FMOODS/DAIS 2003 Student Workshop

Proceedings

Formal Methods for Open Object-based Distributed Systems
and Distributed Applications and Interoperable Systems

FNOODS
DAIS

18t h Novenber 2003
Pari s, France

http://fedconf.enst.fr/

Workshop Committee

Workshop Organisers:

Philip Greenwood
Computing Department, Lancaster University p.greenwood@lancaster.ac.uk

Kevin Lee
Computing Department, Lancaster University leek@comp.lancs.ac.uk

Matthias Zenger
Swiss Federal Institute of Technology
matthias.zenger @epfl.ch

Lynne Blair —- FMOODS Liaison
Computing Department, Lancaster University Ib@comp.lancs.ac.uk

Programme Committee:

Andresas Ulbrich ulbi @ivs.tu-berlin.de

Cyril Carrez carrez@gervaise.enst.fr

Daniel Buenzli Daniel.Buenzli @epfl.ch

Erika Abrahdm eab@informatik.uni-freiburg.de
Jennifer Tenzer j.n.tenzer@sms.ed.ac.uk
Jerome Hugues hugues@enst.fr

Karen Henricksen kmh@dstc.edu.au

Kevin Lee leek@comp.lancs.ac.uk

Ludovic Henrio ludovic.henrio@sophia.inria.fr
Matthias Zenger matthias.zenger@epfl.ch
Nirman Kumar nkumar5@cs.uiuc.edu

Peter Rigole peter.rigole@cs.kuleuven.ac.be
Sebastian GutierrezNolasco seguti @ics.uci.edu
Shiva Chetan chetan@uiuc.edu

Thomas Strang thomas.strang@dir.de

Viktor S. Wold Eide viktore@simula.no

FMOODS/DAIS 2003 Student Workshop

The combined “Forma Methods for Open Object-based Distributed Systems and
Distributed Applications and Interoperable Systems” workshop is intended for PhD
students working within the area of formal method support for Open Object-based
distributed systems and technologies/platforms for reconfigurable, scalable, and
adaptable distributed systems. The topics of the workshop include but are not
restricted to:

. Formal models and techniques for specification, design or analysis

. Testing, validation and verification

. Formal support for software development

. Frameworks for modelling, specifying, monitoring and managing context-

aware applications

. Support for reconfiguration, self-organisation and autonomic behaviour

. Foundations and applications of web services

. Formal models for coordination, components and component based software

. Semantics of object-oriented, component-oriented and aspect-oriented

programming languages and systems

PhD Workshop Session 1 (Session Chair — Phil Greenwood)

"Innovative Concept of Generic System Supervision” A.
Sadovykh

"Operational ASM Semantics behind Graphical SEAM
Notation" I. Rychkova, A. Wegmann, P Balabko

"Object-Oriented Graph Grammars' A. Ferreira

"Assembling Contracts for Components' F. Legond-Aubry,
D. Enselme, G. Florin

Coffee Break (10.45-11.05)

PhD Workshop Session 2 (Session Chair — Kevin Lee)

"Enabling Re-Configurability on Component-based
Programmable Nodes' J.Ueyama et a

"Why is Service-Orientation Necessary for Event
Corrdation?' A. Hanemann, D. Schmitz

"Aspect Testing Framework" D. Hughes, P. Greenwood, L.
Blair

"SEDAM: Service Discovery in MANETS exploiting
Asymmetric Mobility Patterns’ G. Treu

9.00-12.45

Innovative Concept of Generic System Supervision

Andrey SADOVYKH

Laboratoire d’Informatique, Université Paris 6 (LIP6)
8, rue du Capitaine Scott, 75015 Paris, France
Andrey.Sadovykh@lip6.fr

Abstract. Growing complexity of distributed engineering, simulation and
learning systems requires capability to effectively monitor and supervise remote
components. Author's PhD research aims at developing a generic concept of
supervision to achieve greater portability, interoperability and to make building
of comprehensive supervision system as simple as possible. According to this
goal and considering the state of the art in middleware and supervision
technologies, an open, modular, agent-based middleware concept is proposed.
The supervision middleware is based on Web-Services framework and uses
XML-based language for inter-agent communication. SOAP protocol, as a basis
of a transport layer, allows straightforward development of highly portable
supervision system. Modular architecture provides capability to integrate third-
party agents and to benefit from supervision at different levels such as
Application, Network, System.

1 Introduction

The PhD research is performed in the frame of GeneSyS project (IST-2001-34162)
co-funded by the Commission of the European Community (5th Framework). EADS
SPACE Transportation (France) is the project Coordinator, with University of
Stuttgart (Germany), MTA SZTAKI (Hungary), NAVUS GmbH and D-3-Group
GmbH (both of Germany) as participants. GeneSyS was started in March 2002 and is
planned to be completed in September 2004 [1]. Although the final concept and
implementation aspects as revealed in the article are the results of a tight collaboration
between all the involved researchers, author contributed to the conception,
implementation and results evaluation as a representative of EADS-ST. The
contribution is emphasised in the concept and implementation sections.

1.1 Motivation

There are several supervision frameworks currently available such as SNMP [2],
JMX [3] and Corba [4], which are used in various supervision systems like Tivoli
(from IBM), OpenView (from HP) and NAGIOS. They are aimed at different aspects
of monitoring starting from operating systems through network and up to
applications.

Andrey SADOVYKH

However most of them have several constraints, some of them are mentioned in the
list below:

o [nteroperability issues: Components written on different languages using different
toolkits, which are supposed to use the same architecture specification , may not be
capable to co-operate full scale.

o Components portability: Often components are build to work only under their
native operating systems like MS-Windows or Linux. They are very sensible to
transport mechanism and more generally speaking to low level communication
protocols.

o Development/deployment complexity: Many commercial applications have
proprietary APIs that makes it difficult to create new agents and plug them to
existing supervision system.

o Non-flexible architecture: When agent and visualisation tools are released in the
same component, upgrades of console impact agent functionality and visa versa.

o Dedication to a particular monitoring layer, lack of comprehensive solutions.: For
instance, there exist various application layer tools to supervise Oracle database. It
would be very useful to get simultaneously system information and network
statistics to better control the system.

These constraints complicate integration between third- party monitoring tools to
ensure system control on all the levels. In the meantime, proprietary solutions slow
down pace of development of the whole domain.

The PhD research challenges to propose an open, generic modular and
comprehensive supervision concept, which is due to solve or to alleviate the above
mentioned problems, and to validate this concept on prototype implementation in
various industrial contexts.

Following section intends to give an example of a real live industrial problem.

Preliminary Design Review.

The Preliminary Design Review (PDR) [12] is a major mile stone used in EADS-
ST during the development of spacecrafts. The GeneSyS took the Automated Transfer
Vehicle (ATV) PDR as a validation scenario (the real PDR has been performed
traditional way). ATV is used to service and to reboost the ISS (International Space
Station).

This Programme is led by EADS-ST as Prime contractor on behalf of ESA
(European Space Agency). During the Program life-cycle several reviews are planed.
The PDR is one of the first of them [12]. During a PDR, engineers from different
countries collaborate on ATV design documentation, create Review Items
Discrepancies (RID), meet on-line to discuss RIDs and possibly release Change
Proposals. To support these activities a Distributed Engineering system, called PDR
application, is applied.

This system consists of a document repository, called Engineering Database (EDB)
server, and video conference server which routes H.323 and T.120 protocol streams
and manages sessions (on-line meetings). The EDB server contains thousands of
documents. Both servers support up to one hundred users simultaneously. Review
meetings involves up to fifty engineers.

Innovative Concept of Generic System Supervision

To efficiently manage the PDR process, a specific supervision solution is required.
The supervision is needed for operating systems, network and application involved.

Although the servers are hosted on Linux, client applications, documentation front-
end and video chat, are run under Windows. The network is heterogeneous, since
reviewers are located in different countries and they use various server access means,
including ISDN and Ethernet networks. Moreover, some client hosts are hidden by
firewalls and network address translation. As for application layer, EDB is built using
Java e-business solutions and conference server developed on C++ and uses PHP
based application for session management. These constraints shape the supervision
solution.

1.2 State of the Art

This section lists available technologies and points at some of the researches held
in the domain of the distributed supervision.

Current supervision technologies:

SNMP: Simple Network Management Protocol [2] is the most widely used protocol
for the management of IP based networks. Its concept also allows management of end
systems and applications using specific Agents and Management Information Bases.

FIPA: The Foundation for Intelligent Physical Agent [5] is a non-profit
international organisation that promotes the industry of intelligent agents by
developing specifications supporting interoperability among agents and agent-based
applications. These specifications include Abstract Architecture and FIPA Agent
Communication Language.

JMX: Java Management Extension [3] is a SUN specification describing the design
patterns of smart Java agents for application and network management. The JMX
propose a three-layer architecture comprising Instrumental level, Agent level and
Distributed Services level.

OMG: Corba and Corba Component Model technologies [4] have embedded
distributed objects management service, which is highly used in the modern
supervision frameworks like Tivoli (IBM).

W3C - Web Services: The Web Services is an E-business technology [8] for world-
wide applications and based on SOAP, WSDL, UDDI [6], XML-based protocols for
service interaction, description and lookup. Thus this can be used for supervision data
exchange. For example, WSDM Technical Comity, tries to define web services
management of distributed resources. The work is ongoing.

The following table outlines a comparison of the most important parameters to
achieve the declared goals.

Table 1. Middleware technologies comparison

Criteria: FIPA CORBA JMX Web Services
Portability:
Protocol Binary: Binary: GIOP Binary: RMI XML based

Proprietary, or Servlets over :SOAP

Andrey SADOVYKH

TCP/IP based HTTP
Languages C/C++, Java Many Java Many
languages. languages.
Depending on Depending on
realisation realisation
Operating Systems Windows, Windows, Java enabled Windows,
Linux, Unix Linux, Unix platforms Linux, Unix
Commodity :
Services: Embedded More than 5, Directory and Capability to
Directory and including Naming plug Directory
Naming Directory, services and Naming
services, Naming, service.
Repository Transactions
etc. services
Number of realisations More than 5 More than 10 Sun More than 20
Development Medium High Medium Medium
complexity
Applicability to PDR scenario:
Operating Systems yes yes yes yes
Network Protocols yes yes yes yes
Firewall Transparency no no no yes
Programming No support for No support for No support for yes
Languages PHP PHP PHP, C/C++
Other points C/C++, Java Difficult to Great support E-business
toolkits are not design and for E-business technology
interoperable deploy development

Relevant Research Projects [7]:

Supervision related projects: ANDROID, MANTRIP, SHUFFLE projects are
mostly aimed at network supervision. There are also projects related to system
resource supervision like AgentScape and OPENDREAMS.

Agents management related projects: AgentLight and LEAP projects are dedicated
to the mobile platforms based on J2ME [3] and FIPA. AgentCities project proposes
FIPA world-wide network. SAFIRA project address real-time multi-agent middleware
domain.

Intelligent agents related projects: Agent Academy and RACING projects are
concentrated on a data-mining framework for intelligent agent. PISA project deals
with development of security software agents for the Internet and E-commerce.

2 Concept

The state of the art shows that there is no off-the-shelf solution that fits all the
requirements as expressed earlier in this document. However, existing paradigms can
be applied to build a new generic supervision concept.

Analysing and synthesising the current supervision frameworks, the basic concept
of the present research work has been determined. This concepts is also one of the
main outcome and foundation stone of the GeneSyS project. The final, more detailed,

Innovative Concept of Generic System Supervision

concept has been developed by mapping this concept to possible technical solutions.
Therefore, functional services and its physical implementation has been distinguished
that emphasises the fact that the concept is not linked to a particular technology.

2.1 General Concept

The basic functionality that generic supervision solution should have are expressed

here-by:

The supervision system should be simple to connect and to extend it with advanced
capabilities (3d party tools, summarisers, intelligent agents, consoles).

Components should be portable and easy to develop, using well-known, standard
technologies and patterns (development guidelines).

High level of flexibility requires separation of monitoring tools from visualisation
application and communication bus (3-layer architecture).

The system should have relative transparency on the protocol and programming
API levels (like CORBA GIOP or W3C SOAP).

Monitoring tools or information should be described in standard and programming
language independent manner (meta-language like CORBA IDL or W3C WSDL).
The data source lookup, the data persistency and notification services should be
provided (like CORBA services or UDDI).

—_— -
Monitored o ‘/’;\’a

Entity | - f
Common

generic = ”
: " en’
Mopitoring ART (Fil?gn‘nq i Console
Agent sumariser) Agent

Common
Protocol
Agent-CORE

Common
Protocol
Agent-CORE

Common
Praotocol
CORE-CORE

Communication Server
CORE

Communication Server
CORE

Common
Protocol
Agent-CORE

Directory .
e Repository

GeneSyS Middleware

Fig. 1. High level overview of basic architecture

According to the previous statements, Figure 1 depicts general building blocks and

components of the basic architecture as follows:

Andrey SADOVYKH

e Monitoring Entity provides monitoring information to the Agent. It can be SNMP
MIB, Linux proc file system or even an API, for example Java Media
Framework.

e Monitoring Agent implements an interface to the entity which is being monitored.
Depending on its purpose, it stores monitoring data locally or forward it further to
other agents via a Connector and Communication Bus (Central box in the Fig. 1).

o Console Agent is also plugged to Communication Bus via a Connector. It should
process the data received from other agents and visualise it in a user-friendly
form. One of the developers goals is to design a data massage format to allow
building of an universal console that can represent all type of data, Generic
Console.

o Connector plugs agents to the Communication Bus and provides for
communication transparency. Connector can be a specific transport layer API,
portable adapter or a protocol. Thus, it help in development of new agents
simplifying communication with the Communication Bus.

o Communication Bus (Communication Server, Core) is a data transport facility
comprising message formats, network protocols, databases and specialised
servers. Communication Bus keeps agent locations and descriptions on a
Directory Server. For data persistency, it can also store the messages in a
Repository.

e Directory Server is to provide with publish/subscribe and look-up services.

® Repository is purposed to log collected data.

According the requirements, the Communication bus should have a platform
independent implementation and manage data exchange in a standardised manner.
Certain flexibility should be achieved by separating visualisation facilities from the
instrumented applications connected to monitored entity.

The Agents have been classified as Producers (Monitoring agents) and Consumers
(Console agents). The Complex Agents implement both Producer and Consumer
paradigms. For example, providing summarisation, data analysis, proxy capability,
the agent should be a consumer for some kind of information and should produce
another. For higher flexibility and standardisation, the Directory Server and
Repository implement the Agent paradigm too.

All middleware technologies mentioned earlier can be used to build the required
system. The application management requires special portability of the components.
Extending existing application with supervision can be quite difficult. From our point
of view, Web Services have necessary and cost effective means and could be used in
the transport layer of a new supervision architecture.

2.2 Web-Services Implementation

As a mapping of the requirements onto Web-Services concept [8], the following
architecture is proposed.

Innovative Concept of Generic System Supervision

Register/
Unregister/
Update_registration/
Subscribe/
Unsubscribe Register/
Unregister/
Status Update_registration
Status/
Subscribe/
LookUp Unsubscribe
Agents List
Query

> | Producer
m

Fig. 2. Web-Services implementation of the generic supervision middleware.

In this picture, Consumer corresponds to Client of Web-Services concept and
Consuming Agent of basic concept from previous section. Producer corresponds to
Service and Producing Agent. The Core plays a role of directory and naming server.
The Communication bus, in Web-Services implementation, is integration of the Core,
Web-Services protocols and data message format. The Consumer and Producer
register their location and abilities in the Core. The Consumer directly communicates
with the Producer using Query/Response and Publish/Subscribe via SOAP protocol.
Interfaces to the components are described in WSDL.

Our innovation is specification of the monitoring and service messages using XML
based language specific to problematic and similar to FIPA ACL. In our specification,
the message includes a header part containing addresses and timestamp and a body
part containing a monitoring or service message. The message types are described in
XSL (XML Schema Language), which allows comprehensive description of all
details. This message classification permits to find an agent not only by agent name or
location but also by monitoring capability it provides. SOAP, as a transport, provides
high level of portability. SOAP was ported to HTTP, FTP, SMTP and have some
binary realisations for better performance. Adapters for Java RMI and Corba GIOP
are available and allow co-operation with existing supervision frameworks.

Due to the use of WSDL mentioned in state of the art and XSL, the core can be
easily extended with a global UDDI registry [6].

High level of standardisation allows building generic visualisation tools, Generic
Console concept mentioned earlier.

2.3 Results So Far

Recently, the validation phase of the first prototypes has been finished. Agents for
monitoring operating system, network, databases, GroupWare applications were
validated within the domain of distributed engineering in space industry. Moreover,
agents were developed using Java AXIS, C++ gSOAP and .NET toolkits and
NuSOAP for PHP, that proved a great portability of the chosen solution. Generic and

Andrey SADOVYKH

application specific monitoring consoles have been used to perform world wide
validation scenario involving international partners. Distributed PDR scenario has
been played with GeneSyS partners spread in France, Germany, Hungary and Russia.
Evaluation comments of real users have been gathered and exploited to allow
improvement of the concept. A new version is planned for implementation.

The validation process proved that, although visualisation consoles still should be
improved, the developed components provide valuable monitoring information.

2.4 Future Plans

New versions of prototypes will address control and security issues. The
development will focus on visualisation tools, intelligent agents and co-operation with
other supervision solutions. Astronauts training scenario will require design of new
agents for real-time simulators monitoring, which will extend application monitoring
subject.

3 Conclusions

The concept is innovative application of web-services technology. Proposed
supervision framework can be useful in different kinds of distributed systems and
scenarios such as distributed simulation [9], distributed system engineering [10] and
distributed learning [11]. The article addresses various industrial contexts, modern
technologies and research domains.

References

. GeneSyS project official web-site: http://genesys.sztaki.hu

. Simple Network Management Protocol http://www.snmp.org

. Java Management Extension http://java.sun.com

. Object Management Group http://www.omg.org

. Foundation for Intelligent Physical Agent http://www.fipa.org

. World Wide Web Consortium specifications http://www.w3c.org and UDDI organisation

http://www.uddi.org

. Agentlink project http://www.agentlink.org

. Web Services organisation http://www.webservices.org

9. J-E Bohdanowicz, A. Laydier, P. Chliaev, A. Vankov, V. Voloshinov, A. Sadovykh:
GeneSyS Project: Supervision of Distributed Systems (03E-SIW-043). EuroSIW 2003
Conference Proceedings, Stockholm, Sweden (2003).

10. A. Sadovykh, S. Wesner, J-E Bohdanowicz: "GeneSyS: A Generic Architecture for
Supervision of Distributed Applications". EuroWeb 2002 Conference Proceedings, Oxford.

11. L. Arguello, A. Vankov, P. Chliaev, V. Voloshinov, V. Krivtsov, O. Estehin, A. Alyoshin,
A. Vislotsky, A. Sadovykh: Distributed Learning with Online Simulations for ISS Payload
Training. ESA/ESTEC Conference Proceedings, Noordwijk, The Netherlands (2002).

12. ECSS Space Engineering, System Engineering(ECSS-E-10A). ESA-ESTEC Requirements

& Standard Division, Noordwijk, The Netherlands.

AN AW -

[BN |

Operational ASM Semantics behind Graphical
SEAM Notation

Irina Rychkova, Alain Wegmann', and Pavel Balabko!

School of Computer and Communication Sciences (1&C), Ecole Polytechnique
Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
{Irina.Rychkova, Alain.Wegmann, Pavel.Balabko}@epfl.ch

http://lamswww.epfl.ch

Abstract. The context of this paper is Enterprise Architecture (EA).
EA is a multi-disciplinary approach that allows different specialists to
design new business and IT systems and focuses on the integration of
these systems. Our group develops a specific EA method that is called
SEAM. The current version of SEAM has a formal denotational seman-
tics for its modeling language. In order to provide model simulation and
checking at each level of abstraction, SEAM needs an operational se-
mantics. Currently this work is at the stage of problem setting. In this
paper’we present SEAM and describe the main research problem. We
propose to use ASM as operational semantics for SEAM to verify that
models, produced by different specialists are consistent. We illustrate our
approach by giving an example of SEAM notation that has already been
mapped to ASM.

1 Introduction

Enterprise architecture (EA) is a multi-disciplinary approach that enables en-
terprises to anticipate or react to necessary business or technical changes. The
EA team designs and deploys new organizations and IT systems in the light
of necessary changes. In an EA project, the EA team develops a model that
represents the enterprise: the enterprise model. The enterprise models are usu-
ally structured in hierarchical levels. The highest level describes the marketing
aspects, the middle level describes the business processes, and the lower level
describes the IT systems.[1]

Our group develops a theory for enterprise architecture (EA) and then applies
this theory to the development of a specific EA method called SEAM [1]. SEAM
stands for the ”Systemic Enterprise Architecture Methodology” or for seamless
integration between business and IT.

The important parts of SEAM are the method and the notation. The SEAM
method explains how to proceed in the analysis and design of the enterprise[1].

! This paper is written by Irina Rychkova. Alain Wegmann, the scientific advisor of the
project, proposed to study the EA context. This work is a continuation of the work
done by Pavel Balabko, who proposed to consider ASM in context of our research
problem.

The SEAM notation defines a graphical modeling language. This work mainly
deals with the SEAM notation. In context of EA, graphical notation is essential.
Graphical model representations can be less ambiguous and much more efficient
for communication than plain text. As EA projects involve specialists from dif-
ferent disciplines, it is important to provide means to simulate the model (to
ease communication between the specialists) and means to check the model (to
verify that the different levels developed by the different specialists are com-
patible). For this purpose, in addition to graphical notation which is defined by
a denotational semantics, we need to provide an operational semantics for our
modeling language.

In this paper we present our work that is currently at the stage of prob-
lem setting. Our project has 3 main goals: to define more precisely the SEAM
modeling language, to provide an operational semantics for this language and
to validate the impact of having an operational semantics in context of EA. For
this paper we focused mostly on operational semantics for SEAM in order to
provide model simulation and checking.

In section 2 of this paper we consider the SEAM method and its main aspects
in the context of EA. In section 3 we formulate our research problem. In the first
part of section 4 we justify the choice of ASM as a solution of our research
problem and observe the advantages of this semantics. Then, in the second part
of section 4, we consider how to define the SEAM notation in ASM: we discuss
a tool we plan to develop and illustrate the modeling process on the example.
Section 5 is the conclusion.

2 SEAM Method in Context of Enterprise Architecture

The goal of SEAM as a modeling language is to serve as a uniform notation
for all enterprise stakeholders that participate in the modeling process. While
developing the SEAM notation we are trying to be as close as possible to UML.
At the same time, SEAM has several characteristics which, we believe, make it
more appropriate than UML for EA modeling.

SEAM: A Method for Stepwise Design Using Hierarchical Models

SEAM enterprise model describes a hierarchy of systems, which includes the
business and IT resources together with the processes in which they participate.
Hierarchical Model: The enterprise model is typically structured in levels
(business, operational, IT)[2]. In SEAM, at each level, systems of interest can be
represented with a computational viewpoint (CV), as a collaboration of subsys-
tems. At the same time, each subsystem can be described with an information
viewpoint (IV) (Fig. 1). This is inspired by RM-ODP.[7]

The computational viewpoint (CV): a viewpoint on the system of interest
that enables distribution through the functional decomposition of the system
into subsystems that interact at interfaces. CV is concerned with the description
of the system as a set of physical objects.

The information viewpoint (IV): a viewpoint on the system of interest that fo-
cuses on the semantics of the information and information processing performed.
IV is concerned with the information that needs to be stored and processed in
the system and describes the behavioral aspects of the system.

As a result of the modeling process, we can build the hierarchy of CV spec-
ifications from whole to composite (collaboration of subsystems), (Fig. 1) and
hierarchy of IV specifications from general to detailed (Fig. 2).

Stepwise design: SEAM method realizes recursive modeling of a hierarchical
system. There is a universal modeling template that could be described as:

1. Take a CV of the system at the highest level (Fig. 1-(a) and Fig. 2-(a) that
represent the same system ”System1”).

2. Make an IV specification for the sub-system(s) of interest. The IV specifica-
tion(s) includes system policies and non-functional requirements documented
as assumptions (Fig. 2-(b) that represents ”subS1” sub-system of ” System1”
together with a set of assumptions).

3. Make a detailed IV specification for the sub-system(s) of interest. The de-
tailed IV specifications transform the assumptions into behavior (Fig. 2-
(c)that represents ”subS1” information viewpoint with all necessary details
for its implementation).

4. Define the CV at the next level by making a CV refinement of the sys-

tem of interest (Fig. 1-(b) that represents ”subS1” computational viewpoint

corresponding to the information viewpoint of ”subS1” in Fig. 1-(a)).

Make an IV specification for the subsystem(s) of interest (step 2).

Make a detailed IV specification for the sub-system(s) of interest (step 3).

Tterate steps 4 to 6 for all CV levels.

8. Verify that the model is complete and coherent.

oo

It is interesting to highlight that SEAM is an evolution of Catalysis [11]. Some of
the Catalysis originalities (that are kept in SEAM) are: the hierarchical system
design (across 3 levels) and the concepts of joint actions to specify the system
goals. SEAM keeps these features and adds a more precise ontology based on
RM-ODP, the possibility to design more than 3 levels, and a notation better
suited for system representation.

SEAM: A Notation for System Modeling

Modeling an enterprise across its levels is difficult. To make it practical, it is
important to have a modeling notation well suited for system modeling. To
illustrate this, we give one example which is the integration of the system’s
behavior and the system’s information representation. Generally speaking, the
UML diagrams can be categorized either as structural or as behavioral diagrams.
However, system theory has shown that the separation behavior / structure is
artificial [6] and actually prevents the development of models that truly repre-
sent the changes happening in the modeled system. For example, in UML, it is
not possible to show in one diagram that an action changes the value of an at-
tribute. That can make the diagram difficult to understand. This point has been

CV levels

CV specification CV specification
subS1 R
Systeml | subs3 subS1.1 = ya
g g :subSl.Z |
1= (E=T-W L
subs2 |.£ Collabor Y ===)
= | 3 C CollaborL ") 3
=== L 7‘—.;\ a
[subsi]l| o
! 2 o | subSL3 | |subsi.4
I =
L= = [=
2
C
2

@ (b)
g - pictogram means an information viewpoint (1V)
expressed in SEAM

Fig. 1. SEAM hierarchy of subsystems. a) CV specifications of a System1 modeled
as a collaboration of subsystems (composite view). Subsystem 1 (subS1) modeled as
a whole. b)Subsystem 1 (subS1) is modeled as a composite (collaboration of subS1.1,
subS1.2, e.t.c.).

CV specification

Systeml | subS3
=
I
- N
subS2 ,’\Collabor’;
g S=- (a)
i'_subSI‘!
|)
| = !
/T
subS1
(b)
Assumptions
— 77

IV Refinement it
v Y IV specificatior

subS1

e

1 [
IV Refinement

7

IV: levels of detail

D_

Fig. 2. SEAM levels of details. Top part of the figure shows the CV specification
of the System1 that contains the very general IV specification of subsystem 1 (subS1).
Middle and bottom parts of a figure show the result of subS1 model refinement. This set
of IV specifications from general to detailed makes up a hierarchical model of system
behavior.

identified by OPM language developers [4]. SEAM also proposes the solution for
this problem.

3 Main Research Problem: Operational Semantics for
SEAM Modeling Language

Denotational semantics and operational semantics, being transferred from the
context of programming languages, play important roles in the definition of the
modeling languages. Denotational semantics provide mathematical models and
define relations between the terms of a modeling language. Operational semantics
is essential for modeling languages when their applications are supposed to be
simulated on a machine.

The current version of denotational semantics for the SEAM modeling lan-
guage is based on [3]. In order to provide model simulation and checking, SEAM
needs to have an operational semantics.

The possibility to simulate the model is the best way for people to figure
out what is actually represented in the model. The possibility to check models
is important for the comparison of models.

In our work we propose to map the SEAM notation into defined formal
notation for which simulation and model checking tools have been developed. A
good choice for these purposes is an Abstract State Machine (ASM) notation [5].
Note that the project will also have to define more precisely the SEAM modeling
language and will evaluate the effect of the proposed approach by applying it to
models existing in EA.

4 Abstract State Machines and SEAM Method

ASM is a method of stepwise refinable abstract operational modeling [5]. An
ASM model can be used to capture the abstract structure and behavior of a
discrete system.

4.1 Abstract State Machines as Operational Semantics for SEAM

In this work we propose to use ASM as an operational semantics for the SEAM
modeling language. It is possible to talk about SEAM-ASM conformity for sev-
eral reasons:

— In the context of requirements engineering it is important to have an abstract
specification of a system without mention of its implementation. For users,
in SEAM methodology a system can be represented with an information
viewpoint (IV). At any level of details a SEAM IV specification can be
described by an ASM specification.

— Both SEAM and ASM support principles of hierarchical system design. In
ASM the hierarchy of intermediate models can be constructed by stepwise
refinement (or adding more details) to the model. An ASM program can be

executed at any level of details. It corresponds to the SEAM hierarchy of IV
specifications across level of details;

— In SEAM models we describe a system at any time as a pair (state, behavior),
as well as in ASM. State is defined by a number of attributes and their current
values. Behavior is defined as a set of actions that change a system state.

Using ASM as an operational semantics for SEAM we can obtain the following
advantages for modeling:

Model Simulation. SEAM can represent models hierarchically, with several
levels of detail (one of its benefits). Each IV specification in SEAM can be
represented and simulated by ASM. (Fig. 3-a) This allows us to use ASM models
as test models (to be matched by all stakeholders).

Refinement Checking. SEAM-ASM integration helps to make smooth and
correct refinements. On each level we extend the system functionality and can
also change its structure (redefine previous set of states). But each next level
should correctly simulate the higher level model.(Fig. 3-b)

Model Validation and Version Comparison. ASM + verification tool
= model validation and the comparison of alternative models, testing deadlocks
and forbidden parameter combinations, generating of test sequences and possible
sequences of states (functionality checking).(Fig. 3-c)

4.2 SEAM notation at ASM

We intend to develop an environment for our modeling techniques in order to
gain practical benefits from its application. Environment can be divided into
graphical, simulation, and verification tools.

Graphical tool. Graphical specifications are basic elements of our method.
The Graphical tool is supposed to provide drawing and storing of SEAM models.

Simulation and verification tool. The ASM method has a tool support for
simulation and verification of its models. Specifically, in [9] AsmL is presented.
Another ASM tool environment for model simulation and verification is ASM
Workbench [8]. In our tool we intend to use one of these tools by creating an
interface or translator from SEAM to ASM notation.

Illustration of a Modeling Process (Vending Machine Example). To
illustrate how our method works, we propose an example based on the Vending
Machine (VM) case study [10] and its ASM specification, written in AsmL.?

2 In this work we use an ASM-based specification language tool called Abstract State
Machine Language or AsmL.[9] It is a language for modeling the structure and be-
havior of discrete dynamic systems based on the ASM method. AsmL specifications
may be executed as programs. (tool support: AsmL tool version 2.0, developed by
the Microsoft research group.)

CV specification

Systeml | subs3
=
I‘J-\
subS2 J\Collabor:,
2|
1| subS1 |t
| 1)
==
7‘!\' Simulation
s Tool ’
IV specification \ z
subS1 subS1 /

a) Simulation

:'\/ [ASM] ™ Tool

Assumptions| | \ Verification ’

Y

— ILefinement b) Re\inement

/— Refinement
(level of details) (level of details)

Checking

subS1

Ay
AT

Refinement ——
(Ievelif}details)— (level pf details)

_I \ Verification
v Tool

] L

Verification
Tool

c) Version
- Comparison

% - pictogram means an information viewpoint(IV) expressed in ASM(AsmL)

version 1

sion 2

r

ve

Fig. 3. ASM as an operational semantics for SEAM: a) The ASM method provides
the simulation of SEAM models (IV specifications) on every level of details; b)using a
verification tool for ASM models at different levels of details helps to make a correct
model refinement; c) using a verification tool for different version of SEAM-ASM models
allows us to make a model validation and version comparison.

VM Description. A Vending Machine(VM)? accepts money and, if there is
sufficient credit, dispenses items selected by a customer. Items are identified by
an alphanumeric code, called the selection number. Customers select items by
entering the selection number via a keypad.

Studying the VM example we focused on the mapping between SEAM and
ASM concepts. We started with an initial IV graphical specification for a model
(Fig. 4), based on the VM description. Policies for VM operations were docu-
mented as assumptions. For example:

1. A product can be dispensed if a credit is sufficient.

2. A product can be dispensed if the machine has sufficient stock.

3. A change can be produced if there is enough money in the machine’s reserve.

4. Invariant: sum of products (in cash equivalent) and the reserve should be
constant for a particular machine during its service time.

Vending
Machine

* I * l 1
1 * Code X
Product 4‘ {String} ‘ Reserve :Integer

Price:Integer

Stock:Integer| @
Dispense
Handlelnput @

Fig. 4. IV Specification of VM. VM includes main concepts: Product, Code, and
Reserve. Main actions (shown as ovals): HandleInput, DispenseProduct and Change.

In Fig. 5 we give the refined specification of the VM. New actions were added
to explain the vending machine functionality. All the assumptions, made on the
previous level, were transformed into actions with pre- and post- conditions.
This specification can be easily mapped into the ASM notation (AsmL code
in our case). Finally, an AsmL code was obtained* from the specification in
Fig. 5. In this work the AsmL code was created by hand together with a rules
for translation. Automatic AsmL code generation is a part of the future work.

For the Vending Machine we obtained the identical AsmL specification with
the existed specification from the VM case study. As an illustration, below we
propose an example of AsmL code for SaleReady operation (Fig. 5)

3 In this work we simplified an original specification of VM [10]and reduced some
requirements, such as restriction on the coin and bill denominations that the machine
can accept and the ability to recognize coins and bills. Also in this example we assume
that the customer always types the valid code of a product.

4 AsmL Code for Vending Machine example is available at
http://lamspeople.epfl.ch/rychkova/Report’2008.07.2003/AsmLCode . pdf

SaleReady() as Boolean
return (Selection <> [’0’,°0’]
and not EmptyStock(ProductName())
and Credit >= Price(ProductName())
and not NoChange(Credit, Price(ProductName())))

Method SaleReady reflects the VM policies and returns ”True” if no Null product is
selected, selected product is available, credit is sufficient, and the machine has enough
money to make change if necessary.

VendingMachine
UpdateMachine

0.1
Dispense
Product

SaleTxn

*
Vending step

©
N

[1
SaleReady

Pre ——Pre
exclusive 1[
Credit Selection
:Integer ‘Char Change
1 Pre Pre
Pre 1|_ —!1
L 1 Credit Price
Post Product :Integer Integer]
Post Price: Integer
0->1 0->1 .
l - Stock : Integer 0->1
| Selection:Char | | Credit :Integer | Change :
Pre: Integer
Selection.Product <> NullProduct
Credit >= Product.Price
Case InputEvent _ . .
Codelnput: MakeSelection() Product.Stock>0 Change = Credit - Price
Coininput: CreditCoin() Post:
CoinReturninput: ReturnCredit() returntrue

Fig. 5. Refined SEAM specification for VM. In this specification all necessary concepts,
operations, and order of operations are shown. Necessary system policies formulated
as a pre- and postconditions. AsmL code can be generated for each VM operation.
Model can be read as following: Vending machine performance includes one Init op-
eration and then set of SaleTxn (sale transaction) operations, where sale transaction
can be considered as a dialog with one customer. Each sale transaction consists of
a set of Vending steps (machine reaction on one input event) and may be finished
by UpdateMachine operation. Each vending step can be described as a sequence of
HendleInput, SaleReady, DispenseProduct, and Change operations.

As a result of this work, several basic rules for a mapping between the SEAM
and ASM notations (namely, SEAM to AsmL translation) were generated.

5 Conclusion

We have presented an enterprise architecture (EA), an approach that allows a
multi-disciplinary team to design enterprises (i.e. organizations and I'T systems).
To model complex systems with an EA team, it is important to have a unified
modeling notation. For this purpose we propose the SEAM. However, to allow
modelers to work more effectively, it is also important that models can be sim-
ulated and checked. This is a reason why we work on a mapping between our
SEAM modeling language and ASM (for which simulation and model checking
does exist).

We can highlight, that Egon Borger and Robert Stark mention in [5] that
ASM needs a graphical language that provides a ”data model together with a
functional model” to be usable with actual customers. With SEAM we provide
such a notation.

References

1. Wegmann, A.: On the systemic enterprise architecture methodology (SEAM). Pub-
lished at the International Conference on Enterprise Information Systems 2003
(ICEIS 2003), Angers, France.

2. Wegmann, A.; Preiss, O.: MDA in Enterprise Architecture? The Living System
Theory on the Rescue... Published at the 7th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 2003) September 16-19 2003, Bris-
bane, Australia.

3. Naumenko, A., Wegmann, A., Atkinson, C.: The Role of Tarski’s Declarative Se-
mantics in the Design of Modeling Languages. Technical report.

4. Dori, D.: Object-Process Methodology - A Holistic Systems Paradigm. Springer
Verlag, Berlin Heidelberg New York (2000)

5. Borger, E., Stark, R.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer-Verlag, Berlin Heidelberg New York (2003)

6. Weinberg, M. W.: An Introduction to General System Thinking. Dorset House
(2001).

7. Reference model of open distributed processing part 1. Draft International Stan-
dard (DIS), Helsinki, Finland, (15-18 May 1995)

8. Del Castillo, G.: The ASM Workbench. A tool environment for computer-aided
analisis and validation of Abstract State Machine models. Dissertation. Fachbereich
Matematik / Informatik und Heinz Nixdorf Institut Universitt Paderborn. Pader-
born, 2000.

9. AsmL: The Abstract State Machine Language. Documentation pre-
pared for Microsoft Research by Modeled Computation LLC, (2002)
http://www.modeled-computation.com

10. Introducing AsmL: A tutorial for the Abstract State Machine Language. Vend-
ing Machine Case study. 2001, 2002 Microsoft Corporation. December 2001.
http://research.micosoft.com/foundations/AsmL

11. D’Souza, D., Wills, A.C.: Objects, Components, and Frameworks with UML. The
Catalysis Approach. Addison Wesley Longman, Inc. (1999)

Object-Oriented Graph Grammars

Ana Paula Lidtke Ferreira

Centro de Ciéncias Exatas e Tecnolégicas
Universidade do Vale do Rio dos Sinos — UNISINOS
anapaula@exatas.unisinos.br

Abstract This work aims to extend the algebraical approach to graph
transformation to model object-oriented systems structures and compu-
tations. A graph grammar based formal framework for object-oriented
system modeling is developed, incorporating both the static aspects of
system modeling and the dynamic aspects of computation of object-
oriented programs.

1 Introduction

The massive decrease on hardware costs disseminate the use of computers and
computational devices within society. Consequently, different domains of ap-
plication arise everywhere, and the more they are part of our daily lives, the
more we depend on them to be correct regarding their intended behaviour. New
software development techniques have emerged over the last years to deal with
current needs, but the paradigms on which those techniques are based (especially
objects, events, and concurrency) make testing and validation of systems more
complex (and consequently, more error prone). This scenario requires specifica-
tion techniques which can cope with the needs of modern software development.
Such techniques must assure that the final product is consistent and complete
regarding its specification, be formal, incremental and executable. Also, they
must be simple enough to be used by non experts in formal methods.

Object-oriented development is perhaps the most popular paradigm of system
development in use nowadays. Helped by the growing popularity of Java as a
language to support WWW applications, object-oriented programs have been
taken to a great spot of attention. Consequently, there has been an exponential
increase of interest about models, semantics and verification of object-based
systems.

There is a plethora of formalisms proposed in the literature to the spec-
ification of such systems. However, the object-orientation paradigm presents a
number of idiosyncrasies, such as inheritance and dynamic binding, making those
systems deviate considerably from others in both their architecture and execu-
tion. It should be expected that formalisms to specify them would reflect these
idiosyncrasies, otherwise any attempt to use such formalisms for the specification
of object-oriented architectures or programs is doomed to neglect key regular-
ities in their organization. Only naturally, coherent specifications warrant the

recognition of the underlying abstractions within the paradigm. This is equally
true for object-oriented programs.

Object-oriented system modelling and programming approaches should present
a number of desired properties, amongst which we cite the following: (i) the ex-
istence of a formal specification language which can be easily understood by
both software developers and final users; (ii) the possibility of systems’ static
and dynamic aspects be specified in an integrated way; (iii) the existence of a
semantical basis, allowing the composition of modular specifications in a con-
sistent and significant manner; (iv) the possibility of high level specifications be
refined into lower ones, or even into actual programs.

This paper is organized as follows: Section 2 presents the fundamental notions
of graph grammars, and how they provide an adequate model of computation for
distributed systems. Section 3 presents how the single pushout approach to graph
grammars can be enhanced to describe object-oriented systems and programs.
Finally, Section 4 presents some conclusions and future developments from the
work presented here.

2 Graph Grammars

Graphs are a very natural way of describing complex situations on an intu-
itive level. Graph-based formal description techniques are, for that reason, easily
used by non-specialists on formal methods. Graph transformation rules can be
brought into those descriptions in order to enrich them with a model of compu-
tation, which can describe the evolution of a system represented as a graph.

The algebraic approach to graph grammars has been presented for the first
time in [6] in order to generalize Chomsky grammars from strings to graphs. That
approach is currently known as double-pushout approach, because derivations are
based on two pushout constructions in the category [16][13] of graphs and total
graph morphisms. The single-pushout approach [12], on the other hand, has
derivations characterized as a pushout construction in the category of graphs
and partial graph morphisms.

Generally, a graph grammar consists on an initial graph together with a
finite set of graph productions. A graph production, or simply a rule, specifies
how a system configuration may change. A rule has a left-hand side and a right-
hand side, which are both graphs, and a partial graph morphism to determine
what should be altered. Intuitively, a system configuration change occurs in the
following way: all items belonging to the left-hand side must be present at the
current state to allow the rule to be applied; all items mapped from the left
to the right-hand side (via the graph morphism) will be preserved; all items
not mapped will be deleted from the current state; and all items present in the
right-hand side but not in the left-hand side will be added to the current state
to obtain the next one.

Since rule application is non-deterministic, multiple rules can be applied at
the same time, as long as there is no conflict [20] between them. This provides

a true concurrency semantics for computations within that framework, which is
especially adequate to model distributed systems.

Graph grammars are appealing as a specification formalism because they are
formal, they are based on simple yet powerful concepts to describe behaviour,
they have a nice graphical layout which helps the understanding (even by non-
specialists in formal methods) of a specification. Since graph grammars also
provide a model of computation, they can serve as the basis for specifications
which can be executed on a computer.

3 Object-oriented graphs and grammars

The use of the object-oriented paradigm has increased over the past years, be-
coming perhaps the most popular paradigm of system development in use nowa-
days. The growing use of Java as a language to support Internet applications
has also contributed to this popularity. Object-based systems have a number of
advantages over traditional ones, such as ease of specification, code reuse, mod-
ular development and implementation independence. However, they also present
difficulties, derived from the very same features that allow the mentioned ad-
vantages.

The most distinguished features of object-oriented systems are inheritance
and polymorphism, which make them considerably different from other systems
in both their architecture and model of execution. It should be expected that
formalisms for the specification of object-oriented architectures or programs re-
flect these particularities, otherwise the use of such formalisms will neglect key
concepts that have a major influence in their organization. According to [9], a
specification language for object-oriented conceptual modeling must at least in-
clude constructs for specifying primitive objects, particularizations of predefined
objects, inheritance relationships between objects and aggregation of objects
in order to define more complex objects. We also believe that the concepts of
polymorphism and dynamic binding are essential if we intend to model static
and dynamic aspects of object-oriented systems. So, in order to correctly model
object-oriented systems, the key concepts related to it must be present within
the formalism used.

Graph grammars have been used in a variety of applications, and can pro-
vide suggestive and technically adequate models of computation, semantic foun-
dations, and verification techniques. Different kinds of graph grammars have
been proposed in the literature [12] [10] [5] [2] [17] [1] [19] [18] [3] [21] [23] [14]
[22] [7], aiming the solution of different problems. However, the few focusing
on object-oriented systems specification [15] [4] [11] do not present a treatment
on inheritance and polymorphism, which make object-oriented systems analysis
and testing so difficult.

This work aims to extend the algebraical approach to graph transformations
to model object-oriented systems structures and computations. More accurately,
the single pushout approach in the category of typed hypergraphs and partial
typed hypergraph morphisms will be adapted to fit more adequately the object-

oriented approach to software development. We will also show how the structures
developed along the text are compatible with the notion of specification and
computation within the object-oriented paradigm [8].

This extension is accomplished by realizing that inheritance is the construc-
tion which permits an object to be specialized from a pre-existing one, where the
newly created object carries all the functionality from its primitive object. This
relation induces a hierarchical relationship among the objects from a system,
which can be viewed as a set of trees (single inheritance) or as an acyclic graph
(multiple inheritance). Both structures can be formally characterized as a binary
acyclic, functional relation with no reflexive pairs. The reflexive and transitive
closures of it is a partial order relation, which can equip the set of nodes (objects)
and edges (attributes and messages) of a (hyper)graph (a system, program, or
part of it).

The core structure is called a type hierarchy, which consists of an (almost) or-
dinary hypergraph (called object-model graph), together with two binary acyclic,
functional relation with no reflexive pairs, one relating vertices (the inheritance
isa relation) and the other relating edges (the method redefinition relation) [8].
Since type hierarchies are algebraic structures, operations over them can be de-
fined. Composition (done with or without identification of elements on the struc-
tures being composed) plays an important role, since it corresponds to system
composition.

The formalism is based on hypergraphs typed over type hierarchies. Typ-
ing is achieved by means of typing morphisms (which are structure preserving
mappings). These typing morphisms, however, take into consideration the isa
relationship and also the overriding of methods, according to the object-oriented
semantics: an arc can be incident to any node as long as it, and its typing edge
are connected within the partial order generated by the isa relation. This defi-
nition reflects the idea that an object can use any attribute one of its primitive
classes have, since it was inherited when the class was specialized.

Rules are restricted in order to capture some characteristics of the object-
oriented paradigm: the left-hand side of a rule is required to contain exactly
one element of type message, and this particular message must be deleted by
the rule application, i.e., each rule represents an object reaction to a message
which is consumed in the process. This demand poses no restriction, since sys-
tems may have many rules specifying reactions to the same type of message
(non-determinism) and many rules can be applied in parallel if their triggers are
present at an actual state and the referred rules are not in conflict. Systems’
concurrent capabilities are so expressed by the grammar rules, which can be ap-
plied concurrently (accordingly to the graph grammar semantics), so one object
can treat any number of messages at the same time.

Additionally, only one object having attributes will be allowed on the left-
hand side of a rule, along with the requirement that this same object must be
the target of the above cited message. This restriction implements the principle
of information hiding, which states that the internal configuration (implemen-
tation) of an object can only be visible, and therefore accessed, by itself.

Finally, although message attributes can be deleted (so they can have their
value altered!), a corresponding attribute must be added to the rule’s right-hand
side, in order to prevent an object from gaining or losing attributes along the
computation. Notice that this is a rule restriction, for if a vertex is deleted, its
incident edges will also be deleted. This situation is know as deletion in unknown
contexts [12], and it appears often in distributed systems, where the deletion of an
object causes a number of dangling pointers to occur in the system as a whole.
Rules that allow object deletion can be used to find this kind of undesirable
situations within a specification.

Matches are also modified. The role of a match is to detect a situation when
a rule can be applied. It occurs whenever a rule’s left-hand side is present some-
where within the system graph. Notice that distinct vertices of a rule can be
identified by the matching morphism. This is sensible, since an object can point
to itself through one of its attributes, or pass itself as a message parameter to
another object. However, it would make no sense to identify different attributes
or messages, so the edge component of the matching morphism is required to
be injective. Additionally, preserved elements cannot be identified with deleted
elements.

A derivation step, or simply a derivation, will represent a discrete system
change in time, i.e., a rule application over an actual system specified as a graph.
The derivation step is also modified, to allow dynamic binding to occur.

The single-pushout approach to graph grammars extension proposed in this
work (although put on an informal form) assures that the usual semantics of
graph grammars can be used, and also assures that this semantics is compatible
to the computation of object-oriented programs.

4 Conclusions

This work is a first step towards a very high level and intuitive formal frame-
work compatible with the main principles of object-oriented specification and
programming. More specifically it provides, in terms of object-oriented graphs
and morphisms, a way of defining classes, which can be primitive or special-
ized from others (though the inheritance relationship) together with a graph
transformation-based model of computation compatible with polymorphism and
dynamic binding, which are fundamental in the object-oriented programming
model of execution.

This model inherits the usual true concurrency semantics of graph grammars,
making it also suitable for the specification of distributed systems. This work
can be extended in many directions, amongst which there are the following:

Declarative object-oriented programming Object-oriented graphs and rules,
as developed here, are in many ways similar to actual object-oriented pro-
gramming language constructs. The level of abstraction used, however, is

! Graphs can be enriched with algebras in order to deal with sorts, values and opera-
tions. Although we do not develop these concepts here, they can easily be added to
this framework.

high enough to provide a means of developing programs independent of
what language will be actually used. I should be easy to translate speci-
fications of this kind to an actual programming language. Translation from
an object-oriented programming language to this sort of specification could
also be interesting, since program properties could be verified if a verifier is
available.

Automatic generation of (formal) specifications A number of papers de-
scribe how a grammar specification can be mapped to other formal specifi-
cations, such as Petri Nets, m-calculus, etc. Object-oriented graph grammars
can also be mapped to any other formalisms, if more adequate tools for them
are available.

Semantics A significant advantage to the use of a formal framework for object-
oriented system specification is in the ability to apply rigorous inference rules
so as to allow reasoning with the specifications and deriving conclusions on
their properties. Fixing the sort of rules to be used within a graph grammar,
properties regarding the computational model can be derived. Being this a
formal framework, the semantics of operations (such as system and grammar
composition) can also be derived.

Verification Different sort of system and grammar properties can be derived,
according to the kind of rules used, the presence of values and operations
from some algebra. Tools for automatic verification of properties can be
constructed. Tools for type checking and static analysis can also be build, as
well as abstract interpretation of programs written within this formalism.

Graph grammars are well suited for system specification, and object-oriented
graph grammars, as presented in this text, fill the need for the key features of
object-oriented systems be incorporated into a formal framework.

Acknowledgements
I would like to thank my thesis supervisor, Dr. Leila Ribeiro, for the valuable
discussions and assistance during the course of this work.

References

1. Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jorg Kre-
owski, Sabine Kuske, Detlef Plump, Andy Schurr, and Gabriele Taentzer. Graph
transformation for specification and programming. Technical Report 7/96, Uni-
versitat Bremen, Bremen, 1996.

2. Dorothea Blostein, Hoda Fahmy, and Ann Grbavec. Practical use of graph rewrit-
ing. Technical Report 95-373, Queen’s University, Kingston, Ontario, Canad4,
Janeiro 1995.

3. Olaf Burkart and YvesMarie Quemener. Modelchecking of infinite graphs defined
by graph grammars. Electronic Notes in Theoretical Computer Science, (6), 1997.

4. Fernando Luis Dotti and Leila Ribeiro. Specification of mobile code using graph
grammars. In Formal Methods for Open Object-Based Distributed Systems IV.
Kluwer Academic Publishers, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. H. Ehrig and M. Léwe. Parallel and distributed derivations in the single-pushout

approach. Theoretical Computer Science, 109:123-143, 1993.

H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic ap-
proach. In 14th Annual IEEE Symposium on Switching and Automata Theory,
pages 167-180, 1973.

GianLuigi Ferrari, Ugo Montanari, and Emilio Tuosto. A LTS semantics of am-
bients via graph synchronization with mobility. In Proceedings of the ICTCS 01,
2001.

Ana Paula Liidtke Ferreira and Leila Ribeiro. Towards object-oriented graphs and
grammars. In 6th IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS2003), to appear, 2003.

J. L. Fiadeiro, C. Sernadas, T. Maibaum, and G. Saake. Proof-theoretic seman-
tics of object-oriented specification constructs. In W. Kent, R. Meersman, and
S. Khosla, editors, Object-Oriented Databases: Analysis, Design and Construction,
pages 243-284. North-Holland, 1991.

Annegret Habel. Hyperedge Replacement: Grammars and Languages, volume 643
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992.

Aline Brum Loreto, Leila Ribeiro, and Laira Vieira Toscani. Decodability and
tractability of a problem in object-based graph grammars. In 17th IFIP World
Computer Congress - Theoretical Computer Science, Montreal, 2002. Kluwer.
Michael Lowe. Extended Algebraic Graph Transformation. PhD thesis, Technischen
Universitat Berlin, Berlin, Feb 1991.

Saunders MacLane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer, New York, 2 edition, 1998. 314p.

Ugo Montanari, Marco Pistore, and Francesca Rossi. Modeling concurrent, mobile
and coordinated systems via graph transformations. In H. Ehrig, H-J. Kreowski,
U. Montanari, and G. Rozemberg, editors, Handbook of Graph Grammars and
Computing by Graph Transformation, volume 3 — Concurrency, Parallelism and
Distribution, chapter 4. World Scientific, 2000.

George A. Papadopoulos. Concurrent object-oriented programming using term
graph rewriting techniques. Information and Software Technology, (38):539-547,
1996.

Benjamin C. Pierce. Basic category theory for computer scientists. Foundations of
Computing Series. MIT Press, Cambridge, MA, 1991. 101p.

YvesMarie Quemener and Thierry Jéron. Modelchecking of infinite kripke struc-
tures defined by simple graph grammars. Electronic Notes in Theoretical Computer
Science, (2), 1995.

J. Rekers and A. Schiirr. Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing, September 1996.

J. Rekers and Schiirr. A parsing algorithm for context-sensitive graph grammars.
Technical Report 95-05, Leiden University, Leiden, Holanda, 1995.

Leila Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
Phd thesis, Technische Universitat Berlin, Berlin, June 1996. 202p.

Andy Schurr. Programmed graph replacement systems. In H. Ehrig, H-J. Kreowski,
U. Montanari, and G. Rozemberg, editors, Handbook of Graph Grammars and
Computing by Graph Transformation, volume 1 — Foundations, chapter 4, pages
479-546. World Scientific, Singapore, 1997.

Gabriele Taentzer and Hartmut Ehrig. Semantics of distributed system specifica-
tions based on graph transformation. Lecture Notes in Computer Science.

23. Gabriele Taentzer, Ingrid Fischer, Manuel Koch, and Victor Volle. Visual design
of distributed systems by graph transformation. In Handbook of Graph Grammars
and Computing by Graph Transformations, volume 3 — Concurrency, Parallelism,
and Distribution, chapter 1. World Scientific, 2000.

Assembling contracts for components

F. Legond-Aubry, D. Enselme, G. Florin

Conservatoire National des Arts et Métiers,
292 rue Saint Martin,
75005 Paris

fabrice.legond-aubry@lip6.fr, {florin,enselme}@cnam.fr

Abstract. Components are increasingly used to create complex and distributed systems
and applications. They are often viewed as simple servers, which limits their capacity at
collective action. In this article, we propose a method to simplify their assembly and their
potential re-usability. We use the notion of dependency and contract between components to
explicitly design an entity that guarantees the correctness of the built system. We introduce
split contracts and delegations of properties to check, both at conception and execution
time, the correctness of the assembly. An added value is that our solution increases the
independence of the participating entities by isolating the core components and transferring
the aggregation into specific “glue” components.

Keywords : Contract, Assembly, Component, Constraint, Interaction, Dependency, Specifi-
cation

1 Introduction

The Object Oriented approach was introduced to offer powerful tools and efficient structural de-
sign. However complexity remains in the interactions that tightly bind each object with the others.
This hinders the development of large scale industrial applications. Components were introduced
to enhance the isolation and the separation by increasing the granularity of the manipulated en-
tities, and by giving them new capabilities. But if the encapsulation gives abstraction power, it
hides the specification of the component (and mainly its internal behavior). Components are too
often black boxes without a “user manual”.

Contracts were introduced in the objects paradigm by Helm [5]. This aimed to compensating the
lack of methods to express the relations between objects. They were used to specify behavioral
compositions. Using contracts provides an orthogonal dimension to the one provided by the class
structure. Techniques of development are more and more based on the component approach [4].
To improve these techniques and allow re-use, contracts were extended and adapted to them by
Meyer [10] and Jezequel [6]. Generally, contracts exist for server only or for both the client and
the server. The first proposition induce a significant anti-symmetry of the call as they do not care
about clients constraints and the second one melt all the constraints about the two entities without
separating their respectives concerns.

This article takes place in an industrial research project called ACCORD!. Its main objective is
to propose to applications creators an integrated development environment with analysis tools
that use more symmetric contracts for describing component assemblies. This paper begins by
stating current trends in the utilization of the contracts for components. Then we introduce a
new notion of the call for a component service. From this point, we set up contracts for this type
of call and define a notion of compatibility between two contracts. With this basic definition, we
then introduce an extended compatibility notion to n components. To illustrate our approach, we
present a simple cash dispenser example.

! http://www.infres.enst.fr/projets/accord/

2 F. Legond-Aubry, D. Enselme, G. Florin

2 Classic component interaction point of view

A component is a cooperative composite entity similar to those described in the Architecture
Description Languages [8]. A component has interfaces which are sets of operations - also called
methods. Sometimes interfaces are grouped to make ports which become a point of interaction.
A first attempt to introduce contracts in components was done in 1999 in the article “Making
Component Contract Aware” [3]. It introduces four types of contract : syntactic, behavioral, syn-
chronization, and quality of service. It uses conditions and a unique contract carrying both client
and server constraints.

An entity that interacts can only accept the contract (or one of its siblings) and respect it. This
point of view limits the assembling capacity of a developper because some entities could have
different specifications that are compatible without having any obvious relationship - ie same
contract. Another restriction is that the contracts are to be used during execution to verify the
validity of an interaction. Finally, they are dedicated to an application even if adaptation remains
possible. Constracts are made for a specific context therefore it is difficult to extract a component
from the whole.

Tools like Jcontract [14], Icontract[16], Eiffel[9] implement “Design By Contract” assertions but
for an Object Oriented Model not for components. Moreover they are use for test purpose and not
at all for model checking.

3 Toward a more symmetric notion of the invocation

3.1 Definition

To relieve these “dependencies” and “checking” limitations, we choose to introduce “split” contracts.
Each element has its own requirements and its own guarantees expressed as a set of properties. If
two entities have to interact, the sum of their split parties set a contract for the interaction. We are
currently out of a specific platform model like COM+, EJB, CCM, .NET [11,2,17]. All notions will
be kept abstract as far as possible. Though, in this abstract model, stress is put on the semantic
and the pragmatic viewpoints that is to say on the functional and non-functional properties of a
component. This document mainly deals with the description of interactions between components
using contracts but wholly viewed as collaboration [13].

In fact, the contracts define the relations of dependence and interactions involving the elements
of the application. Following this idea, we associate, as in the CORBA CCM Model [17], at each
interaction the specifications which accurately set the required service context (the client point of
view) and the offered service context (the server point of view). These specifications are expressed
by pre and post conditions. These assertions determine the guarantees and the obligations applying
to each participant of the interaction. That is to say that even the client can specify required
properties that the server must provide. If the server does not provide them, the client/server
binding won’t be established.

To define the compatibility between two operations, we extend the classical sub-typing notion: a
type T is a subtype of a type T’ (noted T' <: T"’) if all values of T can be used in a consistent
manner for each expected values of T’. We denote PO <: RO the compatibility of the specifi-
cations of a Required Operation (RO) with the specifications of an existing Provided Operation
(PO). Generally the service are under-specified but this is the only data (aside testing) that we
can rely on. Moreover, programmers always use the specifications for the important parts of the
new designed component. So when we talk about compatibility between PO and RO, we mean
compatibility between their respective specification: Spp <: Sro. To make these specifications
cover all fields of the development phase, they must describe and be verifiable at a syntactic,
semantic and pragmatic level.

3.2 The syntactic level of compatibility

At the syntactic level, the compatibility relationship uses subtyping. We enforce that an operation
o of type T is syntactically compatible with an o’ operation of T’, if they have the same number

Assembling contracts for components 3

of parameters and the same identifier, if the contravariance of in parameters and the covariance of
out parameters are confirmed. The contravariance of in parameters asserts that the parameters are
in reverse relation of subtyping accordingly to the notion. The covariance of the out parameters
asserts that the parameters carry out the relation of subtyping accordingly to the notion.

Eg :

— [Provided] Operation : void an_operation (in long parameter)
— [Required] Operation : void an_operation (in int parameter).

Eg :

— [Provided] Operation : void an_operation (out int return_param)
— [Required] Operation : void an_operation (out long return_param).

This prohibits the subtyping relationship for the in/out parameters. This definition is one possibil-
ity among many others but it has the advantage of limiting the semantic variations of operations
having the same signature (syntactically compatible) but with a totally different semantic. There
is no automatic solution. Only the human brain can make the difference. As this relation of syn-

tactic compatibility relies on subtyping notions, the relation is transitive but is not symmetric so
we have =(PO <: RO = RO <: PO).

3.3 The semantic level of compatibility

In component interaction, the specification Sro of a Required Operation (RO) is a set of properties
(that can be expressed as an OCL constraint by sample) required to prove the correctness of the
client. In a similar manner, a provided operation (PO) and its specification Spo guarantees the
“usage” properties of all correct implementations of a server. Figure 1 ilustrates this issue.

$ Required operation

Provided operati specification

specification

client component server component

Fig. 1. Interaction between a provided and a required service

A call correctness can be asserted by determining the conditions in which a client wishing to use
a service RO could use a PO service instead. The correctness of a call is stated as conditions to
satisfy for RO to be replaced by PO. We choose to use the formalism of pre and post conditions. In
a non-distributed programming context, assertions are expressed in first order logic. Nevertheless,
it is generally widely recognized that such a logic is not adapted to concurrent and distributed
environments. The behaviors encountered in such environments can not be easily modelized with
this simple logic. Hence, whenever concurrence and distribution come into play, higher level logics
are generally chosen. For instead, modal logics with temporal (for concurrence) and epistemic (for
distribution) [15] operators, are some of the most widely encountered solutions. Like with first
order logic, pre and post predicates are used. This pre predicate (O _pre) is evaluated just before
the execution of the operation and sets the conditions of the proper realization of the interaction
(and subsequently the service). But, in most cases, the pre and post conditions bind a set of
constraints that does not specify one unique coherent state but a family of possible acceptable

4 F. Legond-Aubry, D. Enselme, G. Florin

execution historic that will lead to a valid execution. In the same way, a post condition (O _post)
defines a set of potential correct futures (after the achievement of the service).

Leaving apart the case of distribution, we give a clue on the way temporal logics comes into
play. Many such logics have been defined in the literature, the most significant one being maybe
Lamport’s Temporal Logic of Action [7]. In TLA, an execution is viewed as a sequence of steps,
each producing a new state by changing the values of one or more variables. We will consider an
execution to be the resulting sequence of a succession of states that will take the semantic meaning
of the studied component interactions. We apply the same analogy here. At the very instant where
the operation is enabled then the O predicate is true. “O” denotes the state where the code of
the operation O is ready to be executed. The same holds for the O A O _pre (pre-conditions are
verified). After the execution of the operation O, the operation following O (noted nextO or XO)
is enabled. The predicate XO A O _post is true at this very moment. This invocation specification
presumes the atomicity of the invoked operation. At this granularity level, we do not provide
any informations on the behavior of external invocated O operation during its execution as soon
as it respects the invoker (client) requierement. So basically the execution can be symbolized by
O Npre = XO NO _post as in figure 2.

-—— — - - =
I

operation O

?client.invocation O
! server.execution O

Fig. 2. Temporal Logic Representation of an operation execution

In this context, we must introduce time and causality and epistemic expression tools and lan-
guages but this is not the purpose of the current paper. Epistemic deals with knowledge that the
component must or must not have a component about the others and how it can learn it. The
previous basic statement can be extended to express the semantic and temporal compatibility of
an interaction by using the five following equations:

RO A RO_pre = XO N RO_post

PO AN PO_pre = XO A PO _post

RO =POANXRO =XPO

RO A RO_pre |= PO A PO_pre

X PO A PO_post = XRO N RO_post

Crk W=

The first condition (1) tells that there exists a specification Sro of a RO which enables the client
to move from one coherent state to another. The second expression (2) states the existence of a
provided operation specification (Spo) which enables the server to pass from one coherent state
to another. The last three conditions seal the relation of compatibility between the client and
the server (noted by the |= relation). The third condition guarantees that the provided operation
PO can be used instead of the required operation (RO) or in other words that the component
can make a direct invocation without the need of a connector or an adaptator to link the PO
and the RO. The fourth condition imposes the contravariance between the provided and required
pre-conditions. The fifth condition imposes the covariance between the provided and required
post-conditions. In other words, before the invocation, each pre-condition from the callee must be
verified by the caller and at the return, each post-condition from the caller must be in agreement
with the properties of the callee.

Assembling contracts for components 5

3.4 The pragmatic level of compatibility

The pragmatic compatibility is the most difficult to define. It consists in the behavioral and
environmental compatibility verification. Pragmatic properties are often difficult to analyse. They
could be expressed totally by logical expressions but also as state-transition diagram (ie stat-chart
diagrams). In this case specifying compatibility is equivalent to testing if the diagram of the PO is
less constrained than the diagram of the RO. Typically, this is the notion of symmetries found in
Petri nets. This type of compatibility will be transitive but the symmetry will not be guaranted
as it was in the other levels. A more complex definition of the compatibility can be defined for
interfaces, which will impose a causal order between calls. However the tools and technics are
exactly the same than those used to compare methods behavior.

Semantic and pragmatic constraints can be expressed with first order predicate logic?, second order
modal logic® [1] and with different languages. Our study does not limit itself to one of them but
all services are to be specified using the same logic language. It is not our purpose to develop our
own language so we check some of them among the abundance of existing ones. One of the most
widely used is OCL. In addition, there are temporal extensions of it and some software checkers are
available for free [12]. One thing is yet missing in OCL : it is a epistemic (knowledge) expression
extension. This add-on could be very useful to formulate and manage the ways and means of the
diffusion of the informations and knowledge of a specific data among all the component entities. A
possibility to deal with theses properties is to use a runtime checker, to test if a component bind
itself with an unauthorized entity or/and get access to forbidden data.

3.5 Interaction contracts

One of the essential principles in an interaction contract elaboration is the compatibility between
the properties of each contributor. The sufficient and necessary condition to the existence of this
contract is the compatibility between the two involved operations.

So we must have Sro <: Soo. If this hypothesis is not verified then the interaction and subse-
quently the assembly is not possible. An interaction contract has a specification that comes from
a negotiation process between the client and the server on the base of the required and offered
specifications. So a simple interaction contract is a specification Sco which uniquely typify an
interaction. The specification of the contract replaces, in the application using the caller and the
callee, their respective specifications (Spo and Sgro). The existence of the Sco is ensured by the
transitivity of the relation so that we have:

— PO <: CO <: RO
— RO_pre = CO_pre = PO_pre (contravariance)
— RO_post = CO_post = PO_post (covariance)

The |= states the properties compatibility.

3.6 More than interactions contracts : delegation of properties

We observe some specific cases in the construction of the specifications of Sgo or Spo. On one
hand the programmer can use a « Component Off The Shell ». In this case, s/he can take the pro-
vided specifications defined by the “COTS”. Henceforth, the developer accepts the post conditions
PO _post and makes them his own RO _post for the new component that must be implemented.
In the same manner, he uses the preconditions PO _pre for the RO _pre and tries to satisfy them
in the code of the components. Therefore, the newly created component accepts all the imposed
conditions by adopting the specifications of the component which it is foreseen to interact with.

2 When the subject of the sentence is an individual object (like Socrates in "Socrates is mortal"), then
we are using first order logic

3 When the subject is another predicate (like being mortal in "Being mortal is tragic"), then we are using
second order logic or higher order logic

6 F. Legond-Aubry, D. Enselme, G. Florin

Verifying the peer to peer compatibility between the two elements is then trivial. This case often
rises in down-top development methodologies.

On the other hand, when the programmer develops a new component, s/he can use the specifica-
tions of a required operation to build a new component with a provided operation that will totally
satisfy the required properties. This is the case of bottom-up methodologies.

But this is insufficient. A composite is composed of a set of components accordingly to an assembly
graph. As a component can be a composite itself, the abstract model is fractal. If there is no
dependence between the specification then the problem of constructing the assembly is reduced to
a succession of definitions of interaction contracts. But in the general case, there are dependencies
between the specifications so we must verify the validity of the aggregation.

Dependencies are reified by the delegations of properties between point of interaction of the com-
ponents. Their are different types of delegation. The first is the pure delegation. In this case, the
provided specifications of an externally visible operation Sgpo is the same as the specifications of
an internally provided service (Srpo) of a member of the composite. Another working hypothesis
would be a delegation by compatibility. Then a specification of a externally visible provided service
is compatible with the provided service of a member of a composite (Sppo <: Srpo). Another
last solution would be a delegation by adaptation so that the provided externally visible service
would be an adaptation of an internal provided one.

4 A trivial illustrative example

Firstly, let us say that more informations and a more complex sample can be found on the project
page of ACCORD #. But, to illustrate this, let us take a naive getCash operation, which withdraws
cash from a bank account. The client coordinator has a required interface RIBank link with the
bank component obtained through a provided interface PIBank from a bank component. The
specified method is getCash. The Required Operation of the client component is:
Component Coordinator - interface RIBank
Operation getCash (amount, account)
precondition (OR_pre)
type (amount) is type_amount
A type (account) is type_account
A amount < maximuml
A balance (account) amount> 0
postcondition (OR_post)
Bank.PIBank.getCash.post
To be more precise, it would have been interesting to introduce the epistemic modalities where the
client would only know if the operation is possible or not without knowing the balance. However,
the previous code only limits the amount of money a client can take to a maximum of mazimum1
and imposes that the balance of the account will be positive after the operation. As a client, the
cash dispenser accepts all post-conditions imposed by the bank component it is in relation with.
The specification Spo of the provided operation (PO) is:
Component Bank - interface PIBank
Provided Operation : getCash (amount, account)
precondition (PO_pre)
type (amount) is type_amount
A type (account) is type_account
A amount < maximum?2
A balance (account) amount > 0
post-condition (PO_post)
balance (account)=balance (account)-amount
A balance (account) < triggerLevel(account) ==> msg_alert
This specification only enables getCash operation with an amount which is less than mazimum2.
The post condition throws an alert message if the amount on the account is below a trigger value.

* http://www.infres.enst.fr/projets/accord/lot1/index.html

Assembling contracts for components 7

In this case, the contravariance hypothesis on the preconditions (RO_pre = PO_pre) enforces
the following condition for the operation to be successful:
amount<maximuml ==> amount<maximum2
The maximum amount required must be less than the maximum amount provided. The covariance
hypothesis on the postconditions (PO _post = RO_post) are naturally satisfied because the invoker
accepts all the conditions of the server:
[balance (account)=balance (account)-amount
A balance (account) < triggerLevel(account) ==> msg_alert]
—> balance (account) = balance (account) amount
So from these conditions, we can make a Sco which is compatible with Sgo and Spo for the
interaction between RO and PO :
Contract Operation: getCash (amount, account)
precondition (CO_pre)
type (amount) is type_amount
A type (account) is type_account
A amount < maximumC
A maximumC < maximum?2
A balance (account) amount > O
postcondition (CO_post)
[balance (account)=balance (account)-amount
A balance (account) < triggerLevel(account) ==> msg_alert]
==> balance (account) = balance (account) amount
In Sco, we must adopt in the pre-condition with an adapted maximum called mazimumC which
must be less than mazimum2 and in the post-conditions those from the client which are compatible
but which enforce some more conditions.

5 Future work and Conclusion

In this article, we present a new method for assembling components and some tracks to reduce the
time for their assembly. This method can be applied in an ascending manner (during conception) or
in a descending manner when we want to accurately design an aggregation of existing components.
The expression of split contracts allows all handlings to be done with unique contracts. It also
enables to have a better separation of each element, a new easier way to gather them and a
possibility to do some structural verification of the developed application by the mean of a method
based on a fixed point equation resolution. Actually, we hope to implement this method to at least
localize interfering components and assembly anomalities subsequently easing the rectification of
the assembly by the conceptor. Then, we plan to implement a projection of them on multiple
component platform using aspects so that simple modifications could be more easily implemented
in a shorter time and to introduce .

The second part, is the code "patcher" which enables programmers to implement their transfor-
mations contracts directly in the deployed component application. Aspect Oriented Programming
(AOP) enables us to easily set orthogonal intervention points (also known as pointcuts) in the
framework and the components code. AOP fits very well to the need of assembling and composing
components because we can set these complex "intervention" points everywhere in the compo-
nent. Java is the most efficient language because it has the particularity of being OS and platform
independent. Moreover many components platforms are already implemented in Java.

[Type of call [Duration for 60000 calls (in ms)]
Standard local call Not measurable

RMI call 27480

Call of a JAC "patched" method (without any aspect) 61

Call of a JAC "patched" method (with two dumb aspects) 110

Fig. 3. Overload induced by the JAC platform on a method call

F. Legond-Aubry, D. Enselme, G. Florin

Dynamic AOP is the most efficient tools because it enables dynamic modification and reaction to
the environment. Previous studies conducted with the JAC platform taught us that the overload
induced by the cost of dynamic wrapping is negligible compared to the latency induced by remote
calls. Table 3 illustrates this issue.

References

14.
15.
16.
17.

Second order logic, foundations, and rules. 1990.

. A.Thomas. Enterprise javabeans technology. White paper, Sun Microsystems, Inc., 1999.

Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeau, and Damien Watkins. Making components
contract aware. In IEEFE Software, pages 3845, june 1999.

. D. F. D’Souza and A. C. Wills. Objects, Components and Frameworks with UML: The Catalysis

Approach. Addison-Wesley, http://www.catalysis.org, 1998.

R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying Behavioral Compositions in
Object-Oriented Systems. In Proc. of the OOPSLA/ECOOP-90: Conference on Object-Oriented Pro-
gramming: Systems, pages 169—-180, Languages, and Applications / European Conference on Object-
Oriented Programming, Ottawa, Canada , 1990.

J.-M. Jézéquel, M. Train, and C. Mingins. Design Patterns and Contracts. Addison-Wesley, October
1999.

Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(3):872-923, 1994.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for software
architecture description languages. Software Engineering, 26(1):70-93, 2000.

. B. Meyer. FEiffel : The language. Prentice-Hall, 1991.
10.
11.
12.
13.

B. Meyer. Applying Design by Contract. Computer, October 1992.

Microsoft. .NET. hitp://www.microsoft.com/net/default.asp, 2001.

Klasse Objecten. OCL Checker. Web site, Klasse Objecten, 1999.

P. Champagnoux, L. Duchien, D. Enselme, G. Florin. Typage pour des composants coopératifs. In
NOTERE 2000 Proceedings, November 2000.

Parasoft. jContract. Web site, Parasoft, 1996.

R. Fagin,J. Y.Halpern, Y. Moses, M. Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.

R. Kramer. iContract - The Java Design by Contract Tool. Web site, iContract, 1999.

R.Marvie. Corba components: la proposition unifiée, du modéle au objet au modéle des composants.
Technical report, LIFL, May 1999.

Enabling Re-configurability on Component-based Programmable
Nodes

J6 Ueyama, Stefan Schmid, Geoff Coulson, Gordon S. Blair, Antonio T. Gomes,
Ackbar Joolia, Kevin Lee

Computing Department
Lancaster University
LAl 4YR Lancaster, UK
{ueyama, sschmid, geoff, gordon, gomes, joolia, leek}@comp.lancs.ac.uk

Abstract

Recently developed networked services have been demanding architectures that accommodate an
increasingly diverse range of applications requirements (e.g. mobility, multicast, QoS), as well as
system requirements (e.g. exploiting specialized processing hardware). This is particularly crucial
for architectures of network systems where the lack of extensibility and interoperability has been
a constant struggle, hindering the provision of novel services. It is also clear that to achieve such
flexibility these systems must support extensibility and re-configurability of the base functionality
subsequent to the initial deployment. Based on our experience with middleware platforms, we argue
that re-configurability of network services is best implemented by means of reflection.

In this position paper we present component-based approach to developing flexible networked systems,
especially targeted at the Intel IXP1200 programmable networking environment and discuss how our
approach can offer a more deployable, flexible and extensible networking infrastructure. We show
the viability of our component model to re-configure services on the Intel IXP1200 platform. An
application scenario is presented to validate our approach to enable re-configuration of services across
different layers of an IXP1200-based router platform.

1 Introduction

An increasing number of recent applications (e.g. real-time, multimedia) and their underlying system
infrastructures (e.g. workstations, PDAs, embedded systems, ad-hoc networks) have been requiring a
flexible architecture to accommodate all the requirements necessary to run these applications as well as
to inter-operate in a heterogeneous environment composed of different types of applications and hard-
ware platforms. It is increasingly clear that to achieve this, we need an extensible and re-configurable
architecture that is capable of loading and integrating new functionality at run-time. As an example
of re-configurability, we could load and unload services on a network router and intelligently adapt its
forwarding behaviour to various types of traffic and environments such as mobile or ad-hoc.

Unfortunately, although much research on providing an open architecture for networking systems
have been carried out, we still lack a generic approach to develop and deploy new network services.
Existing paradigms address configuration and re-configuration of services running on a particular level
of a programmable networking system (e.g. open signalling for control functions, and active networks for
in-band packet processing). But there is as yet no really comprehensive approach.

At the same time, component technology [21] has been widely cited as a suitable model for devel-
oping adaptive software due to its incrementally deployable nature [10]. For example, with component
technology described in [10] one can add, replace and remove the constituent components residing in the
same address space. Therefore, the use of component technology provides a means for deployment-time
configurability and run-time re-configurability. However, although component-based architecture have
been successfully used in many adaptive applications, early research into active networks has not truly
adopted a component model [18]. Moreover, the majority of existing work (e.g. Vera [15] and Genesis [5])
omit support for dynamic re-configuration. RANN (Reflective Active Network Node) [22] introduces the
use of reflection to support flexible configuration in active networks, but it only defines an architecture

where active nodes use reflection to better structure services. Essentially, RANN defines an architecture
for configuration rather than re-configuration. Moreover, we argue that this work is partial; it only ad-
dresses the configurability within the execution environment, and not at lower or higher system levels.
Furthermore, RANN is language specific (Java).

As a consequence, this paper presents the design and implementation of a component-based architec-
ture for programmable networking software, which provides an integrated means of developing, deploying
and managing such systems. The proposed architecture consists of a generic component model applied on
all levels of the programmable network design space, which ranges from fine-grained, low-level, in-band
packet processing functions to high-level signalling and coordination functions. The projected benefits
of this approach are detailed in section 4. Configuration and re-configuration across this architecture
is achieved by dynamically loading and unloading service components. Reflection is used to reify con-
figurations of components and to support various types of meta-data to facilitate configuration and
re-configuration.

The remainder of the paper is structured as follows. Section 2 looks in detail at existing component-
based frameworks for generic applications and component-based technology to provide programmability in
networks which leads to the motivations of our work. Subsequently, section 3 examines existing technology
necessary for this architecture. It introduces our component model OpenCOM, the concept of component
frameworks and finally covers the IXP1200 platform. Section 4 then reports on our globally applied
component-based architecture to enable dynamic creation, deployment and management of services in
programmable networking environments. Qur approach and an overview of the design space of the
programmable networking environment is detailed in the same section. The design and implementation
of our model carried out to date is presented in section 5. Finally, section 6 draws general conclusions
from this paper and the proposed architecture.

2 Analysis of Existing Work

We distinguish here component-based platforms for general purpose applications from component models
tailored towards a specific application domain (such as active and programmable networks).

2.1 Generic Component-based Platforms

Although there exists a wide range of research systems (e.g. XPCOM, K-Component [11]) that implement
component platforms for generic applications, we argue that all of these are suboptimal for programmable
networks due to their lack of special support for the hardware platforms used in this context. These
limitations are frequently related to the platform upon which the component is built for (e.g. the Java
virtual machine). Another limitation regards the system layer at which the component model is targeted.
For example, none of the existing component models consider the integration of low-level and high-
level components running on different layers of the router hardware (e.g. in-band packet forwarding,
or signaling). There exists work addressing low-level components providing an architecture to build
component-based OSs (e.g. Think [12], Knit [17]). Nevertheless, typically these systems do not provide
a uniform and globally applied framework to load and bind both assembly language-based components
and high-level components.

2.2 Component-based Platforms for Programmable Networks

Aside from the component model for generic applications, there has been considerable research on
component-based platforms for programmable routers (e.g. Click [16], NP-Click [20], VERA [15], NetBind
[5], LARA++ [19]). Nevertheless few works support configuration and reconfiguration (i.e., adaptation,
extension, evolution and removal) sufficiently. Most of them support the first configuration but do not
support the subsequent re-configuration at runtime. Moreover, systems that implement re-configuration
do not adequately support the management of system integrity over re-configuration operations (e.g.
ensuring that firewall updates are applied consistently and universally). Furthermore, these works do not
provide an integrated approach to configure and re-configure services across all layers of the programmable
networking system (see section 4). For example, VERA limits re-configurability to in-band functions and

the hardware abstractions layer, whereas NetBind considers only in-band functions. LARA++, on the
other hand, allows re-configurability on all layers, but lacks an uniform model to do so (i.e. different
component models are used on the different layers).

3 Background

3.1 Component Frameworks

The concept of component frameworks (CFs) is applied to deal with component constraints and the
dimensioning of the applicability of participating components. CFs are also applied to provide the
structure allowing the use of components for a specific domain of application. A number of runtime
CFs have been implemented as part of our past research (e.g. pluggable protocols, pluggable thread
schedulers, and pluggable media filtering) [10]. CF were originally defined by [21] as collections of rules
and interfaces that govern the interaction of a set of components “plugged into” them. In this sense, a CF
embodies rules and interfaces that would make sense for a specific domain of application. For example, a
CF for pluggable protocols consists of a variety of interfaces and rules to integrate plug-in protocols and
ensure that they are stacked in an appropriate order. As another example, CFs can determine constraints
to govern the interaction of a set of components: a CF can mandate that a packet scheduler component
must always read its input from a packet classifier. Such constraints are useful to ensure meaningful re-
configuration and therefore the system must provide support for expressing these constraints. Essentially,
CF's provide the necessary support and conditions for components and also regulates the interaction rules
between component instances for a specific domain of application. A component framework can come
alone or interact and cooperate with other CFs (as long as it conforms to the rules governed on the host
CF). Therefore, it is natural to design CFs themselves as components.

3.2 OpenCOM

Lancaster’s OpenCOM (7] is a lightweight, efficient, flexible, and language-independent component model
that was originally developed as part of previous research on configurable middleware [10]. OpenCOM is
fine-grained in that its scope is intra-capsule (for capsule, see below) and it imposes a minimal overhead on
cross-component invocation without compromising the overall performance. It is currently implemented
on top of a subset of Mozilla’s XPCOM platform.

OpenCOM relies on four fundamental concepts:

Capsule: a capsule (see figure 1) comprehends multiple physical address spaces within a single logical
container: for example, a capsule could encapsulate both a Linux process in the IXP1200’s control
processor and one or more microengines. Encapsulating multi-address-spaces offers a powerful
means of abstracting over heterogeneous but tightly-coupled hardware (e.g. PC, StrongARM and
the microengines of the IXP1200 router platform - see section 3.3 and figure 3 for the IXP1200
architecture).

Interface: expresses a unit of service provision;

Receptacle: define a service requirement and is used to make the dependency of one component on
another explicit;

Binding: is an association between a receptacle and an interface. In the original version of OpenCOM,
bindings were restricted to receptacles and interfaces residing in the same address space. Currently,
OpenCOM is being extended to support binding between receptacles/interfaces of different address
spaces as well. Semantically, a connection represents a communication path between one receptacle
and one interface. Bindings in the original OpenCOM were exclusively implemented in terms of
vtables [3] (a vtable is essentially a table containing pointers to virtual functions). Currently,
however, we are extending OpenCOM to support bindings implemented in a variety of ways.

On top of OpenCOM, we have designed a CF called the “Router CF” that is targeted specifically
at packet-forwarding functions in routers. See figure 2. In this illustration the meta-interfaces support

. IXP1200

StrongARM Microengines (no OS)

/ Capsule <___) AddressSpace —C Receptacde —® Interface Q Component

Figure 1: Multi-address-space capsules

inspection of the types of interfaces and receptacles declared by the target component. The meta-
interfaces use the underlying XPCOM system to query the component’s type library file and return the
IID’s (interface identifiers) of the interfaces it implements. Information obtained from this inspection
can then be used to enable and guide subsequent re-configuration (e.g. to replace one component with
another). Reflection is used as the means to obtain such information, which enables the re-configuration
in our framework. Moreover, the obtained information is useful in enabling CFs to check the type of
interfaces offered, enforcing the compliance of binding rules at runtime. The controller component (see
figure 2) relies on the mentioned meta-interfaces in order to manage and configure the internal constituents
of the respective CF. It is important to emphasize that the CF can be composed hierarchically of other
CFs of the same type, in order to build a composite of CFs.

OpenCOM MetarInterfaces

- G

OpenCOM CF

interfaces
sa|oe1de8l

Figure 2: Generic CF for programmable routers

3.3 The Intel IXP1200 Router

The IXP1200 router [8, 13] is an Intel-proprietary architecture based on IXP1200 network processor
(NPs). Its architecture combines a StrongARM processor with six independent 32-bit RISC processors
called microengines, which have hardware multithread support. The StrongARM is the core processor
and is primarily concerned with control and management plane operations, whereas microengines handle
packet-forwarding. Our component model is being adapted for this platform. In terms of memory, the
IXP1200 platform provides the Scratch or Scratchpad and also the static and dynamic RAM. Figure 3
illustrates the implementation environment of our prototype.

1XP1200
SDRAM . .
Microengines (no OS)

=r—
StrongARM
PC (Lin%ﬁ)

(Linux/Windows)

Figure 3: Simulation environment of our prototype

4 OQOwur Approach

4.1 Characterizing Programmable Networking Environments

The design space of programmable networking [9] can be split into four layers or “strata”. We use the
term “stratum” rather than “layer” to avoid confusion with layered protocol architectures. The four
strata (see figure 4) are described as follows:

4:coordination

3: application services

2: in-band functions

1: hardwar e abstraction

Figure 4: Design Stratas of Programmable Networking

Hardware Abstraction: The hardware abstraction stratum corresponds to the minimal operating sys-
tem functionality needed to run applications on the higher levels. This functionality encompasses
threads, memory, I/0, library loading and other services needed to support higher-level network
programmability. Interfaces in this stratum are often implemented as wrappers around underlying
native facilities in order to support heterogeneous platforms which allows transparent use of these
services on a number of different router architectures, such as PC-based router or Intel IXP1200s
which provides multiple processors (StrongARM and microengines) and distributed/hierarchical
memory arrays.

In-Band Functions: This stratum consists of packet processing functions such as packet filters, check-
sum validators, classifiers, diffserv schedulers, and traffic shapers. Given that these functions are
low-level, in-band and fine-grained (and therefore highly performance critical) they must be imple-
mented extremely efficiently (i.e. machine instructions should be counted with care.

Application Services: The application services stratum encompasses coarser grained functions: for
example, active networking execution environments [1]. Functions in this stratum are less perfor-
mance critical and act on pre-selected packet flows in application specific ways (e.g. per-flow media
filters).

Coordination: This stratum supports out-of-band signalling protocols which carry out distributed co-
ordination, including configuration and re-configuration of the lower strata. This, for example,
includes signalling protocols such as RSVP, or architectures that enable resource allocation in dy-
namic private virtual networks as employed by architectures like Genesis [4], Draco [14], or Darwin

[6].

The main aim of our work is to provide a globally-applied component model, which can enable
(re)configuration of services in all strata of the programmable networking design space. This yields a
number of important benefits. The component model:

o is simple and uniform - it allows the creation of services in all strata and provides a uniform run-time
support for deployment, inspection and (re)configuration;

o enables bespoke software configurations - by the composition of CFs in each stratum, desired func-
tionality can be achieved while minimising memory footprint; trade-offs vary for different systems
types (e.g. embedded, wireless devices; large-scale core routers);

e facilitates ad-hoc interaction—e.g. application or transport layer components can directly access
(subject to access policies) “layer-violating” information from the link layer, which nowadays is
considered as indispensable [2].

We aim to apply this approach in both PC-based router as well as specialised programmable routers
(e.g. Intel IXP1200). This heterogeneity is fundamental to validate our claim of a generic model. We
also strive to implement this model without compromising the overall performance.

4.2 Aims and Objectives

Our project aims to build a framework to enable re-configuration of services running on all levels (strata)
of any programmable router. It attempts to mask underlying hardware heterogeneity, so that a PC-
based router and an IXP1200-based router which has multiple processors (i.e. microengines and Stron-
9ARM) and distributed/hierarchical memory array, will look as similar as possible to other strata. Re-
configurability in this architecture will be carried out by means of reflection technology which is imple-
mented in OpenCOM.

Initially, we are building a version of the Router CF described above for the IXP1200. Essentially, this
CF offers an abstracted view of the IXP (i.e. an API) to both developers and deployers of programmable
networking functionality. The CF embodies rules and constraints that component developers must follow
in developing plug-in components.

5 Progress to Date

In line with the above-mentioned aims and objectives, our component model for programmable network-
ing platforms enables loading and binding of components residing in all strata of the design space of
the programmable networking environment. The core architecture contains essentially these two func-
tionalities: loading and binding. The former loads a class (i.e. code) and also creates an instance of
one component in the specified capsule_id and the latter accomplishes the binding between individual
components (between interfaces and receptacles).

5.1 Generic Framework

Following the above-mentioned approaches and aims, we extended the core API of OpenCOM with the
following methods:

e load(capsule_id, component guid);
e unload(capsule_id, component_guid);

e bind(interface guid, receptacle guid);

e unbind(interface guid, receptacle guid);

In these methods, capsule_id specifies either the capsule where the component will be loaded or the
capsule where the component resides (e.g. in the PC, StrongARM or a Microengine). Component_guid,
interface_guid and receptacle_guid are component, interface and receptacle identifiers respectively. In
our prototype, GUID is the “globally unique identifier” and it is used to locate a specific component,
receptacle, and interface to be loaded or bound. For high-level components, we employ the ClassID
(implemented in XPCOM) as our identifiers for components; and InterfaceID as interface and receptacle
identifiers. For Microcode-based components, we have been using the name and the path where each
component is located to identify the component and its interface and receptacle.

An example environment is depicted in figure 3. Note that this example employs three address spaces:
PC, StrongARM and Microengines.

5.2 Re-Configuration: Loading and Binding using Reflective Techniques

The loading mechanism determines the physical placement of components to-be-deployed by taking into
account factors such as resource usage as well as QoS and security constraints. Similarly, the binding
mechanism wires the component into the appropriate place in the software router configuration. The
implementation of the above functionality includes a number of wrapper functions that map each load
and bind method to the corresponding mechanism to re-configure components in the requested address
space.

Components running in this environment can typically be of any granularity, i.e., components can be
coarse-grained (e.g. developed for the StrongARM or PC platform) or fine-grained, which in our case
are typically coded in the Intel IXP1200 machine language (i.e. microcode). This enables us to write
high-level services that rely on functionalities provided by low-level components.

In this sense, the binding mechanism can as well connect components of any type. Bindings between
microengine and StrongARM components is (typically) carried out by using a shared-memory mechanism
(exploiting the IXP1200s SDRAM and SRAM common memory). We have also been using the Scratch
memory (for Scratch memory, see figure 3) to transfer integer values between these components (see figure
5 for details) as this provides the lowest transfer time (compared to SRAM and SDRAM). Finally, binding
between two microengine components is achieved by changing the execution path from one component
to another, i.e., by changing the branch instruction, pointing the execution path to the next component
(see figure 6). This is implemented in the same way as in NetBind [5]. However, we claim that our
implementation is more fine-grained as we do not rely on “pipelines” (a pipeline in NetBind is a set of
assembly-based components that are initially connected and executed subsequently). Our component
model loads, connects and executes units of single components instead of a set of them. As illustrated in
figure 6, each component in Microcode can be composed of four threads that run in parallel.

The controller component contains information about the component configuration. It has the reflec-
tive capabilities to inspect and re-configure the constituents of the CF. The inspection and re-configuration
mechanisms are achieved by the OpenCOM meta-interfaces implemented on each CF (see figure 2). In-
formation on each CF is provided to the controller implemented on a CF hierarchically superior to the
inspected CF. As pointed out before, a CF may be composed of other CF's in order to build a composite
of CFs.

5.3 An Application Scenario

In order to validate our component model, we are now experimenting with a configuration of the Router
CF which uses our globally applied component model across several layers of the IXP1200 programmable
router environment. This scenario demonstrates how (re-)configuration and reflection can be used to
extend the network service on a router at run-time. In particular, the example emphasizes the advantage
of having a single component model, which allows configuration and (re-)configuration of the service
components across several layers of the programmable network design space and across different processing
hardware (i.e., network processors, PCs, etc.). It also shows how (re-)configuration can be carried out in
dimensions that do not have to have been foreseen when the system was designed.

The Router CF configuration illustrated in Figure 7 is a typical configuration for an IP router. It
consists of several low-level, in-band components on the “fast-path” of the router, namely a classifier and

@ C/C++ component writes value into Sctatch Memory in IXP1200

compl @ assembly (microcode) component reads value from Scratch mem
C/C++ Component

@ assembly (microcode) component writes value into Scratch mem

@ C/C++ component reads value from Scratch mem

StrongARM @

Linux

Microengines
(no OS)
Scratch Mem.

ucompl

aseembly
(microcode)
component

microengine

Figure 5: Binding between C/C++ components and assembly (microcode)-based components

StrongARM
Linux
Microengines
(no OS)
componentsin Microcode microstore
ucompl ucomp2 ucomp3
@ change the execution path from ucompl to ucomp2
@ change the execution path from ucomp2 to ucomp3
threads @ threads @ threads
microengine

Figure 6: Binding between assembly (microcode)-based components

a forwarder, as well as a queuing and scheduling component, an application service-level component for
the processing of IP options on the “slow-path”, and a high-level Router CF in the control plane of the
router (coordination stratum).

In the case of our IPX1200 based router architecture, we develop the above mentioned functionalities
on different strata (in-band, application service and coordination layer) of our multi-strata programmable
router architecture, but as component of the same component framework. In order to leverage the process-
ing capabilities and performance of the different hardware layers, we target the different functionalities on
the processing hardware best suited for them: thus, we implement the “fast-path” components in machine
code for the microengines of the IPX1200 network processors. And for the IP options component on the
routers “slow-path”, we target on the Linux OS running on the StrongARM processor. And finally, the
Routing component, which encompasses several different routing protocol components, we implement on
the PC platform.

In order to illustrate the extensibility and flexibility of our approach, we include an IPv6 to IPv4
protocol translation component, which is added to the initial Router CF application at run-time. Such
dynamic extensibility can be required to adapt a network environment to provide IPv6 support without
restarting the network device.

Like the Router CF itself, the IPv6 to IPv4 translator is spread across different strata and thus areas
of the IPX1200 router architecture. While the actual protocol translation takes place in the application
services layer, the management component is established at the control plane (coordination stratum) of
the router platform. The Translator is integrated with the existing functionality on the router through
composition of an overall service CF. The controller component of the overall service CF integrates the

Coordination CF

e
Controller

Controller Router CF

‘ S .

| i

! I

| i

| I

| ;

coordination | | Routing CF |

PC/StrongARM | e RSN havtunts- St
T
|
v4v6 Transator CF ———
|
|
application |
services !

PC/StrongARM o L [|
[—
e B fast-pah H]
| |] Paﬁ [u /\
input interfac ol o } output
input interface U output

in-band functions
microengines

Figure 7: TPv4v6 translator application scenario

Translator by loading the composite and establishing the bindings with the Router CF interfaces.

As mentioned before, reflective techniques are used to accomplish this functionality (i.e. configuration
and (re-)configuration of component-based services). Also, it is important to emphasize again that it is
the uniform component model that enables components of different strata to interface with each other.

In terms of performance, we point out that the overhead seen by packets transversing the router is no
more than would be incurred by Intel’s standard software development environment (e.g. using Microace
- Intel’s component model for IXP1200 platform [13]) as the same bindings (i.e. linkages between software
modules) are used in both case. Moreover, the Intel environment (Microace) is static [5], whereas the
OpenCOM approach is soft and flexible.

6 Conclusions

In this paper we have proposed a component model that can potentially be applied at all all strata of
the design space of programmable network platforms to create services by loading and binding involved
components. We believe that the combination of components along with reflection and CFs offers a
promising mechanism to configure and re-configure services in networking environments. A key strength
of this model is the uniform framework to load and bind both high-level and low-level components. There-
fore, loaded and bound components may reside in all strata of the programmable networking environment.
As a consequence, we argue that our model facilitates fundamental re-configuration on programmable
routers and hence greatly increases flexibility.

Furthermore, it is important to emphasize that our framework facilitates the extensibility and pro-
grammability of network processor based systems. These architectures are usually extremely complex
and difficult to program and, as a consequence, re-configuration is hardly considered on these “primitive”
environments. However, the provision of a generic framework for these architectures gives the program-
mer a friendly interface (abstraction) to create and consequently re-configure services based on low-level
components. We do this by creating an “illusion” for the component developer that low-level components
can be loaded and bound in the same way as high-level components.

7

Acknowledgements

J6 Ueyama would like to thank the National Council for Scientific and Technological Development (CNPq
- Brazil) for sponsoring his scholarship at Lancaster University (Ref. 200214/01-2). The authors would
like to thank the anonymous reviewers for helping to improve this paper. Finally, we would like to thank
Paul Grace for his comments on this paper.

References

[1]
(2]

3]
[4]

[21]

22]

ANTS. The ants toolkit. http://www.cs.utah.edu/flux/janos/ants.html, 2001.

R. Braden, T. Faber, and M. Handley. From Protocol Stack to Protocol Heap — Role-Based Architecture.
In ACM SIGCOMM Computer Communication Review, volume 33, No 1, January 2003.

K. Brown. Building a Lightweight COM Interception Framework Part 1: The Universal Delegator. Microsoft
Systems Journal, January 1999.

A. Campbell, Meer G., M. Kounavis, K. Miki, J. Vicente, and D. Villela. The Genesis Kernel: A virtual
network operating system for spawning network architectures. In OPENARCH’99 - Open Architecture and
Networking Programming, New York, USA, March 1999.

A.T. Campbell, M.E. Kounavis, D.A. Villela, J.B. Vicente, H.G. de Meer, K. Miki, and K.S. Kalaichelvan.
NetBind: A Binding Tool for Constructing Data Paths in Network Processor-based Routers. In 5th IEEE
International Conference on Open Architectures and Network Programming (OPENARCH’02), June 2002.

P. Chandra, A. Fisher, C. Kosak, T.S.E. Ng, P. Steenkiste, E. Takahashi, and H. Zhang. Darwin: Customiz-
able Resource Management for Value-added Network Services. In 6th IEEE Intl. Conf. on Network Protocols
(ICNP 98), Austin, Texas, USA, October 1998.

M. Clarke, G.S. Blair, G. Coulson, and N. Parlavantzas. An Efficient Component Model for the Construction
of Adaptive Middleware. In Proceedings of the IFIP/ACM Middleware 2001, Heidelberg, November 2001.

D. Comer. Network Systems Design using Network Processors. Prentice Hall, 2003.

G. Coulson, G. Blair, T. Gomes, A. Joolia, K. Lee, J. Ueyama, and Y. Ye. Position paper: A Reflective
Middleware-based Approach to Programmable Networing. In ACM/IFIP/USENIX International Middleware
Conference, Rio de Janeiro, Brazil, June 2003.

G. Coulson, Blair G.S., M. Clarke, and N. Parlavantzas. The Design of a Highly Configurable and Reconfig-
urable Middleware Platform. ACM Distributed Computing Journal, 15(2):109-126, April 2002.

J. Dowling and V. Cahill. The K-Component Architecture Meta-Model for Self-Adaptive Software. In
Reflection 2001, Kyoto, Japan, September 2001. LNCS 2192.

J.P. Fassino, J.B. Stefani, J. Lawall, and G. Muller. THINK: A Software Framework for Component-based
Operating System Kernels. In USENIX 2002 Annual Conference, June 2002.

Intel. Intel IXP1200. http://www.intel.com/IXA, 2002.

R. Isaacs and I. Leslie. Support for Resource-Assured and Dynamic Virtual Private Networks. In JSAC
Special Issue on Active and Programmable Networks, 2001.

S. Karlin and L. Peterson. VERA: An Extensible Router Architecture. In /th International Conference on
Open Architectures and Network Programming (OPENARCH), April 2001.

R. Morris, Kohler E., J. Jannoti, and M. Kaashoek. The Click Modular Router. In 17th ACM Symposium
on Operating Systems Principles (SOSP’99), Charleston, SC, USA, December 1999.

A. Reid, M. Flatt, L Stoller, J. Lepreau, and E. Eide. Knit: Component Composition for Systems Software.
In Proc. of the 4th Operating Systems Design and Implementation (OSDI), pages 347-360, October 2000.

S. Schmid. A Component-based Active Router Architecture. PhD thesis, Lancaster University, http://www.
mobileipv6.net/~sschmid/PhD_Thesis.ps, December 2002.

S. Schmid, T. Chart, M. Sifalakis, and A Scott. Flexible, Dynamic, and Scalable Service Composition
for Active Routers. In IWAN 2002 IFIP-TC6 4th International Working Conference, volume 2546, pages
253-266, Zurich, Switzerland, December 2002.

N. Shah, W. Plishker, and K. Keutzer. NP-Click: A Programming Model for the Intel IXP1200. In 2nd
Workshop on Network Processors (NP-2) at the 9th International Symposium on High Performance Computer
Architecture (HPCA-9), Anaheim, CA, February 2003.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, second edition,
2002.

A. Villazén. A Reflective Active Network Node. In TWAN, pages 87-101, 2000.

10

Why is Service-Orientation Necessary for Event
Correlation?

Andreas Hanemann and David Schmitz
Munich Network Management Team

Leibniz Supercomputing Center, Barer Str. 21
80333 Munich, Germany

{hanemann, schmitz}@lrz.de

Abstract. The paradigm shift from device-oriented to service-oriented
management has also implications to the area of event correlation. To-
day’s event correlation addresses mainly the correlation of events as re-
ported from management tools. However, the correlation of trouble re-
ports from users needs to be addressed as well, because different reports
could have the same cause. In such a case the reports could be linked
together and a processing has to performed only once. Therefore the
response time for trouble reports could be improved and service level
guarantees could be kept with less effort. We refer to such a type of cor-
relation as service-oriented correlation. In this paper we give an overview
about today’s event correlation and present a selection of the applied
techniques and their characteristics. Starting from a scenario for current
and future distributed service provisioning we show which issues could
be covered by the service-oriented event correlation. In the last section
we present how we are going to approach these issues in our PhD theses.

1 Introduction

In huge networks a single fault can cause a burst of failure events. To hand-
le the flood of events and to find the root cause of a fault, event correlation
approaches like rule-based reasoning, case-based reasoning or the codebook ap-
proach have been developed. The main idea of correlation is to condense and
structure events. Until now, these approaches address primarily the correlation
of events as reported from management tools or devices.

In this paper we define a service as a set of functions which are offered
by a provider to a customer at a customer provider interface. A service level
agreement (SLA) is a contract between customer and provider about guaranteed
service performance.

As in today’s IT environments the offering of such services with an agreed
service quality becomes more and more important, this change also affects the
event correlation. To avoid SLA violations it is especially important for service
providers to identify the root cause of a fault in a very short time or even
act proactively. The latter refers to the case of recognizing the influence of a
device breakdown on the offered services. As in this scenario the knowledge about

services and their SLAs is used we call it service-oriented. It can be addressed
from two directions.

— Top-down perspective: Several customers report a problem in a certain time
interval. Are these trouble reports correlated?

— Bottom-up perspective: A device (e.g., router, server) breaks down. What
services, and especially what customers, are affected by this fault?

The rest of the paper is organized as follows. In section 2 we describe how
event correlation is performed today and present a selection of the state-of-the-
art event correlation techniques. Section 3 describes the motivation for service-
oriented event correlation and its benefits. The last section concludes the paper
and presents future work.

2 Today’s Event Correlation Techniques

In [1] the task of event correlation is defined as “a conceptual interpretation
procedure in the sense that a new meaning is assigned to a set of events that
happen in a certain time interval”. We can distinguish between three aspects for
event correlation.

functional aspect: The correlation focuses on functions which are provided by
each network element. It is also regarded which other functions are used to
provide a specific function.

topology aspect: The correlation takes into account how the network elements
are connected to each other and how they interact.

time aspect: When explicitly regarding time constraints, a start and end time
has to be defined for each event. The correlation can use time relationships
between the events to perform the correlation. This aspect is only mentioned
in some papers [1], but it has to be treated in an event correlation system.

In the event correlation it is also important to distinguish between the know-
ledge acquisition/representation, and the correlation algorithm. Examples of ap-
proaches to knowledge acquisition/representation are Ensel’s dependency detec-
tion by neural networks [2] and Gruschke’s dependency graphs [3]. There is also
an approach to manage service dependencies with XML and to define a resource
description framework [4].

In the past event correlation systems were focused on errors in network ele-
ments which are real or virtual hardware or software entities. We call this kind
of correlation device-oriented. In contrast, service-oriented event correlation also
regards services which are provided using network elements.

To get an overview about device-oriented event correlation a selection of
several event correlation techniques being used for this kind of correlation is
presented.

Model-based reasoning: Model-based reasoning (MBR!) [6,5,7] represents a
system by modeling each of its components. A model can either represent a

! An example system for MBR is NetExpert[10] from OSI which is a hybrid
MBR/RBR system. In 2000 OSI was acquired by Agilent Technologies.

physical entity or a logical entity (e.g. LAN, WAN, domain, service, business
process). The models for physical entities are called functional model, while
the models for all logical entities are called logical model. A description of
each model contains three categories of information: attributes, relations to
other models, and behavior. The event correlation is a result of the collabo-
ration among models.

As all components of a network are represented with their behavior in the
model, it is possible to perform simulations to predict how the whole network
will behave.

A comparison in [7] showed that a large MBR system is not in all cases easy
to maintain. It can be difficult to appropriately model the behavior for all
components and their interactions correctly and completely.

Rule-based reasoning: Rule-based reasoning (RBR?) [5,6] uses a set of rules
for event correlation. The rules have the form conclusion if condition. The
condition uses received events and information about the system, while the
conclusion contains actions which can either lead to system changes or use
system parameters to choose the next rule.

An advantage of the approach is that the rules are more or less human-
readable and therefore their effect is intuitive.

In the literature [7,8] it is claimed that RBR systems are classified as re-
latively inflexible. Frequent changes in the modeled IT environment would
lead to many rule updates. These changes would have to be performed by
experts as no automation has currently been established. Information about
the network topology which is needed for the event correlation is not used
explicitly, but is encoded into the rules. This intransparent usage would
make rule updates for topology changes quite difficult. The system brittleness
would also be a problem for RBR systems. It means that the system fails if an
unknown case occurs, because the case cannot be mapped onto similar cases.
The output of RBR systems would also be difficult to predict, because of
unforeseen rule interactions in a large rule set. According to [5] a RBR system
is only appropriate if the domain for which it is used is small, nonchanging,
and well understood.

Codebook approach: The codebook approach 3 [11,12] has similarities to RBR,
but goes one step further and encodes the rules into a correlation matrix.
The approach starts using a dependency graph with two kinds of nodes for
the modeling. The first kind of nodes are the faults (denoted as problems in
the cited papers) which have to be detected, while the second kind of nodes
are observable events (symptoms in the papers) which are caused by the
faults or other events. The dependencies between the nodes are denoted as
directed edges. It is possible to choose weights for the edges, e.g. a weight for
the probability that fault/event A causes event B. Another possible weight-
ing could indicate time dependencies. There are several possibilities to reduce

> The GTE IMPACT system [1] is an example of a rule-based system. It also uses
MBR. GTE has merged with Bell Atlantic in 1998 and is now called Verizon [9].
3 SMARTS InCharge [11,13] is an example of such a correlation system.

the initial graph. If e.g. a cyclic dependency of events exists and there are
no probabilities for the cycles’ edges, all events can be treated as one event.
After a final input graph is chosen, the graph is transformed into a correla-
tion matrix where the columns contain the faults and the rows contain the
events. If there is a dependency in the graph, the weight of the corresponding
edge is put into the according matrix cell. In case no weights are used the
matrix cells get the values 1 for dependency and 0 otherwise. Afterwards, a
simplification can be done, where events which do not help to discriminate
faults are deleted. There is a trade-off between the minimization of the ma-
trix and the robustness of the results. If the matrix is minimized as much
as possible, some faults can only be distinguished by a single event. If this
event cannot be reliably detected, the event correlation system cannot dis-
criminate between the two faults. A measure how many event observation
errors can be compensated by the system is the Hamming distance. The
number of rows (events) that can be deleted from the matrix can differ very
much depending on the relationships [5].

The codebook approach has the advantage that it uses long-term experience
with graphs and coding. This experience is used to minimize the dependency
graph and to select an optimal group of events with respect to processing
time and robustness against noise.

A disadvantage of the approach could be that similar to RBR frequent
changes in the environment make it necessary to frequently edit the input
graph.

Case-based reasoning: In contrast to other approaches case-based reasoning
(CBR*) [14, 5] systems do not use any knowledge about the system structure.
The knowledge base saves cases with their values for system parameters
and successful recovery actions for these cases. The recovery actions are not
performed by the CBR system in the first place, but in most cases by a
human operator.

If a new case appears, the CBR system compares the current system para-
meters with the system parameters in prior cases and tries to find a similar
case. To find such a match it has to be defined for which parameters the cases
can differ or have to be the same. If a match is found, a learned action can
be performed automatically or the operator can be informed with a recovery
proposal.

An important advantage of this approach is that the ability to learn is in-
cluded in the approach. This feature is important for rapid changing envi-
ronments.

There are also difficulties when applying the approach [5]. The fields which
are used to find a similar case and their importance have to be defined
appropriately. If there is a match with a similar case, an adaptation of the
previous solution to the current has to be found.

4 An example system for CBR is SpectroRx from Cabletron Systems. The part of
Cabletron that developed SpectroRx became an independant software company in
2002 and is now called Aprisma Management Technologies [15].

In this section four event correlation approaches were presented which have
evolved into commercial event correlation systems. The correlation approaches
have different focuses. MBR mainly deals with the knowledge acquisition and
representation, while RBR and the codebook approach propose a correlation
algorithm. The focus of CBR is its ability to learn from prior cases.

3 Motivation of Service-Oriented Event Correlation

Fig. 1 shows a general service scenario upon which we will discuss the importance
of a service-oriented correlation. Several services like SSH, a web service or a
video conference service are offered by a provider to its customers at the customer
provider interface. A customer can allow several users to use a subscribed service.
The quality and cost issues of the subscribed services between a customer and
a provider are agreed in SLAs. On the provider side the services use subservices
for their provisioning. In case of the services mentioned above such subservices
are DNS, proxy service and IP service. Both services and subservices depend on
resources upon which they are provisioned. As displayed in the figure a service
can depend on more than one resource and a resource can be used by one or
more services.

customer provider
customer interface provider

waor b
user c video conf.

services

subservices

resources

service dependency = - = resource dependency

Fig. 1. Scenario

To get a common understanding, some important terms are defined in the
following. We distinguish between different types of events:

Resource event: We use the term resource event for network events and sys-
tem events. A network event refers to events like node up/down or link

up/down whereas system events refer to events like server down or authen-
tification failure.

Service event: A service event indicates that a service does not work properly.
A trouble ticket which is generated from a customer report is a kind of such
an event. Other service events can be generated by the provider of a service,
if the provider himself detects a service malfunction.

In such a scenario the provider may receive trouble tickets from customers
which indicate that the SSH, web service and video conference service are not
available. When referring to the service hierarchy, the provider can conclude in
such a case that all services depend on DNS. Therefore it seems more likely that
a common resource which is necessary for this service does not work properly
or is not available than to assume three independent service failures. In contrast
to a resource-oriented perspective where all of the trouble tickets would have
to be processed separately, the trouble tickets can be linked together. Their
information can be aggregated and processed only once. If e.g. the problem is
solved, one common message to the customers that their services are available
again is generated and distributed by using the list of linked trouble tickets.
This is certainly a simplified example. However, it shows the general principle of
identifying the common subservices and common resources of different services.

It is important to note that the service-oriented perspective is needed to
integrate service aspects, especially QoS aspects. One example of such an aspect
could be that a fault (e.g., breakdown of a device) does not lead to a total failure
of a service, but its QoS parameters, respectively agreed service levels, at the
customer-provider interface are not met. This is also the case if a degradation in
service quality is caused by high traffic load on the backbone. In the resource-
oriented perspective it would be possible to define events which indicate that
there is a link usage higher than a threshold, but no mechanism has currently
been established to find out which services are affected and whether a QoS
violation occurs.

To summarize, the reasons for the necessity of a service-oriented event cor-
relation are the following:

— The time interval between the first symptom (recognized either by a provider,
network management tools, or customers) that a service does not perform
properly and the problem solution needs to be minimized. This is especially
needed with respect to SLAs.

— If several user trouble reports are symptoms of the same fault, fault diagnosis
should be performed only once. If the fault has been repaired, the affected
customers should be informed about this automatically.

— In case of a fault in the resource layer, its influence on the associated services
and customers in terms of an impact analysis needs to be recognized as soon
as possible in order to take appropriate actions. By recursively following the
dependencies from a resource to services an analysis which services would
be affected if the resource fails could be performed. This analysis is useful
to identify critical resources whose failure would have a large impact.

A precondition for a service-oriented correlation is an adequate model of
services, subservices and their provision on the resources.

4 Conclusion and Future Work

In this paper we presented the difference between device-oriented event correla-
tion and service-oriented event correlation. For the device-oriented event corre-
lation a selection of the common techniques which are used today was presented.
Their advantages and disadvantages were discussed. In the presentation of the
service-oriented event correlation it was demonstrated which kind of challenges
could be solved if a service-oriented event correlation would be added.

During our PhD theses we are going to approach the service-orientation from
two directions (see Figure 1).

top-down perspective: If a failure of a service is detected by a customer,
we want to find out which resource has caused the failure. To answer this
question we start at the customer’s service and track the error down the
service hierarchy until a resource that causes the failure is found. During the
search other service events and also resource events are used.

bottom-up perspective: Here our aim is to find out what impact a failure of
a resource could have onto the provided services. Therefore we take the other
way and track the service hierarchy from bottom to top. This analysis can
help to identify critical resources and gives hints for future resource planning.

During our work we plan to use the MNM service model [16] which is a generic
service management model and its extension by Dreo [17] to derive a service
model appropriate for the service-oriented event correlation. We are also going
to analyze which resource representation is well-suited for this purpose. One
possibility could be the Common Information Model.

When having a look onto the correlation techniques which were presented in
the paper our approach has similarities to MBR, as we try to model the services
and their behavior. For the correlation algorithm either RBR or the codebook
approach could be used. It can be assumed that these approaches will only show
a good performance if the modeling can be adequately solved. To reduce the
effort for rule updates which could reduce the scalability we want to try to
automatically derive the rules from the service modeling and the SLAs. To deal
with cases not covered by the current modeling an additional case library (CBR)
could be used. Some of these cases could be used to improve the modeling.

Acknowledgments

The authors wish to thank Gabi Dreo Rodosek for helpful discussions and valu-
able comments on previous versions of the paper. The MNM Team, directed by
Prof. Dr. Heinz-Gerd Hegering, is a group of researchers of the Munich Uni-
versities and the Leibniz Supercomputing Center of the Bavarian Academy of
Sciences. Its webserver is located at http://wwwmnmteam.informatik.
uni-muenchen.de.

References

1.

12.

13.
14.

15.
16.

17.

Jakobson, G. and Weissman, M.: Real-time Telecommunication Network Manage-
ment: Extending Event Correlation with Temporal Constraints. In Sethi, A.S.,
Raynaud, Y., and Faure-Vincent, F. (eds.): Proceedings of the IEEE/IFIP Fourth
International Symposium on Integrated Network Management, pages 290-301,
Chapman and Hall, May 1995.

Ensel, C.: New Approach for Automated Generation of Service Dependency Mod-
els. In Network Management as a Strategy for Evolution and Development; Sec-
ond Latin American Network Operation and Management Symposium (LANOMS
2001), IEEE Publishing, IEEE, Belo Horizonte, Brazil, August, 2001.

Gruschke, B.: Integrated Event Management: Event Correlation using Dependency
Graphs. In Proceedings of the 9th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations & Management (DSOM 98), Newark, DE, USA,
October, 1998.

Ensel, C., Keller, A.: An Approach for Managing Service Dependencies with XML
and the Resource Description Framework. Journal of Network and Systems Man-
agement, 10(2), June, 2002.

Lewis, L.: Service Level Management for Enterprise Networks. Artech House, Inc.
1999. ISBN 1-58053-016-8.

Jakobson, G., and Weissman, M.D.: Alarm Correlation. IEEE Network, pages 52-
59, Nov. 1993.

Wietgrefe, H., Tuchs, K.-D., Jobmann, K., Carls, G., Froelich, P., Nejdl, W., and
Steinfeld, S.: Using Neural Networks for Alarm Correlation in Cellular Phone Net-
works. International Workshop on Applications of Neural Networks to Telecom-
munications (IWANNT), May 1997.

Appleby, K., Goldszmidt, G., and Steinder, M.: Yemanja - A Layered Event Corre-
lation Engine for Multi-domain Server Farms. In: Pavlou, G., Anerousis, N., and Li-
otta, A. (eds.): Integrated Network Management, VII, pages 329-344, IEEE/IFIP,
May 2001.

. http://www.verizon.com
10.
11.

http://www.agilent.com/comms/OSS

Kliger, S., Yemini, S., Yemini, Y., Ohsie, D., and Stolfo, S.: A Coding Approach to
Event Correlation. In: Integrated Network Management IV, pages 266-277, Chap-
man & Hall, 1995.

Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., and Ohsie, D.: High Speed and
Robust Event Correlation. IEEE Communications Magazine, pages 82-90, Volume
34, Issue 5, May 1996.

http://www.smarts.com

Lewis, L.: A Case-based Reasoning Approach for the Resolution of Faults in Com-
munication Networks. In: H.-G. Hegering and Y. Yemini (eds.): Integrated Network
Management, III (C-12), Elsevier Science Publishers B.V. (North-Holland), 1993.
http://www.aprisma.com

Garschhammer, M., Hauck, R., Hegering, H.-G., Kempter, B., Langer, M., Nerb,
M., Radisic, I., Rélle, H., and Schmidt, H.: Towards generic Service Management
Concepts - A Service Model Based Approach. In: Pavlou, G., Anerousis, N., and Li-
otta, A. (eds.): Integrated Network Management, VII, pages 719-732, IEEE/IFIP,
May 2001.

Dreo Rodosek, G.: A Generic Model for IT Services and Service Management. In:
Goldszmidt, G. and Schonwalder, J. (eds.): Integrated Network Management VIII,
pages 171-184, Kluver Academic Publishers, March 2003.

Aspect Testing Framework

Daniel Hughes, Philip Greenwood, and Lynne Blair

Computing Department, Lancaster University,
Lancaster, LA1 4YR. UK
d.r.hughes@lancaster.ac.uk | p.greenwood@Iancaster.ac.uk | Ib@comp.lancs.ac.uk

Abstract. Testing is a vital stage in the development cycle of any application
but is often neglected due to the difficulty and expense to perform the stage
successfully. This is especially so for distributed applications due to the co-
ordination required to successfully test several distributed components
simultaneously. This position paper proposes a framework implemented using
Aspect-Oriented Programming and Reflection, which aims to ease the testing of
such systems and other varieties of systems which encounter similar problems.
Two case-studies are examined to illustrate how the framework will simplify
the testing stage.

1. Background

Software testing is an important part of the development process; however, it is both
difficult and time consuming and therefore often goes neglected. Distributed software
engineering is one of the most high pressure areas of software engineering. This is
due to the increased complexity of developing systems that run in distributed (and
often unpredictable) environments, coupled with software development cycles which
are increasingly restricted by the need to get products to market quickly. This often
leads to sloppy testing procedures and low quality products. Distributed software
engineering poses some specific problems:

e Monitoring of many distributed components running simultaneously.
¢ Insertion and removal of custom monitoring code.
e Reuse of testing code in other applications

An Aspect-Oriented Testing Framework will be proposed in this document, which
aims to address these problems. This system should support the creation and
maintenance of a distributed testing environment; allowing the behaviour of
processes, which may potentially be running on remote machines, to be monitored
from a central interface.

In order to ensure high quality distributed software, testing in a genuinely distributed
environment is often necessary. This is because it is usually not possible to simulate
enough nodes on a single machine due to the high CPU usage and network intensive
nature of many distributed applications. This problem will only increase as the

2 Daniel Hughes, Philip Greenwood, and Lynne Blair

number of users participating in distributed communities grows. To thoroughly test
the effectiveness of distributed systems for such communities, testing with ever
greater numbers of nodes will be required.

Manual creation and maintenance of such tests is an extremely time consuming
activity, especially where nodes are required to change their behaviour dynamically.
This often requires the hand-coding of system monitoring programs to record the
behaviour of nodes from a central point. Furthermore, communications code is often
spread throughout a distributed application making the addition of monitoring code
extremely time consuming and error-prone. To facilitate the efficient insertion and
removal of monitoring to accomplish this, we expect to use a combination of
Reflection [7] and Aspect-Oriented Programming (AOP) [2].

2. Aspect-Oriented Programming and Reflection

AOP is an emerging programming paradigm which extends Object-Oriented
Programming (OOP) and claims to improve certain areas where OOP fails. The
purpose of OOP is to allow the programmer to cleanly capture a single piece of
functionality or concern in an encapsulated object, only exposing features via an
interface. Suppose however that a concern can not be cleanly captured in a single
object, this would normally result in the concern being spread out over several objects
with sections of code implementing the concern contained in each of these objects.
This leads to several problems: the code is less maintainable, the readability of the
code is diminished and the encapsulation provided by OOP is lost.

AOP aims to solve these problems by allowing these crosscutting concerns to be
cleanly captured in one self-contained unit of code. Concerns are implemented in
AOP by using units of code called aspects. Aspects contain pieces of code called
advice which are used to implement the crosscutting concern and the places where the
advice should be applied to the OOP base-code are defined using joinpoints. A
weaver is used to combine the AOP code with base-code so the appropriate links can
be inserted at the places within the base-code specified by the joinpoints to reference
the appropriate aspect-code. Typical examples of such crosscutting concerns which
could be implemented using AOP are: security, synchronisation, and tracing. This
paper will concentrate on implementing a tracing concern used for system monitoring.

When tracing a piece of code, a programmer normally inserts a number of print
statements to trace the flow of the program and they can output them to screen, save
them to a file or send them to a central server (if it is a distributed application).
However, this can be both time consuming and unreliable since some statements
could be missed from a vital section of code. Furthermore, once the tracing has been
completed the print statements need to be removed which again is time consuming
and potentially dangerous as deconstructive changes are being made to the code.
Implementing a tracing concern such as this, using AOP, will allow the trace
statements to be easily added and then later removed due to the ability to easily weave
and un-weave the aspect code without needing to modify the base-code.

Aspect Testing Framework 3

AOP Languages

There are several AOP languages available which are compatible with Java (our
preferred development language) such as Aspect] [5] [6], JAC [10] and Hyper/J [9].
Aspect] is a relatively simple language extension to Java which uses static weaving;
when the aspects are weaved with the base-code at compile time. JAC is similar to
Aspect] in that it uses similar concepts but does not implement a language extension
and uses dynamic weaving which means the aspects can be applied while the base-
code is being executed; however in this case it is an unnecessary overhead. Hyper/J is
very different to the previous two languages in that it requires the structure of the
program to be carefully constructed and the inheritance/interfaces of the objects to be
defined thoroughly. These constraints imposed by Hyper/J make it unsuitable for our
needs. AspectJ will be our chosen aspect language due to its simplistic nature, good
compatibility with Java and the ease with which it allows aspects to be defined.

The joinpoint model in Aspect] allows advice to be attached to such places as method
calls, method execution, method reception, field gets, field sets and exception
handlers. The advice can also be specified to be executed before, after or even around
these joinpoints. Aspect] introduces the concept of pointcuts which are collections of
joinpoints. Advice defined in AspectJ is similar to Java method constructs and can be
attached to pointcuts so that they are executed at the appropriate places.

One of the main problems when using AOP is identifying which joinpoints are
present in a particular application. This is especially troublesome for 3 party objects
or when the source code for an application is no longer available. This problem will
hamper the reuse of aspects as the joinpoints specified in the aspect may only suit one
particular application and destructive changes may have to be applied to either the
aspect-code or the base-code in order to allow an aspect to be compatible with other
applications.

What is required is some kind of framework which is able to examine the object for
which we are interested in weaving an aspect with and then to use the information
gathered to customise the aspect to suit the object.

Reflection

One way which this can be achieved is by using reflection. Reflection is defined as
“The capability of a system to reason about and act upon itself. A reflective system
contains a representation of its own behaviour, amenable to examination and change,
and which is causally connected to the behaviour it describes. Causally connected
means that: changes made to the system’s self representation are immediately
reflected in its actual state and behaviour and vice versa” [1]. In this instance
reflection will only be used to examine and extract information regarding the structure
of the objects.

4 Daniel Hughes, Philip Greenwood, and Lynne Blair

Java implements its own Reflection APl which makes this process much easier. The
Reflection API represents the classes, objects, interfaces currently loaded in the
executing JVM. Several operations are possible using the Reflection API such as:
determining the class of an object, extract information about a class’s methods, fields
constructors, inheritance and information regarding interfaces.

As can be seen, the Reflection API is a very powerful tool and fits our need for being
able to extract information about a class. What is now needed is some kind of
framework which will allow this information to customise aspects in order to change
the joinpoints and advice of the aspects to suit a wider range of applications.

3. Our Approach

What we propose to use, in conjunction with Reflection, is a template structure which
will incorporate the Aspect) code and our own custom tags which will identify the
parts of the aspects which are ‘customisable’.

Tags and Templates

We anticipate that in the first instance the framework will load the object chosen by
the programmer to be examined and the reflection API will be used to extract certain
information about the object. This information will consist of: class types, fields,
method signatures, constructors, return values and parameter lists; elements which
can be used in the joinpoints of AspectJ. The list of elements found will be presented
to the user where they will be able to construct the joinpoints and select which
advice/template should be used to construct the joinpoints.

The benefit of using the template and tags will allow the programmer to create a
normal aspect using the language extensions which Aspect] provides and then simply
substitute the parts of the aspect that need to be customised to suit different
applications with the appropriate tag. Additionally, the advice in the aspect can also
make use of these tags to access elements of the object such as fields or parameters.
For example the following creates a piece of advice which should be executed before
the method call on the method foo within the class c:

before() : call(void c.foo()) {

}

Suppose that the same piece of advice is going to be used in a number of applications
all of which have the class ¢ but foo has a different implementation and to reflect this
is called foo2 instead. Normally the programmer would either have to maintain two
copies of this aspect or continually have to make changes to switch between the
versions of foo. Instead using our framework the user could simply create a template
using the tag <METHODNAME> to generalise the method name and then use the
framework to switch between the two.

Aspect Testing Framework 5

before() : call(void c.<METHODNAME>) {

}

Or to take it a stage further the classname which the method belongs to could be
generalised:

before() : call(void <CLASSNAME>.<METHODNAME>) {

}

The framework will use the reflection API to examine the classes and present to the
user all the potential joinpoints. The programmer can then select the class, methods,
fields etc. to substitute the tags with.

Work needs to be done to expand the tags used as the code samples given here are
merely examples of how the tags could be used. The framework will also need to be
integrated with the Java compiler in order to ease the effort of customising the aspects
to suit the base-code.

The proposed system would have the following advantages over manual testing of
distributed systems:

1. Automatic insertion and removal of necessary testing code.

2. Support for automated monitoring of the state of many distributed components.
3. More rapid deployment of test scenarios.

4. Easy customisation of test cases.

5. Reuse of test code.

6. Ensures the correctness of test code.

This is not the first time that Aspects have been used for a testing/tracing purpose.
The Atlas project [4] found that using print-line statements or a normal debugger are
not effective when debugging a servlet, but instead found that AOP was an ideal
solution. In that work the tracing aspects were created manually. In contrast, the work
described in this paper extends this manual approach and aims to use Aspects in the
same way but to have them created automatically.

4. Examples on AGnuS and Performance

Testing “AGnuS: The Altruistic Gnutella Server”

Consider the following testing scenario for evaluating “AGnuS: The Altruistic
Gnutella Server” [3] AGnuS is a specialised Gnutella node which layers content-
based routing, load balancing, caching and file filtering on top of the core Gnutella
Protocol. Gnutella is a decentralised file sharing protocol. Gnutella nodes perform all
functions on the network; downloading and serving files and routing all messages,

6 Daniel Hughes, Philip Greenwood, and Lynne Blair

unlike traditional file-sharing services such as Napster [8] which rely upon central
servers to process requests. Thorough manual testing of AGnusS is difficult for the
following reasons:

Difficulty of Scalability Testing

One of the key problems with decentralised peer-to-peer networks is scalability. Any
small change in the Gnutella algorithm has the potential to dramatically affect the
scalability of the network. For example, not implementing the time to live (TTL)
value which segments the network would destroy its scalability. Without the TTL
value and the resultant hop-limit, a simply 80 byte query e.g. “Grateful Dead Live”
broadcast on a network of users similar in size to that which Napster supported would
require more than 160MB of data to be sent over the network. In order to reveal such
potentially catastrophic performance issues, it is essential to be able to simulate
networks of an appropriate size. Simultaneous monitoring of the required number of
nodes is not possible manually.

Understanding the Effects of Compound Node Interactions

Another significant problem in the evaluation of complex distributed systems such as
AGNUS is that the emergent structure and behaviour of the network are not always
predictable based on the algorithms used to generate them. User behaviour and node
failure can have unpredictable effects on the network as a whole. To thoroughly test
the behaviour of the network, monitoring of individual nodes or groups of nodes
throughout the network may be required, this is not possible manually.

Testing the Effect of Node Failures

As nodes in a peer-to-peer network such as this one are running on normal general-
purpose workstations, which are potentially insecure and fallible, node failure must be
anticipated and its effects on the network analysed. As with testing compound node
interactions, this is difficult as it requires the monitoring of many distributed
components simultaneously.

One example where the Aspect Testing Framework could be used, to increase the
efficiency of testing for AGnusS, is in testing the accuracy and performance of the
Content-Based Routing System. AGnuS’ Content Based Routing system parses
incoming messages, categorises them according to their type and then routes them to
the most appropriate area of the network: First the method getQueryType(String
query) is called. This method returns a type constant. Based on the constant
returned, one of the following methods is called:

routeAudioQuery (String query)
routeVideoQuery (String query)
routeImageQuery (String query)

routeTextQuery (String query)

Aspect Testing Framework 7

routeSoftwareQuery (String query)

These methods route an incoming message to the area of the network that is richest in
that data type. For Example: Running getQueryType on the incoming query “Elvis
MP3” would return its type as ‘AUDIO’. Based on this classification, the query will
be forwarded using the routeAudioQuery method, which directs it to peers known to
be rich in this file type. It is not possible to manually monitor enough simultaneously
executing nodes, therefore monitoring code must be inserted throughout the content
based routing system for evaluation.

1 2. 3
Read source to find the . Add monitoring codes Create monitoring
methods we wish to d to methods d interface
monitor
4 5. 6
A
Application executes > Tracing data is sent to > Read source to find the
monitoring interface monitoring code
7.

A

Remove the
monitoring code

Figure 1 Hand generation and removal of monitoring code

The proposed Aspect Testing Framework simplifies the problem of testing complex
distributed systems such as AGnuS by automating the insertion/removal of
monitoring code. Furthermore, the ability to easily add, modify and remove
communications code makes it easy to tailor communications to fit any monitoring
interface, thus facilitating the re-use of interface code.

Insertion and removal of monitoring code, especially where it needs to be spread
throughout the program is a time-consuming task. The automation of this process and
the re-use of monitoring code and the central monitoring interface should significantly
reduce the time required to thoroughly test complex distributed systems.

8 Daniel Hughes, Philip Greenwood, and Lynne Blair

1. Reflection Aspect)
2. 3.
Application is loaded .| User selects methods .| Monitoring code is
g to trace » woven into the base-
code
4. 4 5.

Application Executes Tracing data is sent to

monitoring interface

A 4

Figure 2 Automated insertion and removal of monitoring code

1. Java Reflection
Use of the Java reflection API allows the user to inspect the structure of AGnuS’
content based routing System.

2. User Selects Methods to Trace
Presented with a list of the methods contained within the program, the user is able to
select those methods which they wish to monitor.

3. Monitoring Code is Compiled into the Program
AspectJ uses the templates discussed in Section 2 to compile monitoring code into the
application.

4. Program Executes
As the program executes the tracing code woven into the application sends
monitoring information back to the Monitoring Interface.

5. The System Monitoring Interface
It is now possible to monitor a large number of AGnuS nodes running simultaneously,
potentially on a distributed environment from a single interface.

Performance Measuring

Performance measuring is a variation of testing which is suited to be implemented
using the proposed framework. Performance measuring of applications is often
implemented by inserting code into an application to count the number of times a
particular event occurs or to time how long a certain action takes to execute. As in the
distributed application example described earlier one of the major drawbacks of
performing this task is adding and removing the code to perform the measuring.
Another difficulty encountered in implementing this task is customising the

Aspect Testing Framework 9

performance measuring code to count and time the desired events. This is especially
difficult as each different application will have different events that need measuring.

The AOP framework proposed can potentially solve both of these problems. As in the
distributed application example the code required to perform the measuring can be
easily added or removed due to the weaving process used by AOP. Additionally using
the framework to implement this should promote the reuse of aspects which perform
the measuring, as they can be easily applied to other applications by simply selecting
the events via the GUI presented to the programmer which have been gathered by
using Reflection. This relies on the premise that the events fit into the joinpoint model
of AspectJ.

The selected elements are interpreted into joinpoints and inserted at the correct places
in the aspect template. The joinpoints are attached to advice which will carry out the
performance measuring such as counting or timing the selected events. The completed
aspect is then woven with the base-code so that the performance measuring can take
place when the application is executed and the joinpoints (which represent the
selected events) are reached.

4. Summary

The Aspect Testing Framework seeks to facilitate the testing of systems by providing
support for automated monitoring of the state of many (potentially distributed)
components. The Aspect Testing Framework will accomplish this by automating the
process of inserting and removing testing code. We present two scenarios; one
derived from testing ‘AGnuS: The Altruistic Gnutella Server’ and a Performance
Monitoring example which clearly demonstrate the potential improvements the
framework provides over traditional testing methods for distributed and non-
distributed software.

The Aspect Testing Framework encourages re-use of test code: the same test code and
central interface can be used to monitor many different kinds of applications.

The facility to rapidly insert and remove test code throughout any application should
enable more rapid creation of test scenarios; potentially alleviating the problems
caused by the spiralling levels of software complexity and shrinking development
schedules.

Furthermore, as test-code is compartmentalised and separate from the system which it
is to monitor, it will be easier to ensure its correctness. This also aids the removal of
the code from the system after testing which ensures that the correctness of the final
system is not compromised by forgotten test-code.

10 Daniel Hughes, Philip Greenwood, and Lynne Blair

References

[1]Coulson, G., “What is Reflection?”, http://dsonline.computer.org/middleware/,
2003.

[2] Elrad, T. et al, “Discussing aspects of AOP”, Communications of the ACM Vol.
44 No. 10 pp 33-38, 2001.

[3] Hughes, D. et al, “AGnuS: The Altruistic Gnutella Server”, proceedings of the
Third international conference on peer-to-peer Computing pp202 — 203, Linkdping
Sweden, 2003.

[4] Kersten M., G. C. Murphy, Atlas: A Case Study in Building a Web-Based
Learning Environment using Aspect-Oriented Programming. 1999.

[5] Kiczales, G. et al, “Getting Started with Aspect]”, Communications of the ACM
Vol. 44 No. 10 pp 59-65, 2001.

[6] Kiczales, G. et al, “An Overview of Aspect)”, Proceedings of ECOOP pp 327-
353, 2001.

[7] McCluskey G., “Using Java Reflection”, Java Developer Connection, 1998.

[8] Napster, “Napster Home Page”, http://www.napster.com, 2003.

[9] Ossher, H., Tarr, P., “Multi-Dimensional Separation of Concerns using
Hyperspaces”, IBM Research Report 21452, 1999.

[10] Pawlak, R. et al, “JAC: A Flexible Solution for Aspect-Oriented Programming in
Java”, Reflection 2001, 2001.

SEDAM: SErvice Discovery in MANETS
exploiting Asymmetric Mobility patterns

Georg Treu

Ludwig-Maximilian University of Munich (LMU),
Department of Computer Science, Oettingenstr. 67, 80538 Muenchen, Germany
treu@in.tum.de
http://wwwmnmteam. informatik.uni-muenchen.de

Abstract. Recently, many proposals for service discovery strategies in
mobile ad-hoc environments have been made. As the use of static di-
rectory services is inefficient, a number of highly dynamic mechanisms
have been proposed. They address the special properties of mobile de-
vices. However, it has not been considered so far that even in mobile
ad-hoc environments, often there can be found a lot of services that run
on rather immobile devices. SEDAM accounts for this mobility pattern
asymmetry. Although discovered in a peer-to-peer, mobile and ad-hoc
kind of way (e.g. by Bluetooth’s SDP), immobile devices can also be ac-
cessed in traditional ways like for example by an IP-address. As current
static directory services do not relate services with the specific situation
of a Mobile Ad-Hoc Network (MANET), they are not a good alterna-
tive. Currently, a device located in a MANET is always considered as a
volatile ad-hoc device. This paper shows that under certain conditions,
by exploiting static properties of services found in a MANET, service
discovery can be fairly optimized. Examples for such static properties
can be the IP-address or the location coordinates of a device.

1 Introduction

Recently, a lot of new service discovery mechanisms have been elaborated to cope
with the special constraints of mobile ad-hoc environments: memory is scarce,
connections are often very unreliable and networks do not offer any specified
infrastructure. Service discovery in mobile ad-hoc environments is not efficient
with static directory services. Devices should be self-organised and independent,
they should communicate rather on a peer-to-peer than on a client-server basis.

1.1 Related Work

There are a number of service discovery strategies that try to adopt to these
constraints. SDP within Bluetooth, Sun’s Java RMI based JINI, Microsoft’s
UPnP as well as IETF’s standardized SLP. Most of these mechanisms com-
bine peer-to-peer caching with some kind of directory agents® [4]. More recent

! Bluetooth’s SDP is an exception here since it is meant to search for services only in
a device’s local one-hop vincinity.

service discovery strategies as e.g. GSD [1] or Allia [2] have recognized the scal-
ability problems specialized directory agents have. By using ontology-based and
bandwidth-efficient group cache and forward strategies, they offer a more so-
phisticated approach to service discovery in MANETSs.

1.2 Mobile Clients using Static Services

Existing proposals have not considered the fact that the service offering devices
found in a MANET are not always as mobile as their service searching clients.
This mobility pattern asymmetry can be exploited. Many devices, such as e.g.
a printer, a scanner, a fax machine or also software processes like a streaming
server running on a fixed server machine can be found by mobile means, e.g.
Bluetooth. Existing service discovery approaches don’t consider that in many
cases these static devices also provide different, more static service access points
(SAPs). For instance, a printer that can be accessed by a Bluetooth interface
often has an IP-address and might also be accessed via the internet. Current
internet directory services can not be used here because they do not relate ser-
vices with the special situation of a MANET. Another point is that it may be
possible to access a printer found in a MANET via the public internet, maybe
with the protection of a locally issued access token. Publicly searching internet
directory services and accessing this printer as a general internet service will not
be in the intention of its owner. By using Mobile-IP, even more mobile devices
could be integrated with this static access method. An alternative to IP-adresses
is to use location coordinates, as e.g. delivered by GPS, as a persistent access
point to immobile devices. This could be done by GPSR as described in [3].
SEDAM is a service discovery strategy that applies to MANETSs. It does not
rely on directory agents. Devices use peer-to-peer caching to propagate service
records. Peers communicate via a radio-based MANET technology, such as Blue-
tooth [10]. Whenever two peers come into direct radio reach they compare de-
vice profiles to determine which of their cached service records they exchange.
In existing peer-to-peer caching approaches service information only propagates
within one subnet. If a node leaves the subnet, service records that relate to
that subnet are removed from its cache because they are not considered valid
any longer. In SEDAM instead, service records can travel over network bound-
aries. This is achieved by distinguishing between the network technology used for
service discovery from the one used for service execution. A service that is dis-
covered by SEDAM can express its ability to be accessed via alternative URLs.
A caching node keeps those alternative SAPs with a service record and can so
decide in which scope the service can be used. If a service record discovered
in a MANET also contains SAPs that refer to different, more static network
technologies, such as an URL that can be resolved to an IP-address, that ser-
vice record need not be deleted when leaving a subnet. It can be reused. With
this strategy, nodes that have never been in the same subnet together can learn
about each other’s services. They get to know about the part of their physical
environment that is not within network reach.

1.3 Example Scenario

Imagine the following real world scenario shown in Figure 1.

A digital camera is looking for a photo developing service in its physical neigh-
bourhood. There is a photo shop offering such a service nearby, but cannot be
discovered by conventional service location mechanism because the network is
partitioned. At the same time, a different pedestrian is walking by the photo
shop. The photo shop advertises its service to develop photos on paper via blue-
tooth and the pedestrian’s handheld caches the shop’s service offer together with
the shop’s official IP-address where the developing service can be accessed, too
(1). As the pedestrian walks further, it gets temporarily connected with the dig-

7 N Digital L N
, |Photo Shop | '\ Canr/uera Service ,/ [PhotoShop] .
- - Y _-~ 7777~ { Advertisment / \
. | - ¢

Digital Camera

N

A i 2 R !
/ 74 N ! ’ > . \
! v 0 0 / / v < N K
| ‘ \ N \ / | ‘ /) | 5 N .
\ \ i \ 1 AN e
x pe ‘ X S . / / J‘ \ \ L
k ! - [\ 0 h | -
/ - . .
) / : / AN |]
AN % N A A \ /X/\ / /! Pedestrian Area
AN - N Pedestrian Area R g ,

Moving Mobile Moving Mobile
Device Device
Digital |~ Internet | .~
Camefa >

Gateway, |/
== N

- \ |

R ~ N ..
- ,» . \

. ! N L S -
/ | 4 !
. | \ | |
’ |] |
/ vice s
)
N
N

Bluetooth -

Pedestrian Area

Fig. 1. A digital camera discovers a photo shop.

ital camera’s bluetooth interface. It learns from the camera’s profile about its
need to develop photos on paper and transmits the photo shop’s service offer
(2). Later on, the digital camera discovers a local bluetooth-internet gateway in
its bluetooth vicinity. It connects to the photo shop via internet and sends the
development order. While the digital camera’s owner walks down to the photo
shop, the pictures are already printed out and are ready just in time (3).

With conventional service discovery strategies, the photo shop could not have
been discovered easily. By the time the pedestrian’s handheld got connected to
the photo shop, the digital camera’s network was seperated. Without the pedes-
trian physically walking towards the camera, it would never have learned about

the photo shop. An internet directory service, without any special positioning
information, would not have been able to tell the camera about the nearby photo
shop’s online service.

2 Simulation

In order to analyze the proposed service discovery strategy, a java applet was
developed. It implements a generic model of SEDAM and provides the user with
a graphical interface to comfortably change parameters and evaluate different
scenarios.

2.1 Underlying Model

The simulation’s underlying model is one of a physically bounded coordinate
space that contains a number of static and mobile nodes. All of these nodes can
communicate directly with each other whenever they are in radio range. The
exact transmission technology of the ”"radio” is not specified, but Bluetooth can
be seen as a real world pendant to the modelled technology. Unlike the mobile
nodes, all of the static nodes have an IP-address and can, additionally to their
radio interface, be accessed via the Internet, which is symbolicly represented as
a big square in the middle of the coordinate space (Cp. Fig. 2). Static nodes
cannot move. Their position keeps fixed during the whole simulation. Mobile
nodes move according to a mobility pattern that can be configured by the user.
Every node, static or mobile, following a random algorithm, sets up new local
services, shuts down running local services and creates new needs for services
once in a while. Whenever two nodes come into direct radio range, they exchange
records of the services they offer as well as records they have received from
other nodes before?. A node’s cache can hold a configurable maximum of service
records. When a cache is full, old records and records that refer to mobile nodes
are cleaned up first.

Service Access A service record consists of a service identifier, the coordinates
of the service offering node, as well as, for static nodes, their [P-address. Depen-
dent on a service record a node chooses from two methods to access a service.
Firstly, by using a GPSR-like [3] position based routing protocol, services are
accessed by the mere coordinates of their host node. This method only works if
the node has not moved much since the emission of its service record and if the
network is not partitioned. Secondly, if a service record contains an IP-address,
the service is accessed by traditional IP-routing. Arbitrary static nodes can serve
mobile nodes as an internet access point here.

2 Profiles are not maintained by the simulation so far. Currently, two connected Nodes
always exchange all of their service records.

2.2 Configuration

To dynamically evaluate different scenarios, the most important simulation pa-
rameters are configured by the user. Simulation Speed doesn’t effect the quan-
titative result of a simulation run. It is just used to determine how fast the
simulation runs. Coord Width and Coord Height determine the bounds of the
coordinate space the nodes are located in. Transmission Radius relates to the
radio technology used. 10 m, resp. 100 m would be typical values for Bluetooth.
The overall number of nodes is set by Node Count, Static Nodes defines how
many of them are static (the remaining nodes are mobile). The way the mobile
nodes move is determined by Mobility Pattern. Currently there are two patterns
implemented. RandomMobility corresponds to the Random Mobility Model and
RandomWaypoint to the Random Waypoint Mobility Model. Both models are
described in [9]. Cache Size denotes the maximum number of service records a
node’s cache can hold and Service Diversity specifies how many different ser-
vices are distinguished within the system. Finally, Discovery Time-out specifies
after how many simulation steps a node will abort the unsuccessful search for a
needed service.

2.3 Analysis

The simulation’s GUI contains a simulation panel on the left side of the screen,
showing the movements of the nodes as well as service executions between nodes
in a graphical way. See figure 2 for a screenshot. Additionally to this demonstra-
tive view, a simulation run is analyzed more mathematically in the form of six
charts on the right side of the screen. The charts display certain performance
indicators measured against simulation time. They are updated constantly while
the simulation takes place. Service Executions per Step depicts the overall num-
ber of successful service excutions per simulation step. The average time it takes
a node to successfully find and execute a needed service can be seen from Auvg.
Discovery Time. If a service need can be matched to a service record but an error
occurs during service execution (e.g. if the service has moved or shut down), a
SAP failure is generated. SAP Failures per Step measures the number of those
failures per simulation step. In the simulation, a service need is either executed
successfully or it times out. Success Rate represents the fraction (in percent)
of the service needs that can be successfully matched and executed. Advertise-
ments per Step shows the overall number of service records that are exchanged in
one simulation step. Finally, Cache entries counts the overall number of service
records that are currently cached by the nodes.

Results The most important performance indicator for SEDAM is Success Rate.
The higher the Success Rate of a service discovery, the more effective the system
is. Most of the parameters presented in 2.2 have an obvious influence on the Suc-
cess Rate. An increased Node Count, a bigger Cache Size, smaller Coord Width
and Coord Height, a bigger Transmission Radius, a lower ServiceDiversity, a
longer Discovery Time-out, all of these changes raise the rate and even without

FOB3169.2N

Fig. 2. A screenshot of the simulation.

any simulation it can easily be concluded why. Astonishing is that changing the
mobility pattern has almost no effect on the Success Rate.

Although increasing Node Count generally raises the system’s Success Rate,
changing the fraction of Static Nodes for a given Node Count does not yield
such clear results. This is due to the complex interaction between mobile and
static nodes in SEDAM. An ideal system performance is achieved when there
are firstly enough static nodes that offer persistent service records and secondly
if there are enough mobile nodes to spread the service records. So, the most in-
teresting point about the simulation is to determine the fraction of Static Nodes
that yields an optimum of the Success Rate for a given setup. To give an example
for that, another test program was inserted into the simulation. All parameters
except Static Nodes were set to (not necessarily ideal) standard values: Node
Count was set to 30 which appeared to be a reasonable value, Discovery Time-
out to 50 steps, Service Diversity to 20, both, Coord Width and Coord Height to
100 m, Cache Size to 8, Transmission Radius to 10 m and the Mobility Pattern
to RandomWaypoint. All values of Static Nodes between 5 and 25 were tested
each in a 200 step simulation run. See Table 1 for a summary of the test. The
maximum of the Success Rate for the given scenario is reached at a fraction of
20 Static Nodes. Changing the number of Static Nodes in either direction seems
to lower the Success Rate. The simulation applet (JRE 1.2+ required) itself
can be found on:

http:/ /wwwmnmteam.informatik.uni-muenchen.de/ " buchholz/sedam/sedam.html

Table 1. Results of Simulation Test Runs with a Node Count of 30

Success Rate (%) Static Nodes

27.35 5

26.15 10
34.17 15
44.23 20
31.81 25

3 Conclusion

It can be verified with the simulation that SEDAM is not going to work in all
possible scenarios. Nor is it going to provide a reliable discovery of all the offered
services in a device’s environment. It is a best effort service. For a good appli-
cability of SEDAM as a service discovery strategy there needs to be a sufficing
number of nodes in a rather small area and a good mixture of static and mobile
nodes. Exact values for these parameters cannot be given in general since they
are dependent on various external factors. However, the simulation shows that,
if conditions are good, SEDAM can achieve a highly statisfying performance
(expressed as Success Rate).

3.1 Future Work

In the context of a master’s Thesis, a prototype for SEDAM is currently being
developed. The prototype will be a middleware module that can be integrated
into existing applications. In the first place, it will use Bluetooth as the under-
lying radio technology. It will be implemented in Java and is designed to run
on PCs as well as on personal digital assistants (PDAs) and other Java enabled
mobile devices.

Service Matching: As can be seen from work like [1] the mechanisms that
match service needs against service offers can be optimized.

Firstly, a description of a service need should be matched against a service record
in a precise yet at the same time in an extendable and semantic way to main-
tain service offering and service needing devices independently from one another.
This could be done by using an ontology language for service records. Examples
for such languages can be found in [5], [6] and [7].

Secondly, service matching mechanisms can be optimized with regards to scal-
ability. By a kind of prefiltering, exhaustive service matching can be avoided.
Each device that collaborates in the service discovery should maintain a profile,
as e.g. proposed in [8]. The idea is that mobile devices should only exchange
those service records that match each other’s profile. Like this, device profiles
can serve as a filter. Unrelevant service records are no longer exchanged between

devices. Unnecessary service advertisements are avoided. Note that this filtering
reduces both side effects, Advertisements per Step, which can be seen as a mea-
surement for the network traffic and computing time on the nodes, as well as
the number of Cache Entries.

Caching Algorithms: Memory in mobile devices is low, so caches are small.
Sophisticated caching strategies should be applied to distinguish service records
that have become unrelevant from the still valid and useful ones. A caching
strategy should therefore not only implement a simple LRU scheme, but eval-
uate service records with regard to the mobility and availibility of the service
offering device. The method used to filter service records in the beginning could
also be applied to calculate the relevance of cached service records to the cur-
rent profile. The prototype will be structured to support different modules for
ontology languages and profile creation techniques. Optimizing those modules
for a more sophisticated version of SEDAM will be the subject of future work.

References

1. D. Chakraborty: GSD. A Novel Group-based Service Dis-
covery Protocol for MANETS, MWCN, 2002 (URL:
http://www.cs.umbc.edu/~dchakrl/cadip2/mypapers/MWCN /301.pdf)

2. D. Chakraborty, O. Ratsimor: Allia. Alliance-based Service Discovery for
Ad-hoc Environments, ACM Mobile Commerce Workshop, 2002 (URL:
http://www.csee.umbc.edu/ oratsi2/publications/AlliaM C2002 / AlliaM C2002.ps)

3. B. Karp, H.T. Kung: GPSR. Greedy Perimeter Stateless Routing for Wire-
less Networks, Mobile Computing and Networking, 2000, pages 243-254 (URL:
http://www.eecs.harvard.edu/ karp/gpsr-mobicom2000.ps)

4. C. Bettstetter, C. Renner: a Comparison of Service Discovery Protocols
and Implementation of the Service Location Protocol, EUNICE, 2000 (URL:
http://www.lkn.ei.tum.de/~chris/publications/eunice2000-slp.ps.gz)

5. S. Avancha: Enhancing the Bluetooth Service Discovery Protocol, Tech-
nical report, University of Maryland Baltimore County, 2001 (URL:
http://research.ebiquity.org/re/papers/enhancedsdp.pdf)

6. T. Strang, C. Linnhoff-Popien: a Context Ontology Language to Enable Contextual
Interoperability, DAIS, 2003

7. D. Chakraborty, F. Perich: DReggie. Semantic Service Discovery for M-Commerce
Applications, Workshop on Reliable and Secure Applications in Mobile En-
vironment, 20th Symposiom on Reliable Distributed Systems, 2001 (URL:
http://umbc.edu/papers/dreggie.pdf)

8. A. Held, S. Buchholz, A. Schill: Modeling of Context Information for
Pervasive Computing Applications, SCI, 2002 (URL: http://wwwrn.inf.tu-
dresden.de/~buchholz/hades/SCI2002-paper512JH.pdf)

9. V. A. Davies: Evaluating Mobility Models Within an Ad Hoc
Network, Master’s thesis, Colorado School of Mines, 2000 (URL:
http://toilers.mines.edu/papers/pdf/vanessa-thesis.pdf)

10. Bluetooth SIG: Specification of the Bluetooth System, Volume 1, 2001 (URL:
https://www.bluetooth.org/foundry /specification/document /Bluetooth_V1.1_Core
_Specifications)

