,

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

such a function can be expected to include expressions over variables VE that describe the
environment and variables VM that characterize the mapping from abstract requests to jobs
on specific execution nodes.

(3) Select an optimization algorithm that, given values for VE , searches the space of possible
values for VM with a view to maximizing the utility function.

The utility-based approach offers various benefits, in particular: (i) the objectives of the adaptation
are stated explicitly and declaratively, thus separating out the specification of the objective of the
adaptation from the code that implements decision making; (ii) the search for means of maximizing
utility is able to make use of well-established optimization techniques [14]; (iii) where utility
functions are defined over collections of workflows, optimization considers the combined effect
of all the adaptations together, thus reducing the risk, when workflows are adapted independently,
that different adaptations might interfere with each other in undesirable ways and (iv) it is often
straightforward to revise a utility function to prioritize different goals.

Moreover, because of the generic nature of the adaptivity framework, designers are less encum-
bered when experimenting with adaptation strategies. The fact that the adaptive behavior exhibited
is specifiable (i.e. that the adaptive framework, as a piece of software, exposes an instantiation
inlet) allows the designer to explore and experiment with variants of an adaptation strategy (i.e.
what to monitor, what analyses to carry out, etc.) by simply changing the specifications. In other
words, designers need not incur the high cost of intruding on code to modify it and hence need
not raise the risk that such intrusions disrupt the behavior of the autonomic manager in ways that
are difficult to explain, let alone avoid or reverse.

The remainder of this paper is structured as follows. Section 2 places this work in the context of
other results in decision making in autonomic computing and adaptive workflow execution. Section
3 describes utility functions that assign scores to workflow assignments on the basis of response
times and cost incurred to meet target deadlines. Section 4 describes how a generic adaptive
framework, based on a monitoring, analysis, planning and execution functional decomposition, has
been instantiated to yield the software architecture needed to support adaptation based on utility
functions. Section 5 presents the results of an experimental evaluation of the utility-based approach
in the context of the Pegasus [5] workflow management system. Finally, Section 6 concludes the
paper.

2. RELATED WORK

This paper investigates how adaptive workflow execution can be controlled in a way that reflects
explicitly stated goals. To place this in context, this section reviews the related work on decision
making in adaptive systems and on workflow scheduling and adaptive workflow execution.

In the context of decision making in adaptive systems, adaptive behavior stems from a feedback
loop that changes the behavior of the system in response to monitoring information, and thus some
form of a decision-making process must establish which adaptation is likely to be effective in a
given context. In the autonomic computing community, decision making in autonomic systems has
been classified into three types, which are referred to as policies [11]: action policies, in which
the behavior of the system is captured using condition-action rules; goal policies, in which one or
more desired states are identified and a planner identifies actions that should lead to that state; and

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

utility function policies, in which the value of different outcomes is quantified, and an optimization
activity seeks to identify actions that maximize utility.

Within this classification, typical action policies directly encode what action should be taken in
response to monitoring information. For example, in workflow execution an action policy, when
workload imbalance is detected, might directly compute a new workload allocation based on the
queue lengths of the available resources (e.g. [15]) or might deploy heuristics to identify revised
schedules (e.g. [16]). By contrast, a typical goal policy has an explicit objective, and changes
parameter values of the system being adapted, with a view to moving toward the objective. For
example, applications of control theory to software systems are increasingly widespread [17], in
which a model is developed that computes how to change the parameters of a system on the basis
of monitored information. For example, control theory techniques have been applied to tasks such
as load balancing (e.g. [18, 19]) and the configuration of block transfer sizes in web services [20].
To date, most results on utility policies have been in the context of system management tasks,
such as dynamic selection of web service implementations to support QoS goals [21], allocation of
computational resources to applications with different priorities [22], balancing performance with
power consumption [23] and network configuration [24]. To the best of our knowledge this paper,
extending work initially presented in [25], reports on the first attempt to deploy utility functions
with optimization algorithms for adaptive workflow execution.

In the context of workflow scheduling and adaptive workflow execution, there has been a vast
amount of work on workflow scheduling.Whether this problem is studied specifically in the context
of scientific workflows, or, more generally, in the context of directed acyclic graphs, numerous
techniques have been proposed that attempt to optimize performance for a certain type of resources
and workflow graphs; for representative work we refer to [3, 26–31]. The common characteristic of
these heuristics is that they base their decisions on statically available (or predicted) information,
which ignores the state of the execution environment at runtime. Although it has been suggested
that, when runtime changes are within certain bounds of what can be estimated, heuristics with
good performance statically are more likely to perform better in the presence of runtime changes
[16], such runtime changes may be unbounded and may dominate workflow execution.

The reason for such runtime changes is twofold. On the one hand, it is highly difficult to predict
accurately the execution time of individual jobs (tasks) composing the workflow. Good performance
prediction has been a challenge that has attracted a lot of interest over the years [32–34]; however,
there can always be runtime-dependent scenarios that are not possible to predict in advance and
make an impact on the performance. On the other hand, efficient workflow execution requires
the concurrent execution of potentially parallel jobs (different tasks of the workflow without any
dependence between them) in a coordinated manner. This is again a difficult problem as the parallel
jobs may run on different machines, belonging to different administrative domains, having different
job queue sizes, job scheduling policies, etc. Progress in parallel job scheduling [35], including
techniques for co-allocation and advance reservation [36–38], may provide a partial solution even
with the risk of possibly adverse effects [39]. An extensive discussion is beyond the scope of
this paper; however, such techniques still suffer because of the inherent lack of predictability of
individual jobs.

As a result, to address the overall unpredictability of the environment, popular strategies have
been to delay scheduling decisions until runtime [3, 40] (just in-time scheduling) or to reevaluate
the schedule at runtime and reschedule as needed [7, 8, 15, 16]. The common characteristic of all
this body of work is that it makes use of bespoke techniques, which are often interlinked with both
scheduling phases (static and dynamic). In contrast, our work decouples the problem and models

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

the objectives of adaptation separately and in a systematic way using utility functions. This allows
us to focus on workflow execution per se while, at the same time, we can also address challenging
problems that involve multi-criteria decisions [13, 41–44], where different factors may determine
what is regarded as efficient execution; this includes multiple workflows competing for the same
resources, budget constraints and external loads to these resources.

3. UTILITY FUNCTIONS

3.1. Problem statement

The task is to adaptively schedule a set of workflows W , w∈W , where each workflow w is a
directed acyclic graph whose node set is a collection of tasks w.tasks and whose edges represent
dependencies between those tasks. A workflow is evaluated through an allocation of tasks to a set
of nodes. The role of the autonomic workflow mapper is to adaptively assign the tasks to specific
nodes. These nodes have different computational capabilities, and thus take different (and, thanks
to their shared nature, independently and autonomously varying) amounts of time to evaluate a
job. As a result of the unstable environment, it is challenging to statically identify an assignment
for the tasks in a workflow that remains effective throughout the lifetime of its execution.

The objective of the autonomic workflow mapper is to maximize a utility measure; two utility
measures are considered here: (i) utility based on response time, so that utility is maximized when
response time is minimized; and (ii) utility based on profit, so that utility is maximized when
profit is maximized and profit for a workflow is maximized by meeting a response time target
while incurring minimal resource usage costs. In essence, during the evaluation of a collection
of workflows, the autonomic workflow mapper monitors their progress, and when an alterna-
tive assignment is predicted to improve utility, remaps the workflows to conform to the new
assignments. The remapped workflows do not repeat any tasks completed using the previous
mappings; the files containing the results of completed tasks are read directly by the remapped
workflows.

Each execution node is assumed to support the submission of tasks, which are queued prior to
execution, at which point the task obtains exclusive access to one of the processors of the node. It
is assumed that nodes may be shared both by multiple workflows and by other jobs or tasks over
which the autonomic workflow mapper has no control.

3.2. Top level utility definitions

This section defines utility functions for response time and profit. In essence, the functions declara-
tively specify the value of an assignment for a set of workflows. It is then the role of an optimization
algorithm to explore the space of possible assignments to identify those that maximize utility.

3.2.1. Utility based on response time. Where utility is based on response time, the goal is to
minimize the sum of the response times of the workflows in the workload.

The overall utility of an assignment a of tasks within the set of workflowsW to a set of resources
R is the sum of the utilities of the workflows in W , and is given by:

UtilityRTW (W,a)=∑
w∈W UtilityRTw (w,a)

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

where for every w∈W and every j ∈w.tasks, there exists an assignment j→r in a for some r ∈ R;
and Utili tyRTw (w,a) is the utility of an individual workflow w for the given job assignment. The
utility of an individual workflow can then be represented as being in an inverse relationship with
its response time

UtilityRTw (w,a)=1/PRT(w,a)

where PRT estimates the predicted response time of the workflow given the assignment a, as
described in Section 3.3.

As the utility functions for both response time and profit make use of PRT, we now introduce
the definition of utility for profit, before returning to response time estimation.

3.2.2. Utility based on profit. Where utility is based on profit, it is assumed that each workflow
w has a response time target that, when met, gives rise to a payment of value v. Furthermore, it
is assumed that nodes charge different amounts for executing a job. The problem, then, is to meet
as many response time goals as possible at minimum cost.

The overall utility of an assignment a of tasks from the set of workflows W to a set of resources
R is the sum of the utilities of the workflows in W , and is given by

UtilityProfitW (W,a)= ∑

w∈W
UtilityProfitw (w,a)

where for every w∈W and every j ∈w.tasks, there exists an assignment j→r in a for some r ∈ R;
and UtilityProfitw (w,a) is the utility of an individual workflow w for the given job assignment. The
utility of an individual workflow, representing the profit obtained from its evaluation, can then be
represented as

UtilityProfitw (w,a)= (UtilityCurve(w,a)∗v)− fcost(w,a)

where UtilityCurve(w,a) estimates the success of the allocation a at meeting the response time
target of w, fcost(w,a) estimates the financial cost of the resources used, and v is the payment
received for meeting the response time target for w.

In principle, we could define the UtilityCurve for a workflow w in such a way that it returns 1 if
w meets its response time target, and 0 otherwise. However, such a definition is problematic during
the search for effective assignments, as every candidate assignment that misses its target has the
same utility of 0, no matter how near to or far from the target it is, and every assignment that meets
the target has the same utility of 1 no matter how narrowly or comfortably the target is met. This
makes it difficult for an optimization algorithm to rank alternative solutions effectively for lack of
clearer signs of movement in the right or the wrong direction. As a result, we use a definition for
UtilityCurve that provides high and broadly consistent scores for meeting a response time target,
and low and broadly consistent scores for missing a target, while also enabling improvements to
be recognized during optimization.

We use a function definition from the earlier work on resource allocation in data centers [45]
(a scaled version of which, for a target time of 50, generates the curve illustrated in Figure 2)

UtilityCurve(w,a)= e−PRT(w,a)+TT(w)

1+e−PRT(w,a)+TT(w)

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Response Time

U
til

ity

[tb]

Figure 2. Utility for a target response time of 50.

where PRT(w,a) is the predicted response time, as defined in Section 3.3, and TT(w) returns the
target response time of w.

The (expected) financial cost of evaluating a workflow on a set of resources can be obtained as
follows:

fcost(w,a)=∑
t∈w.tasks fcost(t,a)

that is, the financial cost of the workflow is the sum of the financial costs of all the tasks it contains.
To compute the financial cost of a single task we assume that there is a look-up table that gives
the financial cost per execution time unit for each different site. Then, the financial cost of each
task is the expected execution time for the task multiplied by the given financial cost per execution
time unit for the site on which the task is to be run.

3.3. Estimating predicted response times

Both response time and profit-based utility models depend on the ability to predict the response
time of a workflow for a given assignment. The predicted response time of a workflow for a given
assignment is the predicted completion time of the last task in the workflow to complete.

Where adaptations incur a cost, the predicted response time of a workflow for a candidate
assignment a′ can be estimated as

PRT(w,a′)=ECT(start_node(w),a′)+AdaptationCost(w,CurrentAllocation(w),a′)

where AdaptationCost(w,CurrentAllocation(w),a′) represents the cost of adapting from the current
allocation associated with w to the candidate allocation a′, start_node(w) is the root node of the
workflow graph and ECT estimates the expected completion time of a workflow rooted at a given
task for a given assignment. The estimation of AdaptationCost depends on the environment in
which workflow execution is taking place.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

To find ECT (start_node(w),a′), we can use the following recursive formula that computes
the expected completion time (ECT) of any workflow rooted at a task, taski , of the workflow:

ECT(taski ,a)=ET(taski ,a)+EQT(taski ,a)+maxtask j∈successors(taski)(ECT(task j ,a))

where ET(taski ,a) is the expected execution time of taski , EQT(taski ,a) is the estimated amount
of time that taski will spend in a queue, and task j is bound in turn to all immediate successors
of taski in the workflow (if a task taski has no successors, then this component of the formula is
zero).

In what follows, it is assumed that ET is given, that is, for each node, for each type of task, it
is known how long that task type will take to execute on the node. However, EQT, i.e. the time
spent by a task in the queue, is neither constant nor known in advance, and is influenced both by
external job assignments (e.g. tasks over which the autonomic workflow mapper has no control) to
a node and specific assignments of tasks to machines. The following section describes how EQT
can be estimated.

3.4. Estimating queue times

The queue times experienced by the jobs in a workflow are crucial factors influencing the predicted
response time of that workflow and can be estimated as described in this section.

In the following, we consider two time periods, p and p′, such that length(p)= length(p′) and
End(p)=Start(p′). Adaptation is being considered at End(p); as a result, p is in the past, and
we have access both to information about the assignment a of our workflow w to execution nodes
during p and to monitoring information collected during p. In this context, we are interested in
estimating the queue time during p′ for potential future assignments a′.

The estimated (average waiting) queue time, EQT, during p′ depends on: (i) the queue time
at the start of p′ (or the end of p); (ii) the demand for use of the node during p′ as a result of
workflow execution over which the autonomic workflow mapper has control (henceforth referred
to as AssignedDemand); and (iii) the demand for use of the node during p′ as a result of allocations
of work to the node over which the autonomic workflow mapper has no control (henceforth
referred to as ExternalDemand); we assume that the ExternalDemand during p′ is the same as the
ExternalDemand observed during p. By demand we mean the fraction of the available resource
used during a given period. Thus if the AssignedDemand is 0.5 then the amount of work assigned
during p′ is such as to fully occupy the node half of the time. If the AssignedDemand is less than
1 and the ExternalDemand is 0 during p′ then either the EQT will be 0 (assuming that a node
contains several processors) or the EQT at the end of p′ can be expected to be less than at the
start of p′ (as the length of the queue will reduce during p′).

An estimate for the queue time on a node n during the period p′ immediately following p
experienced by a workflow w using an assignment a′ can be computed as

EQT(n, p,w,a′)=max(0, (QueueTime(n,End(p))+ length(p)∗(ExternalDemand(n, p)

+CandidateDemand(n,w,a′))),

where QueueTime(n,End(p)) is the (monitored) queue time on node n when adaptation is
being considered (at End(p)), length(p) is the period for which the demand levels applied,
ExternalDemand(n, p) is an estimate of the demand for node n from tasks over which the
autonomic workflow mapper had no control during the period p and CandidateDemand(n,w,a′)

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

is an estimate of the demand that will be placed on the node by the workflows w and candidate
assignment a′. As such, the queue time increases if the demand for the resource is greater than
the amount of resource available, and decreases if the demand for the resource is less than the
amount of resource available.

Given the above definition of estimated queue time, the EQT for a task used in Section 3.3
can be defined as

EQT(task,a′)= letn=the node such that (task→node)∈a′

in EQT(n, p,Workflow(task),a′)

where p is a configuration property that specifies the period for which monitoring information
is to be used to inform queue estimation, and Workflow(task) returns the workflow of which the
given task is a component.

To complete the estimate for the queue time, definitions for ExternalDemand and CandidateDe-
mand are now provided.

3.4.1. Estimating external demand. The level of external demand on a node n during a period p
can be estimated by taking into account the change in the queue time during p and information
about the work assigned to n during p. The change in the queue time on a node, �QT , over a
period p can be computed from available monitoring information about the queues on each node,
as follows:

�QT(n, p)=QueueTime(n,End(p))−QueueTime(n,Start(p)) (1)

The change in the queue time also depends on the level of demand on a node during a period.

�QT (n, p)= (ExternalDemand(n, p)+AssignedDemand(n, p))∗ length(p) (2)

which can be rewritten in terms of ExternalDemand as

ExternalDemand(n, p)= �QT (n, p)−(AssignedDemand(n, p)∗ length(p))
length(p)

where �QT can be obtained from monitoring information and (1), and the duration of p is a
configuration property.

The AssignedDemand during p can be computed based on the monitoring information concerning
which tasks have been assigned to which machines and the capabilities of the machines

AssignedDemand(n, p)=
∑

task∈QueuedTask(n,p)ET(task,a)
length(p)∗Processors(n)

where QueuedTask(n, p) identifies the tasks assigned by the autonomic workload mapper to n
during p, ET(Task,a) is the execution time of a task in a given assignment, a is the assignment
that applied during p, and Processors(n) is the number of processors available on node n.

3.4.2. Estimating CandidateDemand. The CandidateDemand is an estimate of the demand
placed on a node n by a candidate assignment a′ of the tasks in a workflow w; the intuition is

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

that the candidate demand depends both on the amount of work to be assigned to the node and
the period during which the work will be carried out

CandidateDemand(n,w,a′)=
∑

{task∈w|(task→n)∈a′)}ET(task,a′)
(PreviousECT(w)−ElapsedTime(w))∗Processors(n)

where ET (Task,a′) is the execution time of a task in a given assignment, PreviousECT(w) is the
estimated completion time for the workflow ElapsedTime(w) is the time for which a workflow has
been executing and Processors(n) is the number of processors available on node n. PreviousECT(w)
is the estimated completion time for the workflow using the current assignment, computed at the
time of the previous adaptation using ECT from Section 3.3. An initial estimate for ECT is obtained
using historical information about the queue times when the workflow is first compiled.

3.5. Optimizing utility

This section has defined utility functions, UtilityRTw (w,a′) and UtilityProfitw (w,a′) that can be used
to compare the relative merits of different node assignments a′ for tasks in w. Both definitions
build on predictions of the estimated completion times of w given a′, which in turn make use of
predictions of average queue times. The queue time predictions principally take account of the
impact of the change from the current assignment a to a new candidate assignment a′ on the
demand being placed on each node, using information that is readily available from the definition
of the workflow and from monitoring of queue lengths.

At any point in the evaluation of a workflow where adaptation is being considered, the process
of obtaining an effective assignment of tasks to resources for a workflow w is a question of
identifying assignments a′ that maximize UtilityRTw (w,a) or UtilityProfitw (w,a).

To obtain an effective assignment a′, a search algorithm can be used that

(1) generates an assignment;
(2) calculates the value of the utility based on this assignment; and
(3) uses this value to inform the selection of an appropriate next assignment.

The search continues until it converges on a specific value or a maximum number of iterations has
taken place; the specific optimization strategy used is described in Section 4.

4. SOFTWARE ARCHITECTURE

To evaluate the approach to adaptive workflow execution using utility functions, we utilize the
Pegasus workflow management system [5]. Pegasus is a compiler that translates (maps) between
the high-level specifications of an abstract workflow and the underlying execution system and
optimizes the executables based on the target architecture. The translation includes finding the
appropriate software and computational resources where the execution can take place, as well
as finding copies of the data indicated in the workflow. The result of the mapping process is
an executable or concrete workflow, which can be executed by a workflow engine that follows
the dependencies defined in the workflow and executes the activities defined in the workflow
tasks. Pegasus uses the Directed Acyclic Graph Manager (DAGMan) workflow executor for

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

Figure 3. Adaptive workflow execution with Pegasus.

Condor-G [46] to submit tasks in the concrete workflow in sequence. This sequence must respect
task dependencies (certain tasks cannot start execution before other tasks have completed) and may
order tasks following a scheduling algorithm, such as HEFT [31], which applies list scheduling
principles to prioritize tasks on the critical path. In this way Pegasus takes high-level descrip-
tions of complex applications structured as workflows (abstract workflows), automatically maps
them to available computational resources (concrete workflows) and submits them to DAGMan
for execution.

The principal components of relevance to the experiments, and their relationships, are illustrated
in Figure 3. Pegasus takes as input an Abstract Workflow, which is compiled on the basis of
metadata from registries and a replica manager to produce a Concrete Workflow that is explicit
about where individual tasks are to be executed and which physical files are to be read and written
by those tasks. The individual tasks are submitted using a DAG scheduling algorithm and Condor-G
to computational nodes, until the workflow completes.

To enable adaptive behavior, we extend Pegasus [5] with a generic adaptive framework
that follows the MAPE functional decomposition proposed in [10]. This approach parti-
tions an adaptation strategy into four phases (each corresponding, in our case, to distinct
software components), viz., Monitoring, Analysis, Planning and Execution. The MAPE func-
tional decomposition is a useful framework for systematic development of adaptive systems,
and can be applied in a wide range of applications, including different forms of workflow
adaptations [9].

All the software components in the framework are generic, in the sense that they expose an
instantiation inlet which, upon being provided with a high-level specification of the required param-
eters, causes the component to display a specific behavior which is appropriate for the engine
being targeted for the role of managed component. As indicated in Figure 3, the framework is
retrofitted to the existing Pegasus infrastructure to enable the desired behavior. There are minimal

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

touchpoints needed between the adaptive framework and the Pegasus workflow management
system. A sensor collects the required data about the executing workflow and an effector enacts
changes to the assignment of the workflow.

During workflow execution, log events are passed back to DAGMan via the Grid Site Scheduler
and remote job manager. These events indicate the current status of each task’s execution, e.g. if
it is held, queued, executing, completed or failed. This log provides a snapshot of a point in the
execution of the workflow. DAGMan uses this information to determine when to submit workflow
tasks that have dependencies on other tasks, when the workflow has failed and when the workflow
has completed.

For the use of the framework in this paper, the job queue, execute and termination events
are tracked by a sensor which delivers them to the Monitoring component as a stream of XML
events. These events are generated in the normal process of executing DAG-based jobs on grid
execution sites, collecting these events out-of-band of the execution produces no overhead and
does not interfere with job execution. The monitoring component derives the current queue times
from these events which are passed to the Analysis component. Analysis uses a stream query
processor to compare these current queue times to the queue times predicted when the current
plan was generated. When a sustained change is detected by Analysis between the actual and
predicted queue times Planning is triggered. In the experiments, we use the STREAM system
[47] as our stream query processor. Therefore, the substantive part of the XML document that
instantiates the Analysis component is a continuous query, over the stream of data generated by the
Monitoring component. The query is in CQL [48], the continuous query language of the STREAM
system.

The Planning component, given the monitored information about queue times, searches for
assignments that maximize the chosen Utility measure as summarized in Section 3.5. For the
purposes of the search, an assignment can be represented as a list of discrete categorical variables,
each representing the assignment of a task to a specific execution node. When an assignment is
produced that is predicted to improve on the current assignment, the new assignment is passed to
the Execution component. The estimated cost of performing an adaptation (i.e. AdaptationCost in
Section 3.3) is taken into account at this stage, based on micro-benchmarks. In the experiments,
we use the NOMADm [49] implementation of a Mesh Adaptive Direct Search (MADS) [50]
algorithm; MADS is a class of nonlinear optimization algorithms that can be used to maximize a
black box function, such as UtilityRTw (w,a) or UtilityProfitw (w,a).

The Execution component calls Pegasus again to produce a new concrete workflow from the
abstract workflow. A custom Pegasus site scheduler has been developed that uses the assignment
produced by the Planning component.

During execution, information about the files produced during the evaluation of the Concrete
Workflow is recorded by the Replica Manager. As intermediate products for already completed tasks
are available from the Replica Manager, these tasks are not included in the Concrete Workflow.

Once the new concrete workflow has been created with the new assignments and replicas, it
can replace the currently submitted concrete workflow. A request is made to the job manager to
halt the current workflow; the job manager removes the jobs from the remote grid site queues.
The new concrete workflow can then be submitted to DAGMan, which, following the scheduling
policy used, submits the tasks appropriately to the execution nodes. This adaptation process
could be repeated many times if the utility-based decision-making process judges it beneficial
to do so.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

Figure 4. Montage workflow used in the experiments.

5. EXPERIMENTAL EVALUATION

5.1. Experiment setup

The aim of the experiments is to explore the effect of the two utility functions on the execution
of multiple workflows on different compute resources. The experiments use Montage workflows,
which create large mosaic images from many smaller astronomical images [5]. These can be of
varying sizes depending on the size of the area of the sky of the mosaic. The Montage workflow
used in the experiments is adapted from [5] and illustrated in Figure 4. It contains 27 tasks and
corresponds to a 0.2 degree area. The numbers indicate the level of each task in the overall
workflow.

Four execution sites were used to execute the workflows. We designate these, ES 1, ES 2, ES 3
and ES 4. ES 1 consists of Intel 2Ghz Core 2 Duo CPUs with 2GB of RAM, while ES 2, ES 3,
ES 4 consists of Intel 2Ghz Pentium 4 CPUs with 1GB of RAM. The machines are connected
together directly by Gigabit Ethernet and each have access to sufficient independent and shared
disk storage.

All execution sites run Debian Linux, the Sun Grid Engine Version 6.1 Update 5 (as the site job
scheduler) with its default scheduler, and expose WS-GRAM interfaces provided by the Globus
Toolkit Version 4.0.7. Under unloaded conditions, ES 1 has an average queue time of 25 s, and the
other execution sites have an average queue time of 35 s for a typical job.

During workflow execution, to introduce some uncertainty into the execution environment, a
load is applied to ES 2. This load consists of a process that submits short jobs (of around 20
seconds duration) every 15 seconds for 5 minutes, then sleeps for 2 minutes before continuing.
This leads to varying queue waiting times.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

The experiments compare three strategies for workflow execution. One strategy is entirely non-
adaptive; tasks are statically scheduled using HEFT [31] and there are no reallocations from the
execution sites where they are initially placed. The other two strategies are adaptive; one strategy
adapts using the utility based on Response Time (Utility(RT) or simply U(RT), in the graphs), and
the other strategy adapts using the utility based on Profit (Utility(Profit) or simply U(Profit), in the
graphs).

For the purposes of calculating profit and assessing the behavior of the adaptive strategy using
the utility based on profit, we assumed a simple model where the (monetary) cost of executing
jobs on each site was chosen on the basis of the site’s characteristics—the faster site is the more
expensive. Thus, the cost of executing a single job on ES 1 is 2 units of currency and on each of
ES 2, ES 3 and ES 4 is 1 unit of currency. These costs are only incurred for jobs that have partially
or completely run on a site, and not for jobs that are only queued. Finally, the reward for meeting
the target response time for a single workflow is 100 units of currency.

5.2. Experiment 1: adaptive versus non-adaptive

The aim of this experiment is to demonstrate the benefits of adaptivity. For this, we compare
the standard Pegasus non-adaptive HEFT-based strategy for workflow execution with an adaptive
strategy that makes use of the utility based on the response time. Figure 5 shows, in detail, the
execution as it progresses for each workflow task (job) of a single Montage workflow using a
non-adaptive HEFT-based schedule on two execution sites, ES 1 and ES 2, with ES 2 being loaded
with a periodic load as described in the previous section. The effect of the task dependencies is
easily visible in the workflow execution. For example, task 16 (which is the only task at level 3
of the workflow) cannot start execution until all previous tasks have completed. The same is true
for task 17 and so on. The presence of different queue lengths is due to the varying queue waiting
times between execution sites and the load applied to ES 2.

Figure 6 shows the execution of the same Montage workflow, this time using the adaptive
strategy with the utility based on the response time. In this case, the adaptive strategy changes the
workflow’s schedule twice in the execution, at about 3 and 8min from the start of the execution.

The non-adaptive workflow completed in 34 and 34 s, whereas the adaptive strategy with the
utility based on response time completed in 21min and 5 s. This 39% reduction in response time
is attributed to the adaptive workflow moving task assignments from ES 2, which has relatively
long queue times, to ES 1 with shorter queue times. This results in an overall improved response
time for the adaptive workflow.

5.3. Experiment 2: single workflow with different target response times

The aim of this experiment is to evaluate both the response time-based utility and the profit-based
utility strategies against each other and the non-adaptive strategy. A single workflow is executed
on execution sites ES 1 and ES 2, the latter being loaded as described in the previous section.
Each strategy is evaluated against three different target response times for the completion of the
workflow execution: a Loose target, a Mid target and a Tight target. The Loose target is calculated
from previous experiments as an easy-to-meet response time target, the Tight target is calculated
from previous experiments as a hard-to-meet response time target, the medium being in between.
For this experiment, the Loose target response time is 40min, the Mid target response time is
30min and the Tight target response time is 20min.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

40:00

 5 10 15 20 25

T
im

e
(h

r:
m

in
:s

ec
)

Job ID

Non-Adaptive

Key
Job Queued

Job Executing

Figure 5. Experiment 1: Montage workflow progress plots, showing when each job (task) is queued and
executed, for static (non-adaptive) HEFT execution.

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

40:00

 5 10 15 20 25

T
im

e
(h

r:
m

in
:s

ec
)

Job ID

Adaptive

Key
Job Queued

Job Executing

Figure 6. Experiment 1: Montage workflow progress plots, showing when each job (task) is queued and
executed, with an adaptive workflow execution strategy using the utility based on the response time.

The response time and profit for each of the three workflow execution strategies and the three
target response times tried in this experiment are reported in Figures 7 and 8, respectively. They
show that different response time targets have no effect on the execution strategy using HEFT or
the utility based on response time, as neither of these strategies seek to meet specific response time

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Loose Mid Tight

R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Response Time Target

Key
HEFT
U(RT)

U(Profit)

Figure 7. Response time comparison for Experiment 2.

-60

-40

-20

 0

 20

 40

 60

 80

Loose Mid Tight

P
ro

fit

Response Time Target

Key
HEFT
U(RT)

U(Profit)

Figure 8. Profit comparison for Experiment 2.

targets. The workflow execution strategy using the utility based on response time always produces
the best response time when compared with the HEFT and utility based on profit strategies.

The utility based on profit strategy has the aim of meeting the target response time at the lowest
possible cost; if, during the execution of the workflow, it concludes that it is not possible to meet
the target response time it will just use the cheapest resources. All three strategies succeed in
meeting the Loose target response time and return a profit; the utility based on response time is the
fastest with the lowest profit; the utility based on profit uses the cheapest resources, and therefore
takes the longest amount of time to complete, producing the most profit.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

 0

 2000

 4000

 6000

 8000

 10000

Loose Mid Tight

R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Response Time Target

Key
HEFT(1)
HEFT(2)
U(RT)(1)
U(RT)(2)

U(Profit)(1)
U(Profit)(2)

Figure 9. Response time comparison for individual workflows in Experiment 3.

For the Mid target response time, the HEFT-based strategy fails to meet the target, and thus
yields a significant loss. Both utility strategies meet the response time target, and yield a profit, but
the profit is greater for the utility based on profit strategy. This is because the utility based on profit
strategy, although using ES 1 more often than for the Loose response time target, manages to meet
the response time while using the inexpensive ES 2 more than the utility based on response time.

For the Tight response time target, none of the strategies meet the target, and thus all make a
loss. However, the utility based on profit strategy makes the smallest loss because, realizing that
the response time target is not going to be met, it avoids extensive use of ES 1.

5.4. Experiment 3: two workflows

This experiment increases the complexity of the execution environment by considering twoMontage
workflows, which are planned and submitted for execution at the same time. As before, execution
sites ES 1 and ES 2 are available and ES 2 is loaded as described. For this experiment, the High
target response time is 90min, the Mid target response time is 60min and the Low target response
time is 30min.

Figure 9 shows the individual response times for each workflow, each of the three strategies
(HEFT, utility based on response time and utility based on profit) and each of the three response
time targets. The first observation from the figure is that, as with Experiment 2, different response
time targets clearly have no effect on the non-adaptive HEFT strategy or the utility based on
response time; neither of these strategies seek to meet specific response time targets. The utility
based on response time always produces the best response time when compared with HEFT and
the utility based on profit. Figure 9 shows that there is some variation in the response times for each
workflow even when they use the same strategy; however, this does not affect the overall result.

Figure 10 shows the individual profit for each strategy and different target response times, with
Figure 11 showing the total profit. The total profit is important as the utility based on profit aims
to generate the most profit overall.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

-60

-40

-20

 0

 20

 40

 60

 80

Loose Mid Tight

P
ro

fit

Response Time Target

Key
HEFT(1)
HEFT(2)
U(RT)(1)
U(RT)(1)

U(Profit)(1)
U(Profit)(2)

Figure 10. Profit comparison for individual workflows in Experiment 3.

-150

-100

-50

 0

 50

 100

 150

Loose Mid Tight

P
ro

fit

Response Time Target

Key
HEFT
U(RT)

U(Profit)

Figure 11. Total profit comparison for Experiment 3.

All three strategies succeed in meeting the Loose target response time and return a profit;
the individual workflows for each strategy complete very closely as well. The utility based on
response time uses the most expensive resources, and therefore returns the least profit. The utility
based on profit uses only the resources necessary to meet the target response time, therefore it uses
ES 2 more often than the other strategies, reducing its response time, but increasing its profit while
still meeting the target response time. The standard HEFT non-adaptive strategy is between the two
adaptive strategies in terms of both response time and profit, as it uses ES 1 and ES 2mostly equally.

For the Mid target response time, the HEFT-based strategy fails to meet the target response time
and thus yields a significant loss (as in Experiment 2). Both utility strategies meet the response
time target, and yield a profit, but the profit is greater with the utility based on profit strategy.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

-60

-40

-20

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

P
ro

fit

Response Time (Seconds)

Utility (RT)

Utility (Profit)

HEFT

Figure 12. Scatter graph of profit versus response time for Experiment 4 (Loose target response time).

This is because this strategy, although using ES 1 more often than for the Loose response time
target, manages to meet the response time while using the inexpensive ES 2 more often than the
utility based on response time. The response time and profit is mostly consistent for individual
workflows, with the individual utility based on profit workflows having the most variation. This
is a consequence of the utility needing to assign more tasks of one workflow to the faster ES 1 in
order to allow both workflows to complete within the target response time.

For the Tight response time target, none of the strategies meet the target, and thus all make
a loss. The utility based on response time yields the largest loss as it uses the most expensive
resources and still fails to meet the target response time. The utility based on profit strategy makes
the smallest loss because, realizing that the response time target is not going to be met, it avoids
extensive use of ES 1.

5.5. Experiment 4: multiple workflows

This experiment investigates the scalability of the approach in regard to managing more workflows
by extending the number of workflows that need to be executed to 10. Thus, for this experiment ten
workflows are planned and submitted for execution at the same time. As with previous experiments,
ES 1 and ES 2 are available, and a load is applied to ES 2. As before, the experiment is repeated
for the three strategies, HEFT, U(RT) and U(Profit), and for Loose, Mid and Tight response time
targets. For this experiment, the Loose target response time is 180min, the Mid target response
time is 120min and the Tight target response time is 60min.

Figure 12 is a scatter plot showing the results for each workflow, using each of the three workflow
execution strategies and a Loose target response time. All ten workflows are plotted with response
time (Y -axis) against profit (X -axis).

As can be seen, for the Loose target response time, the utility based on response time is by far
the fastest strategy with an average response time of 4809 s and an average profit of 43.2; it does
however have a wide spread of response times, ranging from 3811 to 5468 s.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

-80

-60

-40

-20

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000

P
ro

fit

Response Time (Seconds)

Utility (RT)

Utility (Profir)

HEFT

Figure 13. Scatter graph of profit versus response time for Experiment 4 (Mid target response time).

Using the utility based on profit execution strategy, all ten workflows succeed in narrowly
meeting the target response time, yielding an average response time of 10 459 s and an average
profit of 72. The high average profit compared with the other approaches is due to the use of
cheaper resources.

The non-adaptive HEFT approach fails to meet the target response time for three out of the ten
workflows. For the workflows that succeed in meeting the target response time, the profit is higher
than the utility based on response time, but lower than the utility based on profit although their
response time is similar. This is due to the utility based on profit adapting to use cheaper resources
but the time cost of adaptation negating this effect slightly.

Figure 13 is a scatter plot showing the results of the three strategies with ten workflows and a
Mid target response time. Both the utility-based strategies return a profit, with the utility based on
profit returning a larger profit with a slower average response time. All the HEFT workflows fail
to meet the target response time, resulting in the slowest average response time and a large loss.

Figure 14 is a scatter plot showing the results of the three strategies with ten workflows and a
Tight target response time. In this case, all three strategies fail to meet the target response time.
The utility based on response time produces the fastest target response time, with the greatest loss.
The workflows executing with the non-adaptive HEFT strategy have an increased response time
and a marginally smaller loss. The workflows executing with the utility based on profit have the
least loss and the highest average response time.

5.6. Experiment 5: additional execution sites

This experiment is designed to evaluate the performance of the different approaches with additional
execution sites. Four execution sites are used in this experiment, with the third and fourth execution
sites, ES 3 and ES 4, having identical specification and software to ES 2, as described in Section 5.1.
The cost of executing a single job on either ES 3 or ES 4 is also equal to the cost of executing on ES 2,
and it is 1 unit of currency. The same periodic load, as described before, is applied to ES 2 only.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

-80

-70

-60

-50

-40

-30

-20

-10

0

0 5000 10000 15000 20000 25000

P
ro

fit

Response Time (Seconds)

Utility (RT)

Utility (Profit)

HEFT

Figure 14. Scatter graph of profit versus response time for Experiment 4 (Tight target response time).

-40

-20

0

20

40

60

0 2000 4000 6000 8000 10000 12000 14000 16000

P
ro

fit

Response Time (Seconds)

Utility (RT)

Utility (Profit)

HEFT

Figure 15. Response time comparison for individual workflows in Experiment 5.

For this experiment, ten workflows need to be executed and all four sites are available. As with
previous experiments, this experiment is repeated for the three strategies, HEFT, utility based on
response time and utility based on profit. Also, a Mid target response time of 90min is chosen.
Each strategy is evaluated in terms of profit and response time as illustrated in Figure 15.

All three strategies have a tight clustering between individual workflows in terms of both profit
and response time. The HEFT strategy fails to meet the target response time and thus yields a

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

significant loss. The utility based on response time achieves the best response time, but at the cost
of a reduced profit when compared with the utility based on profit which has a slower response
time but yields the most profit.

This experiment demonstrates that our utility-based adaptive strategies scale both in terms of the
number of workflows and the number of execution sites. The spread of the results in this experiment
shows that even under these conditions our strategies perform in a consistent manner and yield
the desired results. As expected, the utility based on response time adaptive strategy produces the
best response time and the utility based on profit adaptive strategy yields the highest profit.

6. CONCLUSIONS

We have presented an approach to adaptive workflow execution that: (i) adds adaptive scheduling
based on utility functions to an existing workflow infrastructure with minimal intrusion; (ii) illus-
trates the use of the MAPE functional decomposition from the autonomic computing community in
a new setting, including the use of stream queries for identifying patterns of interest in monitoring
events; and (iii) demonstrates significant performance improvements in experiments involving
different targets for the execution of workflows, although the environment provides limited fine-
grained control over the execution timing of individual jobs. Adaptive workflow execution promises
to provide more robust performance in uncertain environments. Our experiments also indicate
that workflows with a higher degree of inherent parallelism, such as Montage, may benefit more
from adaptation. Finally, our work has demonstrated that effective adaptation can be added to an
established grid workflow infrastructure at modest development cost, making use of the existing
facilities for monitoring and control. This is so because the software components that make up our
MAPE-based adaptivity framework are generic and provide instantiation inlets that allow designers
the flexibility, at low cost, of experimenting with different adaptation strategies for the same, or
for different, managed artefacts. This paper has shown the advantages of doing so in the context
of workflow execution.

REFERENCES

1. Taylor IJ, Deelman E, Gannon DB, Shields M. Workflows for e-Science. Scientific Workflows for Grids. Springer:
2007.

2. Deelman E, Gannon D, Shields M, Taylor I. Workflows and e-Science: An overview of workflow system features
and capabilities. Future Generation Computer Systems 2009; 25(5):528–540.

3. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K. Task scheduling strategies for workflow-based
applications in grids. CCGrid’05, 2005; 759–767.

4. Wieczorek M, Prodan R, Fahringer T. Scheduling of scientific workflows in the ASKALON grid environment.
SIGMOD Record 2005; 34(3):56–62.

5. Deelman E, Singh G, Su M-H, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J, Laity A,
Jacob JC, Katz DS. Pegasus: A framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming 2005; 13(3):219–237.

6. Heinis T, Pautasso C, Alonso G. Design and evaluation of an autonomic workflow engine. ICAC’05: Proceedings
of the 2nd International Conference on Autonomic Computing. IEEE Computer Society Press: Silver Spring,
MD, 2005; 27–38.

7. Duan R, Prodan R, Fahringer T. Run-time optimisation of grid workflow applications. Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing. IEEE Computer Society Press: Silver Spring, MD,
2006; 33–40.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

K. LEE ET AL.

8. Yu Z, Shi W. An adaptive rescheduling strategy for grid workflow applications. IPDPS. IEEE Press: New York,
2007; 1–8.

9. Lee K, Sakellariou R, Paton NW, Fernandes AAA. Workflow adaptation as an autonomic computing problem.
WORKS’07: Proceedings of the 2nd Workshop on Workflows in Support of Large-scale Science. ACM Press:
New York, 2007; 29–34.

10. Kephart JO, Chess DM. The vision of autonomic computing. IEEE Computer 2003; 36(1):41–50.
11. Kephart JO, Das R. Achieving self-management via utility functions. IEEE Internet Computing 2007; 11(1):40–48.
12. Huebscher MC, McCann JA. An adaptive middleware framework for context-aware applications. Personal and

Ubiquitous Computing 2006; 10(1):12–20.
13. Yu J, Buyya R, Tham CK. Cost-based scheduling of scientific workflow application on utility grids. e-Science.

IEEE Computer Society: Silver Spring, MD, 2005; 140–147.
14. Blum C, Roli A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM

Computing Surveys 2003; 35(3):268–308.
15. Lee K, Paton NW, Sakellariou R, Deelman E, Fernandes AAA, Metha G. Adaptive workflow processing and

execution in Pegasus. The 3rd International Workshop on Workflow Management and Applications in Grid
Environments (WaGe08). Proceedings of the 3rd International Conference on Grid and Pervasive Computing
Symposia/Workshops. IEEE Computer Society Press: Silver Spring, MD, 2008; 99–106.

16. Sakellariou R, Zhao H. A low-cost rescheduling policy for efficient mapping of workflows on grid systems.
Scientific Programming 2004; 12(4):253–262.

17. Hellerstein JL, Diao Y, Parekh S, Tilbury DM. Feedback Control of Computing Systems. Wiley: New York, 2004.
18. Diao Y, Hellerstein JL, Storm AJ, Surendra M, Lightstone S, Parekh S, Garcia-Arellano C. Incorporating cost of

control into the design of a load balancing controller. IEEE Real-time and Embedded Technology and Applications
Symposium, Toronto, Canada, 2004; 376–387.

19. Yfoulis C, Gounaris A, Paton NW. An efficient load balancing lqr controller in parallel database queries under
random perturbations. IEEE Multi-conference on Systems and Control, Saint Petersburg, Russia, 2009.

20. Gounaris A, Yfoulis C, Sakellariou R, Dikaiakos MD. A control theoretical approach to self-optimizing block
transfer in web service grids. ACM Transactions on Autonomous and Adaptive Systems 2008; 3(2):1–30.

21. Menascé DA, Dubey V. Utility-based QoS brokering in service oriented architectures. ICWS’07: IEEE International
Conference on Web Services, Salt Lake City, Utah, U.S.A., 2007; 422–430.

22. Walsh WE, Tesauro G, Kephart JO, Das R. Utility functions in autonomic systems. ICAC’04: Proceedings of the
1st International Conference on Autonomic Computing. IEEE Press: New York, 2004; 70–77.

23. Kephart JO, Chan H, Das R, Levine DW, Tesauro G, Rawson F, Lefurgy C. Coordinating multiple autonomic
managers to achieve specified power-performance tradeoffs. ICAC’07: Proceedings of the 4th International
Conference on Autonomic Computing, Jacksonville, FL, U.S.A., 2007; 24.

24. Kumar V, Cooper BF, Schwan K. Distributed stream management using utility-driven self-adaptive middleware.
ICAC’05: Proceedings of the 2nd International Conference on Autonomic Computing, Seattle, WA, U.S.A., 2005;
3–14.

25. Lee K, Paton NW, Sakellariou R, Fernandes AAA. Utility driven adaptive workflow execution. CCGrid 2009,
2009.

26. Kwok YK, Ahmad I. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM
Computing Surveys 1999; 31(4):406–471.

27. Sakellariou R, Zhao H. A hybrid heuristic for DAG scheduling on heterogeneous systems. The 13th Heterogeneous
Computing Workshop. IEEE Computer Society Press: Silver Spring, MD, 2004; 111–123.

28. Nurmi D, Mandal A, Brevik J, Koelbel C, Wolski R, Kennedy K. Evaluation of a workflow scheduler using
integrated performance modelling and batch queue wait time prediction. SC’06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing. ACM: New York, NY, U.S.A., 2006; 119.

29. Canon LC, Jeannot E, Sakellariou R, Zheng W. Comparative evaluation of the robustness of dag scheduling
heuristics. Integrated Research in Grid Computing, CoreGRID Integration Workshop, Hersonissos, Crete, Greece,
2008; 63–74.

30. Mandal A, Kennedy K, Koelbel C, Marin G, Mellor-Crummey J, Liu B, Johnsson L. Scheduling strategies for
mapping application workflows onto the grid. HPDC’05: Proceedings of the 14th IEEE International Symposium
on High Performance Distributed Computing (HPDC-14). IEEE Computer Society: Washington, DC, U.S.A.,
2005; 125–134.

31. Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for heterogeneous
computing. IEEE Transactions on Parallel and Distributed Systems 2002; 13(3):260–274.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

FUNCTIONS FOR ADAPTIVELY EXECUTING CONCURRENT WORKFLOWS

32. Nadeem F, Fahringer T. Predicting the execution time of grid workflow applications through local learning.
SC’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. ACM:
New York, NY, U.S.A., 2009; 1–12.

33. Jarvis SA, He L, Spooner DP, Nudd GR. The impact of predictive inaccuracies on execution scheduling.
Performance Evaluation 2005; 60(1–4):127–139. Performance Modeling and Evaluation of High-performance
Parallel and Distributed Systems.

34. Adve VS, Bagrodia R, Browne JC, Deelman E, Dube A, Houstis E, Rice J, Sakellariou R, Sundaram-Stukel D,
Teller PJ, Vernon MK. Poems: End-to-end performance design of large parallel adaptive computational systems.
IEEE Transactions on Software Engineering 2000; 26:1027–1048.

35. Feitelson DG, Rudolph L, Schwiegelshohn U. Parallel job scheduling—A status report. JSSPP’04: Proceedings
of the 10th International Workshop on Job Scheduling Strategies for Parallel Processing. Springer: Berlin,
Heidelberg, 2004; 1–16.

36. Decker J, Schneider J. Heuristic scheduling of grid workflows supporting co-allocation and advance reservation.
IEEE International Symposium on Cluster Computing and the Grid. IEEE Computer Society: Los Alamitos, CA,
U.S.A., 2007; 335–342.

37. Kuo D, Mckeown M. Advance reservation and co-allocation protocol for grid computing. E-SCIENCE’05:
Proceedings of the First International Conference on e-Science and Grid Computing. IEEE Computer Society:
Washington, DC, U.S.A., 2005; 164–171.

38. Zhao H, Sakellariou R. Advance reservation policies for workflows. JSSPP’06: Proceedings of the 12th
International Workshop on Job scheduling Strategies for Parallel Processing. Springer: Berlin, Heidelberg, 2006;
47–67.

39. Margo M, Yoshimoto K, Kovatch PA, Andrews P. Impact of reservations on production job scheduling. JSSPP’07:
Proceedings of the 13th International Workshop on Job Scheduling Strategies for Parallel Processing. Springer:
Berlin, Heidelberg, 2007; 116–131.

40. Qin J, Wieczorek M, Plankensteiner K, Fahringer T. Towards a light-weight workflow engine in the Askalon
Grid environment. CoreGRID Symposium. Springer: Berlin, 2007; 239–251.

41. Duan R, Prodan R, Fahringer T. Performance and cost optimization for multiple large-scale grid workflow
applications. SC, 2007; 12.

42. Wieczorek M, Hoheisel A, Prodan R. Towards a general model of the multi-criteria workflow scheduling on the
grid. Future Generation Computer Systems 2009; 25(3):237–256.

43. Yu J, Buyya R. Scheduling scientific workflow applications with deadline and budget constraints using genetic
algorithms. Scientific Programming 2006; 14:217–230.

44. Sakellariou R, Zhao H, Tsiakkouri E, Dikaiakos MD. Scheduling workflows with budget constraints. Integrated
Research in Grid Computing. Springer: Berlin, 2007; 189–202.

45. Bennani MN, Menascé DA. Resource allocation for autonomic data centers using analytic performance models.
ICAC’05: Proceedings of the Second International Conference on Autonomic Computing. IEEE Computer Society
Press: Silver Spring, MD, 2005; 229–240.

46. Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S. Condor-G: A computation management agent for multi-
institutional grids. HPDC’01: Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10), 2001; 55–63.

47. Arasu A, Babcock B, Babu S, Datar M, Ito K, Nishizawa I, Rosenstein J, Widom J. STREAM: The Stanford
stream data manager. SIGMOD Conference, Madison, WI, U.S.A., 2003; 665.

48. Arasu A, Babu S, Widom J. The CQL continuous query language: Semantic foundations and query execution.
VLDB Journal 2006; 15(2):121–142.

49. Abramson MA, Audet C, Dennis JE. Nonlinear programing with mesh adaptive direct searches. SIAG/Optimization
Views-and-News 2006; 17(1):2–11.

50. Audet C, Dennis JJE. Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on
Optimization 2006; 17(1):188–217.

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe

