
An Open Tracing System for P2P File Sharing Systems

Danny Hughes, James Walkerdine

Computing Department

Lancaster University

Lancaster, UK

danny@comp.lancs.ac.uk | walkerdi@comp.lancs.ac.uk

Kevin Lee

School of Computer Science

University of Manchester

Manchester, UK

klee@cs.man.ac.uk

Abstract— This paper describes the Open P2P tracing system

which aims to improve the research community’s understanding

of P2P file sharing systems by providing continuous and up-to-

date traffic data which is anonymized and made freely accessible

to all interested parties. It is our hope that this open data set will

grow over time into a resource capable of exposing trends in P2P

network usage and promote research into the socio-technical

factors that drive user behaviour on P2P file sharing systems.

Keywords-component; P2P; File Sharing; Monitoring

I. INTRODUCTION

Since the release of Napster [1] in 1999, peer-to-peer (P2P)
file-sharing has enjoyed a meteoric rise in popularity, to the
point that P2P applications are now responsible for more traffic
than any other Internet application [2]. Given the scale of P2P
traffic, understanding traffic characteristics is of critical
importance and has specific benefits in the context of: i)
provisioning network infrastructure, ii) informing network
policy, iii) informing the design of new P2P applications and
managing existing P2P communities.

Several significant studies of P2P file sharing systems have
been performed. These existing studies have illuminated a
range of P2P characteristics; however, we believe that there
remain significant shortcomings in the current body of research
on P2P file sharing systems. These shortcomings include:

� The extensive use of closed data sets, which prevents the
findings of existing studies being revisited. Furthermore,
as P2P traces may take months or even years to perform,
the use of closed data-sets has led to significant duplication
of effort.

� Trend analysis is poorly supported by existing studies,
which, with a few exceptions [3] [4], are not of sufficient
duration to reveal trends in user behaviour.

� Cross discipline perspective is often lacking in existing
studies, which tend to concern themselves largely with
technical factors.

We hope to address the above shortcomings through the
development of the Open P2P Tracing System which aims to
produce a significant, public and freely accessible data-set. P2P
traffic will be monitored on a long-term basis and made
available in near real-time, allowing the identification of trends
and the revisiting of data points. Access to the data is
simplified as far as possible to encourage the use of this data

set by researchers from non-computing backgrounds such as
sociology and economics.

The remainder of this document is structured as follows: In
section 2 we introduce P2P tracing methodologies. Section 3
discusses existing empirical P2P studies. Section 4 describes
the design and implementation of the Open P2P Tracing
System. Section 5 provides an initial evaluation of system
functionality and finally, section 6 discusses avenues for future
work.

II. P2P TRACING METHODOLOGIES

Empirical studies of P2P systems use one of three tracing
methodologies: network-level tracing, passive application-level
tracing or active application-level tracing, as described in
‘Monitoring Challenges and Approaches for P2P File Sharing
Systems’ [5].

Network-level traces are performed by deploying code on
core or gateway network infrastructure and performing IP-level
packet monitoring. Network-level tracing is transparent to the
P2P network, however, this approach introduces local bias,
resulting from deployment location and accurate identification
of P2P traffic can be highly problematic.

Passive application-level traces are performed by
monitoring the messages passed at the application level. In
modern decentralised file-sharing systems all peers participate
in message passing and therefore passive monitoring can be
achieved simply by modifying a peer to log the messages that it
is required to route. Passive application-level tracing is
transparent and may be performed without access to core
network infrastructure, though the rate at which data can be
gathered using this methodology is significantly lower than that
of network-level tracing.

Active application-level traces address the scalability
shortcomings of passive application-level tracing by employing
an aggressive querying and connection policy wherein the
monitoring peer attempts to reconnect to and interrogate as
much of the application-level network as possible; crawling the
P2P network in order to maximize the size and typicality of
trace data. While this approach improves the quality of trace-
data and the speed at which it is acquired, it does so at the
expense of transparency due to the disruptive effect of repeated
reconnections and high message generation on the P2P system
being monitored.

Section 3 discusses significant empirical studies of P2P file
sharing networks, organized according to the tracing

methodology used. The findings of these studies are
summarized along with their shortcomings.

III. EMPIRICAL STUDIES OF P2P FILE SHARING SYSTEMS

Network-level traces are typically used to record the low-
level characteristics of P2P traffic flows on private networks.
Plonka et al performed the first network-level study of P2P
traffic, which analyzed the bandwidth consumed by Napster on
the University of Wisconsin-Madison campus network in 2000
[6]. Even at this early stage, it was found that P2P traffic
consumed more bandwidth than web traffic. In June 2002, a
university of Washington study [2] analyzed the bandwidth
consumed by Napster and Kazaa, finding that these systems
now consumed 43% of campus bandwidth, triple that of web
applications. This study also provided valuable data regarding
the characteristics of the P2P work-load including typical file-
size and distribution. Gummadi et al. continued monitoring
work at the University of Washington in 2003 with a 200-day
trace of Kazaa [3]. Uniquely this trace was long enough to
observe seasonal variations in traffic and the effect of changing
network policies.

While Network-level tracing is transparent and scalable,
this approach requires access to core network infrastructure and
is subject to local biases, for example, one might expect that
the level of P2P traffic on campus networks would be
dependent upon the usage policy of such networks.

Passive application-level traces are typically used to study
application-level properties in an Internet-wide context. The
first passive application-level trace was performed by Adar and
Huberman in 2000 on the Gnutella 0.4 network [7] to assess
the scale of a problem known as ‘free riding’, wherein users
download from, but do not upload to a P2P file-sharing system.
Adar and Huberman discovered that participation in Gnutella
was highly asymmetric, with only around a third of users
choosing to share files. Hughes et al revisited the results of the
Adar study in 2004 on Gnutella 0.6 [8]. Hughes discovered that
in the intervening years, free-riding had increased from 66% to
85%. Hughes et al performed an additional study in 2005 to
assess the level of illegal pornographic material being
distributed on the Gnutella network [9]. The study found that
an average of 1.6% of searches and 2.4% of responses
contained references to illegal pornography.

Passive application-level monitoring is transparent. Unlike
network-level monitoring, this methodology does not require
access to low-level infrastructure. Unfortunately, in cases
where a very large sample of network traffic must be acquired
quickly, passive monitoring would be unsuitable due to the
small-world properties of modern P2P systems.

Active application-level monitoring is typically used to
study P2P traffic properties in an Internet-wide context, where
a very large body of trace data is required. Ripneau et al [10]
performed the first active application-level trace of the Gnutella
network in 2001. This study mapped the Gnutella network and
found that the structure of the network was such that it would
not scale to very large number of nodes. Saroui et al. [11] later
performed a one month crawl of Gnutella in May 2001 and
recorded each peer’s IP address, latency, bandwidth and files
shared. Chu et al [12] performed a study to quantify availability

on Gnutella in 2002. Chu found a strong correlation between
time-of-day and node availability and proposed a model to
describe peer availability.

Active application-level monitoring is relatively easy to
deploy and data gathered in this manner should not contain
local bias; however, the aggressive reconnection and
interrogation methodology employed makes this approach
invasive and limits its scalability.

The studies described in this section have provided valuable
insights into the characteristics of P2P traffic, however; when
considered as a body of work, they demonstrate the
shortcomings described in section 1. Studies often tend to focus
on technical factors and, with the exception of Hughes [9] do
not include interdisciplinary work. Also, with the exception of
Gummadi [3], these studies are not of sufficient length to show
trends in user behaviour. Finally and perhaps most critically, all
of these studies use closed data sets, preventing their findings
being revisited or verified.

The work discussed in this survey demonstrates the
advantages of each tracing methodology in certain situations.
We will now examine the suitability of each methodology for
supporting the requirements outlined in section 1.

� Promoting re-use of trace data: Tracing methodology
has a direct impact on the reusability of trace data.
Specifically, as network-level tracing introduces local bias,
data gathered in this way would typically be of interest to a
smaller audience.

� Supporting long-term trend analysis: Tracing
methodology has a direct bearing on the feasibility of
long-term tracing. A disruptive or invasive approach is not
likely to be tolerated for very long by a P2P file-sharing
community. For this reason, long-term active application-
level tracing is infeasible.

� Encouraging cross-discipline research: While tracing
methodology has no direct bearing on facilitating cross-
discipline research, fields which hold promise for
understanding P2P communities, such as sociology and
economics tend to be interested in high-level system
properties, which are most readily available through
application-level tracing.

It is therefore clear that in the context of providing an open,
reusable and long term body of trace data; passive application-
level monitoring is the most viable tracing methodology.

IV. DESIGN OF AN OPEN P2P TRACING SYSTEM

 This paper has made the case that an open, easy to
access and long-term P2P trace is required to improve our
understanding of P2P file sharing systems. This section now
discusses the design and implementation of such a system: The
Open P2P Tracing System. As previously described, the system
will use a passive application-level tracing methodology [5] to
gather data. The implementation of this functionality will now
be described.

A. Tracing Functionality

Implementation of tracing functionality is dependent upon

the P2P system being monitored. As the Open Tracing System

aims to provide a widely reusable data set, we intend to

monitor several of today’s most popular P2P systems,

including Gnutella [13], Fasttrack [14], eDonkey [15],

DirectConnect [16] and Bittorrent [17]. In order to minimize

the time required to port monitoring code to additional P2P

networks we implement logging functionality by modifying

existing open source clients available for each P2P network.

Analysis of such clients, which include Jtella [18], Open

DirectConnect [19] and Azureus [20] revealed that each

shared elements of common structure. Of particular

significance in terms of implementing tracing support was that

each client implements a single routing component which is

used to process incoming and outgoing messages. It is into this

routing component that we insert monitoring code. This is

shown in Figure 1.

Figure 1. System Architecture

In order to ensure that sufficient data is gathered, the

system is capable of maintaining a large number of network

connections, for example by connecting as an Ultrapeer when

monitoring Gnutella. Furthermore, in order to ensure data is

representative, the system periodically re-connects to different

areas of the P2P network.

B. Maintaining User Anonymity

Publication of IP addresses and other identifying data is
highly ethically dubious and would likely have a number of
undesirable effects. Studies have suggested that P2P users are
migrating to those file sharing systems which are more difficult
to monitor [21]. It is therefore likely that publication of user
data from one P2P system would drive users to other,
unmonitored systems or perhaps even result in the P2P
community excluding the tracing client. Recent research [9]
has also suggested that the level of perceived anonymity
offered by P2P networks has a significant effect on user

behaviour. This implies that the publication of IP addresses
might cause a significant ‘observer effect’.

While maintaining anonymity is desirable, a globally
unique user identifier (GUID) is often required to accurately
track the behaviour of users over time. For this reason, as data
is gathered, all IP addresses and user-names are switched for a
randomly assigned GUID. Any additional information
encapsulated in the original identifier, such as country and
service provider, is resolved and stored separately in the
database.

Replacing real world identifiers with a randomly assigned
but consistent GUID prevents third parties from associating
trace data with individuals. However, long term this method
would lead to the accumulation of data on millions of P2P
users, which gives rise to significant security implications. We
have therefore arrived at a compromise solution, wherein we
only attempt to ensure that GUIDs remain unique during a
typical period of connection (session), after which time the
IP/GUID mapping is discarded and, if that peer is observed
again, it will be assigned a new GUID.

This compromise between maintaining anonymity and user
tracking is evaluated in section 5.

C. Data Collection and Storage

Due to the scalability problems associated with resource
discovery on decentralized P2P networks, P2P systems have
increasingly moved towards Super-node architectures such as
the architecture used in Kazaa [14] or the Gnutella 0.6 ultra-
peer scheme. Concurrently, the scalability problems which
arise from the use of a single indexing server have prompted
centralised systems to move towards more decentralized
architectures that utilize user-hosted indexing servers as
demonstrated by DirectConnect and eDonkey. In both cases,
the presence of peers on the application-level network which
are responsible for routing a greater proportion of messages
facilitates application-level monitoring. By connecting to the
network as a Gnutella ‘ultra-peer’, a Direct Connect ‘hub’ or
eDonkey ‘server’, a greater proportion of traffic can be
captured using passive application-level monitoring.

As we intend that tracing data should be made accessible to
a broad audience, we use a standard MySQL database for data
storage. As SQL is currently the most popular database
technology we hope this will maximize the accessibility of the
system. A separate SQL database is maintained for each P2P
system being monitored and each of these databases contains
per-message tables. Each message that is stored in the database
is time-stamped, facilitating the retrieval of data for a specific
instant or time-period. In order to maintain flexibility, the
system also logs all message types as it is difficult to predict in
advance what data may be of interest to other researchers

D. Data Access and Presentation

Alongside raw SQL access, we also provide a web-based

method of data access for interested parties. We hope this will

allow the system to support a range of users with diverse

requirements. We envision that three classes of user will make

Open Source P2P Client

Message Routing

P2P Network

Application Functions

SEARCH

BROWSE…

DOWNLOAD Database

Raw SQL

Web Access

Data Processing

Logging Code

use of the system: i) corporate users, ii) computing researchers

and iii) non-computing researchers.

Corporate users of the system might include P2P

developers, who could use the system to assess the market

penetration of their P2P products, and the music and film

industry that might use the system to assess the extent to

which their products were being distributed on P2P systems.

To facilitate access for corporate users in particular, the

system supports on-the-fly generation of common graphs

illustrating both current and historic data based on a number of

criteria including: P2P client popularity, file popularity and

availability, level of user participation and free-riding. The

system is also capable of exporting this same data in common

formats such as comma separated value (CSV) files and Excel

(XLS) spreadsheet documents. To further facilitate the

association of P2P traffic with real-world factors, graphical

data is annotated with news articles containing references to

P2P, which are culled from RSS feeds. This functionality may

be used to answer questions such as whether high-profile

copyright prosecutions increase levels of free-riding, or

whether news about a specific P2P client affected its level of

use.

Figure 2. Web Interface of the Open Tracing System

Computing researchers are most likely to be interested in

accessing raw traffic data provided by the system. This is

possible through direct access to the SQL database which

allows more versatility in interrogation than hard-coded trend

data that the system provides.

Non-computing researchers are supported by the systems

ability to export traffic data in CSV and XLS formats, which

can both be accessed using common office software. It is also

possible that ‘casual’ Internet users may find this data of

interest, though the requirements of these users have not been

explicitly considered in the design of the system. The web

interface is shown in Figure 2 below.

E. Implementation Status and Access

The current implementation of the Open Tracing System

focuses on the tracing of the Gnutella network, the results of

which are being used as a basis to evaluate system

functionality (as will be discussed in section 5). Adding

support for tracing additional networks is being implemented

in parallel to this.
The system is currently at a pre-alpha stage and therefore

access to it must currently be arranged through the authors of
this paper. However, we are actively looking for case studies,
such as those described in section 6, which we hope will guide
system development. We anticipate that, in due course, the
open P2P tracing system will be made freely accessible online.

V. INITIAL EVALUATION RESULTS

We have begun analyzing the performance of the Open P2P
Tracing System in terms of its network, computational and
storage requirements. The system is hosted and evaluated on a
2.8GHz Intel P4 with 512MB RAM and a 100GB hard drive
connected to the Internet via a high-speed academic network.

In order to minimize invasiveness during evaluation, the
modified tracing peer maintains a single ultra-peer connection
and allows unlimited incoming leaf-node connections. As
previously described, in order to ensure the typicality of our
trace, the system periodically reconnects to the network at an
interval of six hours.

A. Networking Requirements

The local network requirements of tracing Gnutella have
been assessed through experimentation, while gathering trace
data. This reveals that the system consumes an average
bandwidth of 98kbps as a result of routing resource discovery
messages and an additional 9kbps due to routing control
messages, which is commensurate with results obtained
elsewhere [22]. The networking requirements of passive
application level tracing can easily be met by our available
networking infrastructure.

B. Storage Requirements

The storage requirements of our tracing methodology were
assessed during the gathering of a single-connection Ultrapeer
trace of the Gnutella network, conducted over a period of one
month. Experimental results are shown in Figure 3.

The storage requirements of tracing the Gnutella network
using MySQL’s standard data compression range from a
minimum of 40MB per day to a maximum of 95MB per day.
While this makes long-term tracing feasible using standard
desktop storage hardware, available storage capacity still forms
the bottleneck in our tracing capability and for this reason, only
one tracing connection per monitored network will be
maintained by the Open Tracing System for the immediate
future.

Storage Requirements of Tracing

0

10

20

30

40

50

60

70

80

90

100

D
a
y
0
1

D
a
y
0
3

D
a
y
0
5

D
a
y
0
7

D
a
y
0
9

D
a
y
1
1

D
a
y
1
3

D
a
y
1
5

D
a
y
1
7

D
a
y
1
9

D
a
y
2
1

D
a
y
2
3

D
a
y
2
5

D
a
y
2
7

M
e
g

a
b

y
te

s

QUERYHIT

QUERY

PONG

Figure 3. Storage Requirements of Tracing

C. Anonymization

As previously discussed, the anonymization approach used

is a compromise between storing large volumes of user

records and providing a consistent GUID to support session

tracking. During our month long trace of the Gnutella

network, we performed a number of experiments to determine

an optimal IP discard time.

We first monitored session lengths across our trace and

found that more than half lasted less than one hour and that

more than 80% less than two hours, this is commensurate with

results obtained elsewhere [11]. Figure 4 shows the

relationship between IP discard time and the percentage of

sessions where any data would have been lost.

Lost Session Data Due to ID Discard

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

ID Discard Time (Minutes)

S
e
s
s
io

n
s
 W

it
h

 L
o

s
t

D
a
ta

 (
%

)

Figure 4. Effect of ID Discard Period on Lost Session Data

The ‘long tail’ of the graph shown in Figure 5 is due to the
presence of a small number of highly available peers with
server-like characteristics and implies that total session
coverage would require an unfeasibly long ID-discard period,
in turn leading to the maintenance of very large numbers of IP
addresses.

Effect of ID discard time on Stored IDs

0

200

400

600

800

1000

1200

1400

1600

1800

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Day of Trace

S
to

re
d

 I
P

 A
d

d
re

s
s t = 10

t = 8

t = 6

t = 4

t = 2

Figure 5. Effect of Discard-Period on Number of Stored IPs

Figure 5 explores the relationship between discard time

and the number of IPs stored by the system. The graph shows

that the number of stored IP’s varies significantly over the

period of our trace and based upon the discard time used.
Based upon these results, we have selected a discard time of

6 hours. This period successfully captures 93% of sessions as
shown in Figure 5 and results in the open tracing system
storing an average of fewer than 800 IP addresses at any one
time as shown in Figure 6.

VI. SUMMARY AND FUTURE WORK

This paper has highlighted significant shortcomings in the
existing body of work on P2P monitoring, and described the
implementation of a large-scale, open and ongoing trace that
can be freely accessed by researchers from diverse
backgrounds. Based upon an extensive review of existing P2P
studies, we have selected a non-invasive tracing methodology
that we will incrementally apply to five of today’s most popular
P2P file sharing networks. At the current time, tracing
functionality has been implemented for the Gnutella network
and evaluation of the system shows that our methodology is
capable of gathering, anonymizing and logging Gnutella traffic
in real-time using standard desktop hardware. The system
facilitates access for users from diverse backgrounds- a direct
interface to the SQL database allows versatile access for
computing researchers, while a simplified web interface and
on-the-fly computation of common P2P characteristics such as
the level of ‘free riding’ and relative file-type popularity
facilitate access for those from non-computing fields.

In the short term, future work will focus on the
implementation of tracing functionality for additional P2P
systems. In the longer term we intend to investigate
incorporating Natural Language Processing mechanisms into
the system to allow the user to perform more sophisticated
analyses. In addition to this we will also examine the feasibility
of using technologies such as Aspect Oriented Programming to
assist in the non-invasive monitoring of P2P systems, and also
to investigate alternative, more scalable data storage solutions.

In parallel to extending tracing support, we intend to
evaluate the usefulness of the system as a tool, using a number
of case studies. Part of this will include working with
psychology researchers to investigate the process of group
formation in P2P communities. This will build upon our
previous work [9] and allow us to explore the extent to which
the system can support inter-disciplinary research. External
organisations have also expressed interest in using the system,
in particular the U.S. Patents Office who are interested in
investigating the extent to which users accidentally share
private files. Feedback from these case studies will help inform
further refinement of the system.

REFERENCES

[1] Napster: www.napster.com

[2] “An Analysis of Internet Content Delivery Systems”,

Saroiu S., Gummadi K., Dunn R. J., Gribble S. D., Levy

H. M., published in the proceedings of the 5th

International Symposium on Operating Systems Design

and Implementation (OSDI), San Francisco, CA,

December 2004.

[3] “Measurement, Modeling and Analysis of a P2P File-

Sharing Workload”, Gummai K., Dunn R. J., Saroiu S.,

Gribble S. D., Levy H. M., Zahorjan J., published in the

proceedings of the 19th symposium on Operating Systems

Principles (SOSP’03), Bolton Landing, New York,

October 2003.

[4] “Free Riding on Gnutella Revisited: the Bell Tolls?”,

Hughes D., Coulson G., Walkerdine J., published in IEEE

Distributed Systems Online, volume 6, number 6,

Junel2005.

sdl2.computer.org/comp/mags/ds/2005/06/o6001.pdf

[5] “Monitoring Challenges and Approaches for P2P File

Sharing Systems”, Hughes D, Walkerdine J., Lee K., in

the proceedings of the 1st International Conference on

Internet Surveillance and Protection (ICISP’06), Cap

Esterel, France, August 2006.

[6] “Napster Traffic Measurement”, Plonka D., University of

Wisconcin-Madison, March 2000, available online at:

http://net.doit.wisc.edu/data/Napster

[7] “Free Riding on Gnutella”, Adar, E., Huberman, B., First

Monday, October 2000, available online at:

www.firstmonday.org/issues/issue5_10/adar/

[8] “Free Riding on Gnutella Revisited: the Bell Tolls?”,

Hughes D., Coulson G., Walkerdine J., published in IEEE

Distributed Systems Online, vol. 6, no. 6, June 2005.

csdl2.computer.org/comp/mags/ds/2005/06/o6001.pdf

[9] “Is Deviant Behaviour the Norm on P2P File Sharing

Networks?”, Hughes D., Gibson S., Walkerdine J.,

Coulson G., in press in IEEE Distributed Systems Online,

vol. 7, no. 2, February 2006.

csdl.computer.org/comp/mags/ds/2006/02/o2001.pdf

[10] “Mapping the Gnutella network”, Ripeani M., Iamnitchi

A., Foster I., published in IEEE Internet Computing., vol.

6, no. 1, pp. 50-57, Jan. 2002.

[11] “Measuring and Analyzing the Characteristics of Napster

and Gnutella Hosts”, Saroiu S., Gummadi K., Gribble S.

D., published in Multimedia Systems 9, pp 170-184,

2003.

[12] “Availability and locality measurements of peer-to-peer

file systems”, Chu J., Labonte K., Levine N., published in

ITCom: Scalability and Traffic Control in IP Networks.

July 2002, vol. 4868 of Proceedings of SPIE.

[13] “The Gnutella Protocol Specification v0.6”:

rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

[14] “Kazaa”: www.kazaa.com

[15] “eDonkey”: www.edonkey2000.com

[16] “Direct Connect”: dcplusplus.sourceforge.net

[17] “Bittorrent”: www.bittorrent.com

[18] “Jtella”: jtella.sourceforge.net

[19] “Open DirectConnect” sourceforge.net/projects/odc/

[20] “Azureus” azureus.sourceforge.net/

[21] “Is P2P Dying or Just Hiding?”, Karagiannis, T., Broido,

A., Brownlee, N., Faloutsos, M., In the Proceedings of

Globecom 2004, Dallas, U.S., December 2004.

[22] “Structured and Unstructured Overlays Under the

Microscope - A Measurement-based View of Two P2P

Systems That People Use”, Qiao Y., Bustamante F.E.,

published in the Proceeding of the USENIX Annual

Technical Conference, Boston, USA, May 2006.

