
Large MTUs and Internet Performance
David Murray, Terry Koziniec, Kevin Lee, Michael Dixon

School of Information Technology, Murdoch University,
Murdoch 6150, Western Australia, Australia

{D.Murray, T.Koziniec, Kevin.Lee, M.Dixon}@murdoch.edu.au

Abstract—Ethernet data rates have increased many orders of
magnitudes since standardisation in 1982. Despite these continual
data rates increases, the 1500 byte Maximum Transmission Unit
(MTU) of Ethernet remains unchanged. Experiments with vary-
ing latencies, loss rates and transaction lengths are performed to
investigate the potential benefits of Jumboframes on the Internet.
This study reveals that large MTUs offer throughputs much
larger than a simplistic overhead analysis might suggest. The
reasons for these higher throughputs are explored and discussed.

Index Terms—Jumboframe, MTU, TCP, Experiment, Perfor-
mance

I. INTRODUCTION

Over the last 30 years, data rates on the Internet have pro-
gressively increased. Table I shows the evolution of Ethernet
standards with increasing rates from 10Mb/s to 100Gb/s and
decreasing serialization delay. Ethernet is the de facto Local
Area Networking (LAN) technology and is increasingly being
used in carrier networks with half of all North American
enterprises now deploying carrier Ethernet services [1].

The Maximum Transmission Unit (MTU) specifies the
largest packet size, including headers and data payload, that
can be transmitted by the link-layer technology. If an end to
end connection uses a MTU larger than the link MTU, the
packet will either be fragmented, or dropped. To prevent this
from occurring, mechanisms exist to discover the MTU of a
path over the Internet.

Table I shows that Ethernet speed increases and stagnant
MTUs, have reduced the serialization delays of standard 1500
byte frames from 1200µs to 0.12µs. The large numbers of
frames produced by modern Ethernet increases CPU loads [2],
[3], [4] and overheads [5]. The CPU and overhead benefits of
jumboframes over 1500 byte frames are well understood.

The originality of this study is the experimental exploration
of Jumboframes over Wide Area Network (WAN) links. This
research is particularly relevant given the deployment of
+100Mb/s high speed broadband and FTTN (Fibre To The
Node) broadband in many developed nations. The experiments
discussed in this paper use default and tuned 1500 and 9000
byte MTU connections in a laboratory testbed.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the background of Jumboframes. Section 3
performs experiments to evaluate the impact of Jumboframes
on Internet links. The implications of the results of these
experiments are discussed in section 4. Section 5 discusses
why Ethernet MTUs have not scaled as desired.

Technology Rate Year MTU Serialization Delay
Ethernet 10 1982 1500 1200µs

Fast Ethernet 100 1995 1500 120µs
Gig Ethernet 1000 1998 1500 12µs

10-Gig Ethernet 10,000 2002 1500 1.2µs
100-Gig Ethernet 100,000 2010 1500 0.12µs

TABLE I
ETHERNET STANDARDS AND MTUS

II. BACKGROUND

This section describes the traditional arguments for and
against the use of Jumboframes on the Internet and reviews
prior work investigating Jumboframes on WAN links.

A. Arguments for Jumboframes

1) Lower Overheads: Jumboframes lower network over-
heads because fewer packets, and therefore fewer headers,
are required to move data from the source to the destination.
Table II shows the size of Physical, Data-link, Network and
Transport layer headers in a TCP/IP transaction over Giga-
bit Ethernet using 1500 byte MTUs and 9000 byte MTUs.
Physical layer Inter-Frame Gaps, Start Frame Delimiters and
Preambles as well as higher layer Ethernet, IP and TCP
headers are included in the calculation.

The Percentage row in Table II compares the time spent
transmitting payload data, with the time spent transmitting
overheads in Gigabit Ethernet. Using 9000 byte frames, 99%
of the time is spent transmitting payload data, with only 1%
used for headers. With regular 1500 byte frames, 94.3% of
the time is used for transmitting data. Based on this simplistic
analysis of overheads, 9000 byte frames should be approxi-
mately 4%-5% faster than 1500 byte frames. As IPv6 headers
are larger than the IPv4 header, the transferable payload would
be further reduced in IPv6 transactions; exacerbating this
overhead margin.

2) CPU Loads: With every Ethernet speed increase; routers
and end devices must process 10 times more packets, sub-
stantially increasing CPU loads [2], [3], [4]. Given today’s
processor speeds, high speed 10Gb/s links impose a signifi-
cant burden on CPUs [6]. As IPv6 is more computationally
expensive to process than IPv4, this problem may worsen in
the future [5].

TOEs (TCP/IP Offload Engines) can reduce CPU loads;
offloading packet processing onto the Network Interface Card
(NIC). The use of TOE is problematic because changes within



TABLE II
OVERHEAD OF TCP/IP TRANSACTIONS OVER GBIT ETHERNET

1500 MTU 9000 MTU
Frame Component Bytes Time(µs) Bytes Time(µs)

IFG 12 0.096 12 0.096
SFD 1 0.008 1 0.008

Preamble 7 0.056 7 0.056
Eth Hdr 14 0.112 14 0.112
IP Hdr 20 0.16 20 0.16

TCP Hdr 32 0.256 32 0.256
Payload 1448 11.58 8948 71.5

Percentage - 94.3 - 99.0

TCP, such as congestion control or security amendments,
require the NIC (Network Interface Card) firmware to be
updated [7]. Consequently, attempts to integrate TOEs into
the Linux kernel have been rejected for reasons including
security, performance and a lack of IETF RFC compliance
[7]. Comparatively, if processing was performed in software,
new security or performance extensions will be updated with
the Operating System (OS).

Given that TOEs cannot be integrated into the Linux kernel,
Jumboframes are an attractive alternative. Numerous studies
show that CPU usage is dramatically reduced with Jum-
boframes [5], [8], [2]. Jumboframes reduce packet overheads,
routing decisions, protocol processing and device interrupts
[9].

B. Arguments Against the Use of Jumboframes

1) CRC Effectiveness: Despite the overhead and CPU ben-
efits of Jumboframes, drawbacks exist. It has been suggested
that the effectiveness of Ethernet’s CRC-32 mechanism de-
grades as the packet size increases beyond 12,000 bytes [2].
This is the subject of debate, with numerous studies suggesting
different MTUs for CRC-32’s effectiveness [10], [11]. The
exact size at which CRC-32 becomes ineffective is beyond the
scope of this paper. The widespread use of 9000 byte frames
in high performance LAN environments is demonstrative of
CRC-32’s effectiveness at this size. Only significantly larger
packet sizes will need a more robust checksum [11], [12], and
thus, further discussion it is beyond the scope of this study.

2) Jitter in Delay Sensitive Applications: Another argument
against the use of Jumboframes is that they increase delay
and jitter [10]. As 9000 byte packets take six times longer
to serialize, they can negatively affect smaller, time sensitive
packets queued behind them. For low speed networks, this is a
valid argument but for 100Mb/s links and above this argument
ceases to be applicable.

A 9000 byte frame, transmitted at 100 Mb/s, is serialized
66% faster than a 1500 byte packet transmitted at 10 Mb/s.
Thus, any argument suggesting that voice and video are
negatively affected by the transmission of 9000 byte frames
over 100 Mb/s links, must also suggest that 1500 byte frames
are too big for 10Mb/s links. 1500 byte MTUs are standard
for Ethernet, ADSL, DOCSIS links; which frequently carry
voice and video.

C. Fragmentation and PMTU Discovery

Using larger MTUs is highly detrimental to performance
when it causes fragmentation because every fragment must
have an additional set of headers [13]. Given the scenario
where 1024 byte segments are being sent and fragmented
into 488 byte fragments, an additional set of headers will
be added to each of the three fragments. Additional headers
are inefficient, however, the argument that large MTUs cause
fragmentation is only historically relevant. In 2007 the IETF
released a new Path MTU (PMTU) Discovery [14] mechanism
to dynamically discover the path’s MTU. This new mechanism
specifies an alternative way to probe end-to-end MTUs by
sending progressively larger packets. This new PMTU Discov-
ery mechanism is considered robust, effective and is enabled
by default in the Linux kernel.

D. Jumboframe Performance

Prior research has found that Jumboframes significantly
outperform standard 1500 byte frames in WAN environments
[6], [15]. Two studies have produced different results.

Makineni et al [6] found that, in tests on Microsoft Windows
machines, Jumboframes yield throughput increases of 22%.
However, CPU limitations were a factor in this experiment,
possibly explaining the superior performance of Jumboframes.

Ravot et al [15] found that jumboframes outperformed
standard 1500 byte frames by a factor of fourteen when
competing over the same link. When 1500 byte frames and
Jumboframes are competing, it is possible that a Random
Early Detection (RED) gateway dropping packets could have
caused this large performance difference. Ravot et al [15]
also concluded that Jumboframes accelerated the congestion
window increase by a factor of six compared with standard
1500 byte MTUs [15].

These throughputs are significantly different from the 4%-
5% overhead differences; motivating a search to discover why
TCP performance is greater than an overhead analysis might
suggest. The remainder of this paper investigates these issues
experimentally.

III. EXPERIMENTS EVALUATING THE EFFECT OF MTU
SIZE ON TCP PERFORMANCE

This paper performs a series of experiments comparing 1500
byte and 9000 byte frames. After the setup is described, the
performance of large file transfers under a range of latency
and loss conditions is evaluated. Small Internet transactions
are also investigated.

A. Experimental Setup

An experiment was performed to investigate the real world
performance characteristics of different MTUs over a range
of conditions. The real Internet cannot be used because many
devices do not support Jumboframes. The experimental setup
is shown in Fig 1. All machines were Core 2 series Intel
processors running Ubuntu 10.04. The high speed of these PCs
kept CPU utilization below 3% and thus the results should not
be CPU bound. The network cards were PCI-E based Intel



Fig. 1. Experimental Setup

TABLE III
TCP PARAMETERS USED IN THE EXPERIMENT

Setting Default Tuned
ifconfig eth0 txqueuelen 100 packets 1000 packets

net.dev max backlog 1000 packets 10000 packets
net.ipv4.tcp sack 1 (On) 1 (On)

tcp mem 4k 87k 4194k 80530k 80530k 80530k
tcp rmem 4k 87k 4194k 80530k 80530k 80530k
tcp wmem 4k 87k 4194k 80530k 80530k 80530k

tcp congestion control cubic cubic
Kernel Version 2.6.32-28-server 2.6.32-28-server

PRO/1000’s. The switch was a Buffalo WZR-HP-G300NH
Gigabit switch capable of handling 9000 byte frames. Netem
was used to replicate varying levels of delay and loss. All
results are based on the throughput from an Apache 2.2.14
server.

Connections utilized 1500 and 9000 byte MTUs. In ad-
dition, these downloads were also performed under default
conditions, and under ‘tuned’ conditions. TCP tuning is rec-
ommended [15], [16] because a large BDP (Bandwidth Delay
Product) is required to to “fill the pipe” of a 1Gb/s Internet
link. TCP grows a sliding window which specifies how many
packets can be released unacknowledged from the sender at
any one time. This window must be able to grow to the size
of the BDP. The BDP can be calculated using Eq 1.

BDP = Speed(bytespersec) ∗RTT (1)

The maximum window size and other TCP variable are
shown in Table III.

B. Large File Transfer Results

1) Latency - Results: The initial experiment investigated
the performance of Jumboframes over a range of latencies.
These results were obtained using the topology shown in Fig
1. With 0ms of added latency, no difference was discernible
between default and tuned TCP connections. The primary
reason is because the TCP window is not the limiting factor.
At 0ms, the Jumboframe connection was transferring data
at 994Mb/s. Comparatively, standard 1500 byte frames were
transferring data at 896 Mb/s. In this scenario, Jumboframes
are performing approx 11% faster than standard 1500 byte
frames. This is faster than the 4-5% projected by overhead
analysis.

As the latency increases above 10ms, the TCP window size
becomes the limiting factor. The default 9000 byte and 1500
byte connections are identical in terms of TCP performance.
The tuned TCP connections are able to maintain their peak

Fig. 2. Throughput achieved using default/tuned and 1500/9000 byte MTUs,
10ms RTTs and loss rates of 0.0001%-0.1%

Fig. 3. Throughput achieved using default/tuned and 1500/9000 byte MTUs,
100ms RTTs and loss rates of 0.0001%-0.1%

throughputs until 100ms. Above 100ms the 9000 byte transfer
is less affected by latency.

2) Loss - Results: The previous experiment assumed zero
congestion or delay based losses over the Internet. This is an
unrealistic assumption as real Internet links drop packets due
to congestion.

Figs 2, 3 and 4 show the performance of different MTUs
and levels of tuning. A number of trends are notable. Firstly, as
the loss rate increases, throughputs decrease. This is because
every lost packet is interpreted by TCP as a congestion
event, dramatically reducing the congestion window [17]. High
latencies, coupled with high loss rates, have huge impacts
on performance due to the duration required to recover lost
packets and begin rebuilding the TCP window [18].

Compared with the previous, purely latency based experi-
ment, the introduction of packet loss widens the performance
margin between 1500 byte and 9000 byte frames. In many



Fig. 4. Throughput achieved using default/tuned and 1500/9000 byte MTUs,
300ms RTTs and loss rates of 0.0001%-0.1%. The scale in this figure has been
adjusted to demonstrate the performance advantages under default conditions

of the tested scenarios, throughputs attained by Jumboframes
were double the throughputs achieved with 1500 byte frames.

At very low loss rates, the affect of TCP tuning plays a large
role in the performance. Evidently, 9000 byte packets, com-
bined with a tuned TCP connection, offer huge performance
benefits. This is seen in Figs 2, and 3. The extent of this
performance gap hides the advantages of jumboframes seen
even under default conditions. In Fig 4, the scale has been
adjusted to more clearly demonstrate the performance benefits
of 9000 byte frames under default conditions.

C. Short Lived Transfer - Results

The experiments above demonstrate the advantage of Jum-
boframes for large file transfers, however, many flows on the
Internet are short and transfer only a small amount of data.
Applications such as web servers often open many small flows
for every host. Email attachments are also usually limited
to a few Megabytes. Therefore, it is important to investigate
how Jumboframes perform over small transactions. To better
define the size of Internet TCP flows, an experiment was per-
formed on google.com.au, au.yahoo.com, facebook.com and
wikipedia.org. Wireshark was used to capture HTTP sessions
to each of these websites.

Table IV shows the number of TCP flows opened in one
page hit. The min, max, mean and sum of the flows are also
shown in Kilobytes. The Facebook and Google pages are quite
sparse compared with the significantly more media rich Yahoo
and Wikipedia (the English page) sites. Evidently, the size
and number of transactions varied between webpages, but the
average flow size is very small. Radhakrishnan [19] et al,
concurs with this finding, stating that most web objects are
relatively small with mean and median sizes of 7.3 KB and
2.4 KB respectively.

These results were used as a basis for the size of our short
lived transfer tests. The average TCP transaction size, across

TABLE IV
AN ANALYSIS OF TCP FLOWS FOR THE MOST POPULAR WEBSITES ON THE

INTERNET. RESULTS SPECIFIED IN KB.

Website Num flows Min Size Max Size Sum Mean
Google 4 0.25 55.53 103.28 25.82
Yahoo 17 0.51 285.63 778.63 45.80

Facebook 7 4.97 59.81 185.98 26.57
Wikipedia 20 0.74 36.22 242.06 12.10

the four web sites was 31371 Bytes or 30.6 Kilobytes. The
largest transaction size was 315670 Bytes or 308 Kilobytes.
The transfer time of a 1048576 Byte or 1 Megabyte file was
also tested. In all of these scenarios, the TCP window would
still be growing at the completion of the file transfer. Thus,
this experiment would test the growth or acceleration of the
TCP’s congestion window. The results of these experiments,
performed over a range of latencies, are shown in Fig 6 and
7.

Numerous studies [20], [19] propose mechanisms to speed
up short TCP transactions. The experimental results in this
paper reveal that large MTUs are effective for this purpose.
In Fig 6 and 7, Jumboframes completed the transfer in less
than half the time of the 1500 byte transaction demonstrating
the significant advantages of Jumboframes in small TCP
transactions.

IV. DISCUSSION

The experiments in Section 3 found that Jumboframes
outperform 1500 byte frames in both large and small file
transfer scenarios. The two reasons that explain Jumboframe
performance in these environments are: superior resistance to
packet loss and faster TCP Growth

A. Resistance to Packet Loss

Packet loss may be caused by congestion or link problems,
but all dropped packets are interpreted as congestion by
TCP. These packet losses cause multiplicative decreases in
TCP’s window size. Equation 2 was proposed by Mathis in
their seminal paper “The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm” [21]. Note that equation 2
uses MSS rather than MTU, but the MSS is simply the MTU
minus the IP and TCP headers. This equation can be used
to describe how packet loss affects throughputs on a WAN
link. This equation also states that: if packet loss is limiting
the connection, the throughput can be doubled by doubling the
packet size [2]. This is one of the frequently missed arguments
concerning packet size.

Throughput <= 0.7× MSS

RTT
√
PLoss

(2)

B. Faster TCP growth

Jumboframes also accelerate the growth of a TCP window.
When a TCP sender starts transmitting, the ICW (Initial
Congestion Window) used is based on the on the guidelines
specified in RFC 5681 [22]. According to this RFC [22], the



Fig. 5. The growth rate of 1500 byte and 9000 byte Transfers

Fig. 6. Completion time of 31372, 315670 and 1048576 byte transfers with
a 100ms RTT

ICW for a 9000 byte MTU connection will be set at the size
of two segments (18,000 bytes). The ICW for a 1500 byte
MTU connection be three segments (4,500 bytes).

After sending these initial segments, TCP will be in a phase
known as slow start. During this phase the TCP sender incre-
ments the congestion window by one segment size for every
new TCP acknowledgement [22]. This phase will continue
until a packet is lost or the congestion window exceeds the
slow start threshold. At this stage, the congestion window
will be reduced and the TCP sender will enter the congestion
avoidance phase. Congestion avoidance is a period of linear
TCP growth. During the congestion avoidance phase, the
congestion window is incremented by one full sized segment
per RTT (Round-Trip Time) [22]. These rules indicate that

Fig. 7. Completion time of 31372, 315670 and 1048576 byte transfers with
a 300ms RTT

growth during congestion avoidance will be six times faster
for 9000 byte frames. To summarise, jumboframe connections
will start with a larger congestion window. Additionally, as
jumboframe segments are approximately 6 times larger than a
standard segment, the window grows faster.

To visualize the accelerated window increase of jumboframe
transfers, downloads of a 1MB file transfer over a 100ms
link were captured in Wireshark. Fig 5 shows the “Stevens”
graph of the 1500 byte and 9000 byte transfer of a 1MB
file. “Stevens” graphs show the progression of TCP sequence
numbers against time. Fig 5 demonstrates the increased ac-
celeration of jumboframes during the exponential slow start
phase.

There are many different schemes [20], [19] being proposed



to speed up the initial stages of TCP. The use of 9000 byte
jumboframes lessen the need ICW modifications currently
being proposed [23].

V. JUMBOFRAME SUPPORT

IP supports large packet sizes. IPv4 supports packet sizes
up to 65,535 bytes. IPv6 supports packets up to 4,294,967,295
bytes. Evidently, the restriction is the Physical/Data-link layer
technologies, such as Ethernet. Jumboframe support has ex-
isted in some Gigabit and 10-Gigabit Ethernet switches for
some time. Many of the Intel networking cards support 9000+
byte frames. Jumboframe support is also inexpensive. Home
user switches, such as the Buffalo WZR-HP-G300NH Gigabit
switch, support Jumboframes.

Jumboframe transfers require support for that packet size
end-to-end across all the link layer technologies. The adoption
problems are similar to those of IPv6. Until support is available
end-to-end, there is little benefit to adopt this technology.
Despite healthy debate [11], IEEE Ethernet standardization
groups have not mandated that 802.3 compliant equipment
support frames sizes significantly larger than 1500 bytes. It is
simply undesirable for the vendors of 802.3 equipment to have
it mandated in modern equipment [11]. If Jumboframes were
mandated in Ethernet, it would break some compatibility with
legacy Ethernet equipment. For many, compatibility is more
important than performance.

VI. CONCLUSION

This paper described the traditional arguments made for and
against the use of Jumboframes. Experiments demonstrated
the performance of Jumboframes in large file transfers. Op-
timal performance was obtained using a tuned TCP stack
and Jumboframes, however, even under default conditions,
Jumboframes still provided significant performance benefits.

A sub-study on web transactions with four popular websites
found that large numbers of small TCP transactions were
opened. Using the size of these transactions as a guide, a
second round of performance tests were performed. For small
transactions, jumboframe connections completed significantly
faster.

The reasons for the superior performance of Jumboframes
were discussed and demonstrated. A paper by Mathis [21]
shows that 9000 byte jumboframe connections are more re-
sistant to packet loss. By investigating RFC 5681 [22], it is
also clear that Jumboframes begin a TCP transaction with a
larger ICW. Furthermore, TCP’s rules [22] also accelerate the
growth of TCP windows in both slow start and congestion
avoidance phases. Wireshark ‘Stevens’ graphs were used to
visualize these window growth differences.

The CPU and overhead problems of 1500 byte frames and
data rate increases will worsen in the future. This problem is
well known. The originality of this work is the experimental
exploration and investigation into jumboframe throughputs
for Internet transfers. It is hoped that this paper encourages
further exploration, discussion and experimentation with Jum-
boframes.

REFERENCES

[1] P. Sayer, “Market Overview: US Ethernet Services,” Forrester Research,
2010.

[2] P. Dykstra, “Gigabit Ethernet Jumbo Frames, And why you should care,”
http://sd.wareonearth.com/p̃hil/jumbo.html, 1999.

[3] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier, “TCP Perfor-
mance Re-visited,” in In IEEE International Symposium on Performance
of Systems and Software, 2003, pp. 70–79.

[4] W. Rutherford, L. Jorgenson, M. Siegert, P. V. Epp, and L. Liu,
“16000-64000 B pMTU experiments with simulation: The case for
super jumbo frames at Supercomputing ’05,” Optical Switching
and Networking, vol. 4, no. 2, pp. 121 – 130, 2007. [On-
line]. Available: http://www.sciencedirect.com/science/article/B7GX5-
4MD46C3-2/2/d52a67bbbed98b275d31fda645473ef5

[5] N. Garcia, M. Freire, and P. Monteiro, “The Ethernet Frame Payload
Size and Its Effect on IPv4 and IPv6 Traffic,” in Information Networking,
2008. ICOIN 2008. International Conference on, jan. 2008, pp. 1 –5.

[6] S. Makineni and R. Iyer, “Architectural Characterization of
TCP/IP Packet Processing on the Pentium; M Microprocessor,”
in Proceedings of the 10th International Symposium on High
Performance Computer Architecture, ser. HPCA ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 152–. [Online]. Available:
http://dx.doi.org/10.1109/HPCA.2004.10024

[7] L. Foundation, “TOE,” www.linuxfoundation.org/collaborate/workgroups/
networking/toe, 2009.

[8] R. Hughes-Jones, P. Clarke, and S. Dallison, “Performance of 1 and
10 Gigabit Ethernet cards with server quality motherboards,” Future
Gener. Comput. Syst., vol. 21, pp. 469–488, April 2005. [Online].
Available: http://dx.doi.org/10.1016/j.future.2004.10.002

[9] R. Stevens, TCP/IP illustrated (vol. 1): the protocols. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1993.

[10] Chelsio, “Ethernet Jumbo Frames, The Good, the Bad and the Ugly,”
www.chelsio.com/assetlibrary/solutions/Chelsio Jumbo Enet Frames.pdf,
2011.

[11] M. Mathis, “Arguments about mtu,”
http://staff.psc.edu/mathis/MTU/arguments.html, 2011.

[12] R. Jain, “Error characteristics of fiber distributed data interface (FDDI) ,”
Communications, IEEE Transactions on, vol. 38, no. 8, pp. 1244 –1252,
aug 1990.

[13] C. Kent and J. Mogul, “Fragmentation Considered Harmful,” in In ACM
SIGCOMM, 1987, pp. 390–401.

[14] M. Mathis and J. Heffner, “Packetization Layer Path MTU Discovery,”
RFC 4821, 2007.

[15] M. Ravot, Y. Xia, D. Nae, X. Su, H. Newman, and J. Bunn, “A Practical
Approach to TCP High Speed WAN Data Transfers,” in Proceedings of
PATHNets 2004. San Jose, CA, USA: IEEE, 2004.

[16] M. Mathis, R. Reddy, and J. Mahdavi, “Enabling High Performance
Data Transfers System Specific Notes for System Administrators,”
http://www.psc.edu/networking/projects/tcptune/, 2011.

[17] M. Hassan and R. Jain, High Performance TCP/IP Networking: Con-
cepts, Issues, and Solutions. Prentice-Hall, 2003.

[18] W. Feng, J. Hurwitz, H. Newman, S. Ravot, R. Cottrell, O. Martin,
F. Coccetti, C. Jin, X. Wei, and S. Low, “Optimizing 10-Gigabit
Ethernet for Networks of Workstations, Clusters, and Grids: A
Case Study,” in Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, ser. SC ’03. New York, NY, USA: ACM, 2003, pp.
50–. [Online]. Available: http://doi.acm.org/10.1145/1048935.1050200

[19] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “Tcp fast
open,” in Proceedings of the 7th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2011.

[20] Michael and Scharf, “Comparison of end-to-end and network-
supported fast startup congestion control schemes,” Computer Networks,
vol. 55, no. 8, pp. 1921 – 1940, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128611000491

[21] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” SIGCOMM
Comput. Commun. Rev., vol. 27, pp. 67–82, July 1997. [Online].
Available: http://doi.acm.org/10.1145/263932.264023

[22] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC
5681, 2009.

[23] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP’s Initial
Window,” IETF Draft, 2011.


