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Abstract
For mission critical (MC) applications such as bushfire emergency management systems (EMS), understanding the current 
situation as a disaster unfolds is critical to saving lives, infrastructure and the environment. Incident control-room operators 
manage complex information and systems, especially with the emergence of Big Data. They are increasingly making decisions 
supported by artificial intelligence (AI) and machine learning (ML) tools for data analysis, prediction and decision-making. 
As the volume, speed and complexity of information increases due to more frequent fire events, greater availability of myriad 
IoT sensors, smart devices, satellite data and burgeoning use of social media, the advances in AI and ML that help to manage 
Big Data and support decision-making are increasingly perceived as “Black Box”. This paper aims to scope the requirements 
for bushfire EMS to improve Big Data management and governance of AI/ML. An analysis of ModelOps technology, used 
increasingly in the commercial sector, is undertaken to determine what components might be fit-for-purpose. The result is 
a novel set of ModelOps features, EMS requirements and an EMS-ModelOps framework that resolves more than 75% of 
issues whilst being sufficiently generic to apply to other types of mission-critical applications.

Keywords ModelOps · MLOps · Emergency management · Data governance · Requirements engineering

1 Introduction

Worldwide, reports indicate more intense fires amid unusu-
ally high temperatures and dry conditions across the Sibe-
rian tundra (Kutukov 2021), Arctic Russia (Deacon 2020), 

Alaska, Canada (Berger 2021b), California (Berger 2021c), 
Oregon (Berger 2021a) and Greece (Baltas 2021). Climate 
change is very likely to continue to make weather more 
extreme and wildfires (bushfires, forest fires) more frequent 
and destructive (Field et al 2012).

The increased fire danger globally means shorter intervals 
between fire, increased intensity, fewer fires extinguished 
and faster spreading events (Parry et al 2007). For example, 
the frequency of very high and extreme fire danger days 
in south-east Australia is expected to rise by up to 70% by 
2050 (Hennessy et al 2005). As the length of the fire season 
extends, the window of opportunity for fuel reduction burn-
ing contracts further into winter (Parry et al 2007).

The severity and frequency of bushfire events has wors-
ened as the impacts of human-induced climate change are 
felt (Field et al 2012). Bush fires also have a large financial 
impact, with the 2009 Black Saturday bushfires in Victoria, 
Australia conservatively costing $AU4.4billion (Teague et al 
2010). the trend is for this to get worse, with emergency 
response leaders reporting that the severity and length of 
the bushfire season has continued to increase (Peacock et al 
2021).
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Incident control-room operators, whether human or 
machine, are making decisions based on multiple sources of 
heterogeneous, unstructured data that continues to grow in 
frequency, volume and complexity (Shahrah and Al-Mashari 
2017; Sun et al 2020). The AI/ML tools that support incident 
response are also increasingly complex (Zhao 2021), mak-
ing it more difficult for operators to understand or audit the 
tools reliability.

This paper aims to investigate the area of emergency 
management systems (EMS) and develop high-level require-
ments that focus on improved data management and AI/ML 
governance. Specifically, we investigate the role of Mod-
elOps in EMS. ModelOps (short for model operations) is a 
holistic approach to automating the deployment, monitor-
ing, governance and continuous improvement of analytics 
models, so that they can quickly progress from the lab to 
production (Brethenoux et al 2018). ModelOps in EMS will 
enable reduced incident control-room response times, more 
transparent decision-making and overall reduced risk.

Contributions. The contributions of this paper are i) a 
review of governance technologies suitable for EMS; ii) an 
analysis of ModelOps as a framework to support EMS; 
iii) the extension of ModelOps and creation of requirements 
to map it to EMS; and iv) the evaluation of the proposed 
EMS-ModelOps framework, as a novel, generic and portable 
framework for supporting EMS.

Structure. This remainder of the paper is structured as 
follows. Section 2 contextualises the findings from the lit-
erature review. Section 3 describes ModelOps technologies, 
proposes a framework for combining technologies and a 
novel ModelOps feature list. Section 4 develops a novel set 
of EMS requirements and performs a gap analysis against 
the ModelOps feature list. Section 5 proposes methods to 
evaluate the resulting “EMS-ModelOps framework”. Sec-
tion 6 presents threats to the validity of the design approach 
and results. Finally, Sect. 7 concludes the work and suggests 
further areas for research.

2  Literature review

  Research indicates that the problem of managing huge vol-
umes of heterogeneous data such as continuously streamed 
sensor time-series (Dugdale et al 2021), images (Asif et al 
2021), satellite data (Routray et al 2019; Gozzard 2021; Kua 
et al 2021) and social media data (Thomas et al 2019) would 
benefit from improvements in data discovery and manage-
ment technologies (Barika et al 2019; Sun et al 2020). In 
addition, it is likely that both humans and machines in the 
EMS incident control-room would operate more effectively 
if they had access to categorised (Kachaoui et al 2020), con-
textualised (Hassani et al 2018), indexed information and 

tools that support good governance (Hummer et al 2019; 
Afyouni et al 2020):

• AI/ML processes that assign context to IoT data (Hassani 
et al 2018) or use ontologies like OWL (Kachaoui et al 
2020) can enable other AI/ML tools to more easily dis-
cover, collect and analyse heterogeneous Big Data (Dug-
dale et al 2021).

• Continuous spatio-temporal indexing of social media 
data (Afyouni et al 2020) and knowledge storage (Bun-
tain et al 2020) provides an opportunity to visualise the 
evolution of a disaster in near-real-time and provides a 
source of test and training data for disaster ML algo-
rithms (Alam et al 2018; Thomas et al 2019).

• Recent improvements to algorithms for low-resolution 
image processing from geostationary satellites has deliv-
ered more frequent assessments of fire events, operating 
both night and day (Engel et al 2021).

• Satellite-laser data transmission, many thousands of 
times faster than radio transmission speeds, is likely to 
enable growth in receipt and processing of real-time fire-
event images by 2024 (Gozzard 2021).

Compounding the issues of Big Data discovery, receipt and 
management, research indicates that the AI/ML tools that 
support incident response are increasingly complex, lack 
transparency and are not reproducible (Zhao 2021):

• Machine-enabled decision-making is perceived as 
increasingly black box (Moraffah et al 2020) as AI/ML 
becomes more complex (Zhao 2021).

• Operational teams need to understand ML/AI rec-
ommendations to have confidence in decision-
making&nbsp;(Raglin et  al 2021). The European 
Union (Commision Europan 2021) has proposed that 
machine-enabled decision-making systems must have 
human oversight and traceability.

• Emerging approaches to support human-machine deci-
sion-making are to quantify the Uncertainty of Informa-
tion (UoI) (Raglin et al 2021) or apply eXplainable AI 
methods (XAI) (Arrieta et al 2020).

• Applying DevOps practices to Machine Learning algo-
rithm development and modelling can improve opera-
tions for real-world applications (Karamitsos et al 2020).

• Increased computations and multiple ML models requires 
an infrastructure and platform for end-to-end lifecycle 
management, e.g. data processing, data validation, model 
design, model training, model evaluation, quality checks, 
deployment and maintenance (Zhou et al 2020).

In summary, research indicates that it is too complex for 
EMS incident control-room teams to manage an ever-
increasing volume of unstructured data (Sun et al 2020), 



404 Environment Systems and Decisions (2022) 42:402–416

1 3

to understand what machines (ML/AI) are doing (Moraffah 
et al 2020) and therefore have confidence in their contribu-
tion to decision-making&nbsp;(Commision Europan 2021). 
The advent of more complex Big Data (Zhao 2021), more 
frequent disaster events (Field et al 2012) and increasing use 
of AI/ML for discovery, management, modelling and gov-
ernance of data is perceived as a risk - it is a “Black box”, 
as shown in Fig. 1.

The ModelOps approach  (Brethenoux et  al 2018) to 
managing datasets and modelling artefacts during AI/ML 
processes is a recent addition to business enterprise tool-
sets (Gartner 2021). (DataRobot, a commercial supplier, has 
an extensive explanation of MLOps for Machine Learning 
operations on their website (DataRobot 2021)). ModelOps 
builds on traditional DevOps best practices (Karamitsos et al 
2020), addressing issues of artefact version control, data and 
model provenance and quality control checks by govern-
ing the end-to-end lifecycle of AI/ML processes (Hummer 
et al 2019; Zhou et al 2020). Preliminary analysis indicates 
that “XOps” technologies (a collective term for the suite of 
DataOps, ModelOps, MLOps, DevOps, etc. (Gartner 2021)) 
could improve EMS incident control-room decision-making 
by streamlining the management of heterogeneous Big Data 
and complex AI/ML processes.

3  What is ModelOps?

3.1  Background

The need for AI model governance in the corporate sec-
tor was an active area of research by Gartner prior to 
2018  (Brethenoux et  al 2018). Based on corporate sur-
veys (Gartner 2021) and ongoing sector analysis (Feinberg 
and Thanaraj 2020; Sicular and Vashisth 2020; Vashisth 
et al 2020b), Gartner identified an increasing need to opera-
tionalize AI modelling to quickly generate business value. 
DataOps (Feinberg and Thanaraj 2020) principles for data 
governance and DevOps (Hummer et al 2019) principles 
for implementation could be integrated with AI modelling 
processes, with rapid deployment and re-useability as key 
business goals. The term ModelOps (Brethenoux et al 2018) 

describes AI model operationalization; but in this report the 
proposed framework includes a small number of features 
from DataOps (Vashisth et al 2020b) that should improve 
EMS operations.

3.2  Proposed ModelOps framework

Fig. 2 shows the proposed ModelOps framework, includ-
ing data pipeline/workflow features and applies DevOps 
principles.

The proposed framework describes the governance and 
lifecycle management of data and AI models, but the models 
are not limited to rule-based/decision systems (Brethenoux 
et al 2018; Choudhary et al 2020). They include Machine 
Learning and Deep Learning statistical and pattern recog-
nition models (Vashisth et al 2020a), Agent-based models, 
Linguistic models (e.g. speech recognition, predictive text, 
machine translation, sentiment analysis) and Graph mod-
els (Choudhary et al 2020). (Graphs provide linked con-
texts, showing the relationships among entities using Graph-
shaped data. Beyer  (Beyer 2020) uses the term “Active 
Metadata” to describe metadata that enables Graphing. 
Hummer et.al. (Hummer et al 2019) propose a ModelOps 
architecture that includes a Graph database).

Gartner surveys the corporate sector annually (Gartner 
2021) and undertakes Information Technology research. 
In 2018 (Brethenoux et al 2018) the top-rated ModelOps 
goals for business domain experts were (i) able to assess 
the quality of AI models in production, (ii) promotion or 
demotion of AI models without a full dependency on data 
scientists or ML engineers and (iii) connecting model met-
rics to business KPI’s. In 2020, Forbes (Wu 2020a) inter-
viewed Chief AI Architect of ModelOp.com, Stu Bailey. In 
his experience with commercial customers, “...a properly 
operating model can dramatically change the topline per-
formance of a particular business unit. Integration between 
the business and compliance is critical”. In 2021, ModelOp.
com surveyed 100 AI-focused executives regards the status 
of scaling up model operationalization (Bailey et al 2021). 
Survey respondents reported (i) an average of 270 models in 
production, (ii) low satisfaction ratings for their capacity to 
operationalise models and (iii) 80% reported difficulty with 
model compliance.

3.3  ModelOps feature list

In 2020, ModelOp.com released a request for proposal (RFP) 
template to enable organisations to assess their own ModelOps 
functional requirements (ModelOp.com 2020). This is used to 
help develop 17 conceptual features in Table 1 below. Many of 
the original ModelOp.com requirements are too technology-
centric for this analysis; for example the requirement for Mod-
elOps software to be “Implementation Agnostic” describes its 

Fig. 1  Artificial intelligence and machine learning tools to create 
information are increasingly perceived as “Black box” processes
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coverage of model types, languages, execution environments 
and execution locations. Whilst these are important features 
they are outside the scope of high-level, conceptual framework 
development.

Table 1 below includes a mixture of DataOps, ModelOps 
and DevOps features that are relevant to our framework in 
Fig. 2 above. The first three features, F1–F3, under “Data 
Pipeline Management”, represent a subset of features usually 
associated with DataOps (Feinberg and Thanaraj 2020). The 
last feature, F17, relates to DevOps. The majority of features 
relate to AI/ML management and governance. For example, 
feature F12 “Dependencies, provenance, auditability” manages 
all dependencies used to execute a version of a model, includ-
ing the management of dataset provenance, both inputs and 
outputs. The aim of creating provenance records is to improve 
queries and auditability.

The recommended feature list is a high-level synthe-
sis of ideas from commercial resources such as ModelOp.
com (ModelOp.com 2020), DataRobot (DataRobot 2021), 
DataBricks  (Zumar and Uhlenhuth 2021), Microsoft 
Azure (Hanly and Sekar 2021) and analysis of research by 
Garter  (Brethenoux et al 2018; Vashisth et al 2020a, b; Fein-
berg and Thanaraj 2020; Sicular and Vashisth 2020; Beyer 
2020) and Forbes (Wu 2020a, b). In the next section these 
features are mapped to the EMS requirements.

4  EMS requirements development and gap 
analysis

4.1  Background

Shahrah and Al-Mashari (2017) investigate information 
systems and features to support emergency response. They 
report a lack of widespread use of AI/ML in EMS, with the 
exception of intelligent capabilities for decision-making 
within “Expert Systems”. The adoption of “Agent-Based 
Simulations” and “Case-Based Reasoning” tools are 
inhibited by poor response times and integration issues. 
In their 2017 survey, there is limited reference to tools for 
streamlining AI/ML processes, model-algorithm pipelines, 
managing multiple model scenarios, automated decision-
support tools such as bots, artefact version control, prov-
enance of inputs and outputs, or enabling human verifica-
tion of machine processes.

Sun et al (2020) research the application of AI tech-
niques to process disaster-related data. They identify 26 
AI methods and 17 application areas, across four disaster 
phases. Of the research challenges identified, data manage-
ment and AI governance issues include:

Fig. 2  ModelOps framework: 
a combination of DataOps, 
ModelOps and DevOps
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Table 1  DataOps, ModelOps, DevOps features, F1–F17

Category Feature Description

Data pipeline management F1. Standard dataset metadata, taxonomies, federation A standard dataset definition with active metadata, e.g. 
OWL or standard ontologies for IoT devices. Enables 
data discoverability, graph enablement and federation. 
Used for dataset versions, inputs and outputs

Data pipeline management F2. Data orchestration Taking data from multiple sources, combining and 
organising it, making it available for analysis. A supply 
of quality-coded, contextualised data

Data pipeline management F3. Datasets for training and testing Managing training and testing datasets. Need high-
quality, large datasets to train and test AI. Users can 
manipulate the datasets, enabling them to better under-
stand AI decisions and set KPIs. KPIs can be tested 
with real-world data

AI governance F4. Standard model metadata A standard model definition with active metadata, which 
can be customised

AI governance F5. Ingest and standardise new AI Standard import process for new AI models/algorithms. 
Reproduce AI published elsewhere. Process to test 
models against the Standard Model Definition and 
release for use

AI governance F6. Manage rules, compliance, performance and alerts Define and manage the rules, decision tables or keyword 
tables for compliance and performance through a 
simple interface, e.g. case-based reasoning (CBR) chat-
bots/workflows, thresholds for statistical performance, 
accuracy. Set custom / business KPIs, error messages. 
Set the triggers for alerts and the settings for notifica-
tion management

AI governance F7. Manage access controls and approvals Role-based and group-based access to datasets, models, 
workflows, rules. Manage who can query and com-
mand the system. Manage the assigned authority to 
approve workflow steps and alternative approvers

AI governance F8. Transparent querying and decision-making Manage the lifecycle of decision-making. Record user 
queries and commands (decisions). Manage approv-
als, for transparent and auditable human or machine 
decisions

AI governance F9. Audit report Generate an audit report that includes all steps in the 
model execution, with metadata, components and 
results

Re-useability, reproducibility F10. Inventory / storage and code repository Enable viewing and management of models and all of 
their component parts, e.g. model code, coefficients, 
weights, etc. Integrate with source code managers like 
GitHub

Re-useability, reproducibility F11. Manage artefact documentation Dataset, model and model artefact documentation, 
version-controlled, auditable. The knowledge about 
a model can be packaged and transferred, making it 
easier to understand and re-use

Re-useability, reproducibility F12. Dependencies, provenance, auditability Manage all dependencies that are used to execute a 
version of a model, including the test/metrics. Manage 
dataset provenance (input and output). These records 
can enable historical queries and auditability

Re-useability, reproducibility F13. Model version control Take a snapshot of a model in time, including all of the 
model’s source code, artefacts, documentation, meta-
data and results

Re-useability, reproducibility F14. Reproduce a model run Reproduce a model run, enabling user’s to step through 
the process in a simple interface. If the same model 
produces different results, why?

Re-useability, reproducibility F15. Champion/Challenger testing Compare a “champion” model or ensemble of models 
against a proposed “challenger”, using various statisti-
cal and technical performance metrics e.g. Uncertainty 
of Information ranking
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• Lack of enough quality data in some areas for accurate 
predictions using AI models, or data are incomplete due 
to changing disaster situations.

• The ability of AI to process, manage, and learn data 
decreases as data volume and complexity increases; espe-
cially within a reasonable response timeframe.

• EMS operational teams require user-friendly AI tools 
with interfaces that require minimal technical expertise.

• Results from AI processes should be repeatable, with 
improved interpretability and explainability. The replica-
bility of predictive outputs improve AI’s trustworthiness, 
by capturing processes, data and parameters.

4.2  EMS requirements

Figure 3 presents the results of the investigation into EMS 
issues. The analysis has been guided by existing theory, 
recent developments in research and the project review of 
multiple EMS evaluations (Li et al 2017; Tsai et al 2019; 
Basak et al 2020; Damacharla et al 2020). As per project 
scope, the high-level requirements focus on data manage-
ment, AI/ML management and governance functions.

The requirements are a novel framework (Hummer et al 
2019; Sun et al 2020) for addressing problems managing 
huge volumes of heterogeneous Big Data and complex 
“black box” AI/ML, through the identification of gaps and 
the application of ModelOps features. Similar work to opera-
tionalise AI/ML is emerging in the commercial sector but 

Table 1  (continued)

Category Feature Description

Re-useability, reproducibility F16. Standard Console, Dashboard A console for model management and visualisations. 
Use approved templates or create custom reports for 
metrics, KPIs, scorecards

DevOps F17. Iteration and endpoint management, rollback Apply DevOps practices and tools to model iterations, 
rollout, rollback. The promotion or demotion of AI 
should be possible without a full dependency on data 
scientists or engineers

Fig. 3  High-level requirements, grouped by collect, analyse, display phases
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bushfire emergency management systems are uniquely com-
plex due to their mission-criticality, i.e. the risk to human 
life  (Commision Europan 2021) and need for real-time 
information.

For simplicity, Fig. 3 presents 17 requirements by phase 
(Collect, Analyse, Display). For example, R1 is “Discover, 
categorize and ingest increasing volumes of semi- and 
unstructured, multi-modal Big Data (IoT, social media).” 
This means that an EMS should enable humans and/or 
machines to do this function. R1 is assigned to “Collect” 
because data discovery and ingest logically occurs before 
data is analysed or results displayed. Some requirements 
occur across multiple phases, for example R7, “Version 
control of files and other artefacts...”.

4.3  Gap analysis

  The gap analysis was guided by two key research questions 
(RQs). 

RQ1.  How can ModelOps be applied to resolve EMS 
requirements?

RQ2.  Of the EMS requirements identified from the 
research, are there requirements that ModelOps 
is unlikely to address?

The assessment of an EMS requirement as Met or Unmet 
is based on an understanding of the current research gaps 
identified in the literature review and knowledge of Mod-
elOps features. The aim is to ascertain whether ModelOps 
hypothetically addresses functional gaps and fulfils the 
requirements. The mapping below, between the 17 EMS 
requirements (from Sect. 4.2) and the 17 ModelOps features 
(from Table 1), addresses both RQs.

Requirement R1. Discover, categorize and ingest increas-
ing volumes of semi- and unstructured, multi-modal Big 
Data.

• In theory, ModelOps feature F1 enables discoverabil-
ity and federation of datasets and their relationships to 
other entities, using standard and emerging ontologies 
for IoT (smart devices, sensors, drones) and social media 
(Twitter, Facebook, etc.). This builds on increased use 
and consensus in vocabularies, ontologies and taxono-
mies (Hassani et al 2018; Kachaoui et al 2020; Thomas 
et al 2019; Asif et al 2021), improved IoT interoperabil-
ity/standards (Arbib et al 2019; Moghaddam and Muc-
cini 2019) and use of Open-source OWL (Kachaoui et al 
2020). In an emergency bushfire scenario, F1 enables 
discovery of relevant real-time Big Data from social 
media and multi-modal IoT sources using metadata and 
established taxonomies.

• F2 enables automated ingestion of data from many 
sources and preparation of contextualised, “analysis-
ready”, quality-coded data. This uses graph model-
ling (Beyer 2020) and indexed datasets to accelerate 
access and query operations (Barika et al 2019; Afy-
ouni et al 2020). In our scenario, once bushfire data 
are discovered, it must be ingested, contextualised and 
organised so that it is ready for use in the emergency 
situation at hand.

• F3 facilitates maintaining high-quality and real-world 
datasets for training and testing. These can be datasets 
collated over long periods of time and from diverse 
scenarios (Buntain et al 2020; Glavic 2013). A man-
aged catalogue of relevant historical datasets for dif-
ferent categories, e.g., timestamped geo-spatial data of 
wildfires, climate conditions, dwellings, etc., can help 
categorize new data and train models.

• F12 includes processes to manage dataset provenance, 
which enables historical queries and auditability of 
datasets (Hummer et al 2019), (Zhao et al 2015). In the 
case of bushfire emergencies, F12 can play a crucial 
role in establishing trust in the provenance of multi-
modal Big Data inputs.

Combining F1 and F2 increases automation and efficiency 
of Big Data discovery, ingestion and pre-processing, which 
helps increase the speed of bushfire response, but it does 
not resolve the computation and storage resource issues 
that are outside the scope of R1. Overall, the gaps related 
to the implementation of R1 could be resolved by applying 
ModelOps features F1–F3 and F12, so the requirement is 
therefore assessed as “Met”.

Requirement R2. Discover, categorize and ingest increas-
ing volumes of satellite fire-event data. Some of R2’s 
mapping is the same as R1, and the rationale for mapping 
to ModelOps features F1–F3 and F12 is also the same. In 
addition:

• F5 enables adoption of new algorithms / models for sat-
ellite data categorisation and analysis. This is important 
as satellite data volumes grow rapidly (Gozzard 2021) 
and researchers develop new bushfire models (Engel 
et al 2021; Goodrick 2021).

• F15 enables the comparison of existing “champion” 
algorithms / models against newly ingested “chal-
lenger” models. It is important that new bushfire mod-
els are tested against existing models in a timely, robust 
manner.

Overall, these features enable the categorization and ingest 
of an increasing volume of satellite data to the EMS. The 
gaps could be resolved by applying ModelOps features 
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F1–F3, F5, F12 and F15, so the requirement is therefore 
assessed as “Met”.

Requirement R3. Create spatio-temporal and image data-
sets from unstructured social media data. R3’s mapping is 
similar to that of R1. Specifically,

• F1 enables discoverability of social media posts that 
embed situational information (Thomas et al 2019; Daly 
and Thom 2016; Ahmady and Uchida 2020), including 
images posted by users (Alam et al 2018; Dunnings and 
Breckon 2018). Geo-location of real-time images can 
increase the volume and geo-spatial coverage of sources 
of bushfire emergency data (Sun et al 2020; Buntain et al 
2020).

• F2 enables spatio-temporal information from social 
media to be categorised using pre-processing ML algo-
rithms (Pogrebnyakov and Maldonado 2017; Asif et al 
2021; Dunnings and Breckon 2018; Alam et al 2018) 
and continuously indexed (Afyouni et al 2020). This fea-
ture increases the automation and efficiency of structur-
ing social media data and images into indexed datasets 
and increases the volume of data available for fire-event 
model training and testing.

• F12 enables historical queries and auditability of the new 
spatio-temporal disaster information datasets.

ModelOps features F1, F2 and F12 enable the categorization 
and ingest of previously “low-quality” social media data into 
auditable, re-useable datasets. R3 is assessed as “Met”.

Requirement R4. Automate and rapidly classify informa-
tion from phone / mobile calls. R4 is a key requirement for 
managing the volume of calls from public and first respond-
ers to the emergency control-room.

• F3 enables ingestion of datasets for training and testing 
AI models, e.g. real-world voice data. This is particularly 
useful for training on various accents and potentially in 
multi-lingual conditions.

• F5 enables adoption of new algorithms / models for voice 
recognition. This feature enables Machine Listening 
algorithms to identify key words with a high priority and 
rapidly process real-time voice data using NLP (Ram-
churn et al 2016).

• F15 enables the comparison of existing algorithms or 
champion models against newly ingested challenger mod-
els.

This requirement assumes improvements in linguistic 
models for voice recognition and less resistance from 

callers to emergency services responding to chatbot 
operators (Sun et al 2020). Overall, the gaps related to 
the implementation of R4 could be resolved by applying 
ModelOps features F3, F5 and F15, so the requirement is 
therefore assessed as “Met”.

Requirement R5: Effectively search very large spatio-tem-
poral datasets and historical data. This requirement is ena-
bled by previous requirements for graph-enabled relation-
ships between entities and dataset provenance. The intention 
is to enable a responder to quickly find a similar situation 
or previous incident, or ask AI for help to resolve a query.

• Feature F6 enables setup of decision tables or keyword 
tables for case-based reasoning (CBR).To increase effi-
ciency, responders can use defined workflows or chat-
bots ( Shahrah and Al-Mashari 2017).

• F7 determines who can manage the workflows or rules 
and make changes to them. Workflows or chatbots 
depend on user-intent mechanisms like keyword tables, 
decision trees or fuzzy search algorithms (Tsai et al 
2019), that are auditable and secure.

• F8 enables the management of the lifecycle of decision-
making and provenance of queries, commands or deci-
sions. Theoretically, the system can learn and improve 
its performance whilst being auditable, increasing 
efficiency by presenting improvements to user-defined 
content (Shahrah and Al-Mashari 2017).

Overall, the gaps related to the implementation of R5 
could be resolved by applying ModelOps features F6–F8, 
so the requirement is therefore assessed as “Met”.

Requirement R6: Discover additional datasets where 
known volumes are insufficient to make valid predictions.

• F1 enables discoverability and federation of datasets 
and their relationships to other entities, using stand-
ard and emerging ontologies for IoT, social media and 
remote sensing (satellites). The issue of insufficient 
data for machine-enabled decision-making is identi-
fied by Sun et.al  (Sun et al 2020). By applying F1, AI 
could implement data discovery workflows.

• F6 enables AI to automatically apply business rules for 
identifying and categorising limitations on the verac-
ity of predictions, e.g. “There is not enough data for a 
valid prediction”.

Overall, the gaps related to the implementation of R6 
could be resolved by applying ModelOps features F1 and 
F6, so the requirement is therefore assessed as “Met”.
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Requirement R7: Version control of files and other arte-
facts to enable visualization of the history of changes. R7 
enables users to return to previous versions of assets used 
in EMS processes.

• F11 enables version control and documentation of data-
sets, models and model artefacts. This is important 
to enable the knowledge about a bushfire model to be 
packaged and transferred, making it easier to understand 
and re-use  (Hummer et al 2019). The EC has raised 
requirements for traceability of critical AI decision-
making&nbsp;(Commision Europan 2021).

• F12 includes processes to manage dataset provenance, 
which enables historical queries and auditability of data-
sets.

• F13 enables users to take a snapshot of a model in time, 
including all of the model’s source code, artefacts, docu-
mentation, metadata and results. This enables dynamic 
responses, knowledge-sharing or testing of AI perfor-
mance during emergency situations. Modellers can return 
to interim stages within modelling processes (Karamitsos 
et al 2020).

Overall, most gaps can be resolved. The requirement is 
“Partially Met”. None of the ModelOps features explicitly 
cover the visualisation of history of changes. F16 covers the 
visualisation of data, but not the history of changes.

Requirement R8: Logging/tracking of decision-making 
activities. These may be interactive, iterative and involve 
new data, criteria or goals. Some of R8’s mapping is the 
same as R5, and the rationale for mapping to ModelOps 
features F6-F7 is also the same. In addition:

• F8 records the lifecycle of decision-making, including 
user queries, commands and decisions. Records are trans-
parent and auditable, whether human or machine deci-
sions.

• F9 enables an audit report that includes all steps in model 
execution and its results. An audit report enables assess-
ment of whether bushfire EMS AI meets governance 
standards, e.g. the EC requirements for traceability, risk 
assessment and human oversight of machine-enabled 
decisions (Commision Europan 2021).

Overall, the gaps related to the implementation of R8 could 
be resolved by applying F6–F9, so the requirement is there-
fore assessed as “Met”.

Requirement R9: Capture the processes, data, and param-
eters for experiments to become repeatable. Some of R9’s 
mapping is the same as R7, and the rationale for mapping 

to ModelOps features F11 and F13 is also the same. In 
addition:

• F10 enables viewing and management of models and all 
of their component parts, e.g. model code, coefficients, 
weights, etc. It is beneficial for modellers to access a 
code repository like GitHub so code can be shared and 
assessed by a peer network.

• F12 ensures that all model dependencies that are used to 
execute it, including data/tests/metrics, are managed and 
auditable. It is important that fire-event modellers have 
access to quality training and test datasets.

• F14 provides an interface to reproduce a model run, step 
by step. In a dynamic bushfire environment, if the same 
model produces different results, users can quickly dis-
cover why.

Overall, the gaps related to the implementation of R9 could 
be resolved by applying ModelOps features F10–F14, so the 
requirement is therefore assessed as “Met”.

Requirement R10: Record and enable audit of complex, 
collaborative decision making. R10’s mapping is the same 
as R8, and the rationale for mapping to ModelOps features 
F7-F9 are also the same.

Li et al (2014) identified this gap and suggested methods 
to resolve it but recording and auditing of collaborative deci-
sions in near real-time remains a challenge (Sun et al 2020). 
For example, record and audit complex decisions involving 
multiple approval levels, that are made outside the system 
or not using a system. Note that these might be handled in 
the EMS by enabling delegated approvals.

Overall, most gaps could be resolved by applying Mod-
elOps features F7–F9 but the requirement is “Partially 
Met”.

Requirement R11: Results from AI models should be 
explainable, repeatable, replicable. This important require-
ment builds on requirements R7 and R9 and the rationale for 
mapping to ModelOps features F11, F12 and F14 is similar. 
In addition:

• F9 enables an audit report. AI decisions can be interro-
gated at a later stage by expert user groups.

• F11 enables documentation, so knowledge about a model 
can be packaged. AI models can be packaged and shared 
amongst expert user groups.

• F14 provides an interface to reproduce a model run, step 
by step. In bushfire event modelling, knowledge needs 
to be acquired and tested rapidly. Measures to improve 
the interpretability and explainability of AI models, such 
as explainable artificial intelligence (Arrieta et al 2020; 



411Environment Systems and Decisions (2022) 42:402–416 

1 3

Gunning et al 2019), could be built into stages in the 
modelling process, so that users can quickly compare 
results. Access to these artefacts enables expert users 
to re-test AI models, after an event, for their perfor-
mance (Commision Europan 2021).

Overall, the gaps related to the implementation of R11 could 
be resolved by applying ModelOps features F9, F11, F12 
and F14, so the requirement is therefore assessed as “Met”.

Requirement R12: Analyze social media to track feelings 
and reactions of the public; geo-spatial sentiment min-
ing using natural language processing. Although some 
researchers have concerns with the usefulness or quality 
of social media data (Basak et al 2020; McCreadie et al 
2020; Thomas et al 2019), this requirement is in response to 
research that indicates social media can be used to call for 
help (Li et al 2019), identify human activity abnormalities 
and behaviours near disaster events (Zou et al 2019; Liu et al 
2019) and assess psychological and healthcare needs (Kuang 
and Davison 2017). Post-event, Twitter data could be used 
to identify socio-geolocational disparities in the response 
effort (Zou et al 2019).

• F3 enables ingest of datasets for training and testing AI, 
using real-world social media data. Real-time ingest of 
social media data enables real-time response to calls for 
help or recognising abnormal human activity. Data can 
be de-identified for training and testing.

• F5 enables faster adoption of new algorithms / mod-
els (Li et al 2019; Zou et al 2019; Liu et al 2019) for 
categorisation and analysis of social media data.

The gaps related to the implementation of R12 could be 
resolved by applying ModelOps features F3 and F5, so the 
requirement is therefore assessed as “Met”.

Requirement R13: Detect and manage false alarms.

• F3 enables ingest of datasets for training and testing AI, 
using real-world data. Training / testing data could be 
changed to produce “false positives” across a range of 
parameters.

• F6 enables management of performance, including 
thresholds for statistical performance / accuracy and 
error messages. In a bushfire EMS, system administrators 
can set the triggers for alerts, acceptable levels of error 
and notification messages to control-room operators. An 
emerging approach to the detection of false alarms is 
using Uncertainty of Information (UoI)  (Raglin et al 
2021) to generate an uncertainty value for AI outputs.

• F8 records user queries and commands (decisions). This 
includes the operator’s responses to false alarms. The 
operator response data could be re-used for training and 
testing.

• F14 provides an interface to reproduce a model run, step 
by step. If a model produces a false alarm, users can 
discover why.

The gaps related to the implementation of R13 could be 
resolved by applying features F3, F6, F8 and F14, so the 
requirement is assessed as “Met”.

Requirement R14: Re-configure and test existing workflows 
or simulations during an emergency event and re-deploy a 
solution. This requirement addresses a gap identified with 
EMS systems (Hofmann et al 2015; Wagenknecht and Ruep-
pel 2013) that has an inherent level of risk associated with 
deploying improvements to algorithms / models during an 
event.

• F3 enables ingest of new datasets for training and testing 
AI.

• F6 enables definition and management of rules, deci-
sion tables or keyword tables for compliance and per-
formance. In a bushfire scenario, all decisions and 
responses can be tracked.

• F15 enables the comparison of existing champion work-
flows, algorithms or models against newly created chal-
lengers. Improvements to workflows, algorithms or mod-
els can be tested in near real-time.

• Feature F17 enables DevOps practices and tools for 
deploying model iterations, rollout and rollback. 
Improvements that are approved by the control-room 
manager can be implemented or rolled back in near real-
time.

Although changes to the system during an emergency are 
high risk, the gaps could be resolved and the requirement 
is “Met”.

Requirement R15: Test new fire-event algorithms or mod-
els as they are published.

• F3 enables ingest of new datasets for training and testing 
AI.

• F4 enables a Standard Model definition with Active 
Metadata. Bushfire model discovery workflows might 
be enabled using Active Metadata (Beyer 2020).

• F5 enables adoption of new algorithms / models for 
data categorisation and analysis, which is important as 
researchers develop new models. EMS managers could 
setup a discovery process for new models and schedule 
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it. This could enable, for example, discovery of bushfire 
simulation models that use coupled fire-atmosphere mod-
elling (Goodrick 2021) or adaptations to the BRIGHT 
Machine Learning algorithm for re analysis (Biogeo-
graphical Region and Individual Geostationary Thresh-
old) (Engel et al 2021).

Overall, the gaps related to the implementation of R15 could 
be resolved by applying features F3–F5, so the requirement 
is therefore assessed as “Met”.

Requirement R16: User-friendly AI interfaces that require 
minimal technical expertise for practical use. This require-
ment is important from a Human-Computer Interaction 
design perspective (Nielsen 2020). Several features mitigate 
the need for technical skills:

• F1 enables automated dataset discovery, reducing the 
need for direct dataset management.

• F6 enables an interface for defining and managing rules, 
decision tables or keyword tables for compliance and per-
formance, setting thresholds for statistical performance/
accuracy, setting custom/business KPIs, error messages 
and triggers for alerts and notification management.

• F14 enables an interface for step through of a model run, 
so that users can query why they have received these 
results.

• F16 provides a user console for model management and 
visualisations, with options for templates or custom 
reports.

• F17 enables tools for deploying model iterations, rollout 
and rollback. It is likely that most EMS teams would need 
the support of a Data or Machine Learning Engineer for 
this function.

Overall, the gaps related to the implementation of R15 could 
be partially mitigated by features F1, F6, F14, F16 and F17, 
so the requirement is therefore assessed as “Partially Met”.

Requirement R17: Real-time support for tools that require 
a high level of competence in deployment. An EMS is a 
mission-critical system that must provide information and 
enable decision-making in near real-time Sun et al (2020). 
Similar to R16, this requirement is important from a HCI 
design perspective (Nielsen 2020; De Silva 2018).

• Feature F6 enables defining and managing rules, deci-
sion tables or keyword tables, e.g. case-based reason-
ing (CBR) chatbots/workflows, which could assist 
with Q and A about system features. In future, bush-
fire EMS operators might be supported using intelligent 
agents (Damacharla et al 2020) or workflow bots.

This gap is not addressed by off-the-shelf ModelOps features 
and the requirement is therefore assessed as “Unmet”. In 
future, it might be addressed by new methods from Human-
Machine Teaming (McNeese et al 2018) or Voice-Based 
Synthetic Assistants (VBSA) (Damacharla et al 2020), or 
customising features such as F4–F6 for real-time operations 
in emergency control rooms.

In total, 13 of 17 requirements are assessed as Met, i.e. a 
Met ratio of > 75% . Three of the 17 requirements are par-
tially met, and only one is unmet (R17). Based on these 
promising initial findings, further research into the applica-
tion of ModelOps to EMS incident control-room operations 
is justified.

5  Evaluation of the EMS‑ModelOps 
framework

5.1  Human‑computer interaction assessment

Design reviews can be conducted on unfinished work or a set 
of specifications (Nielsen 2020). This may be a standalone 
design critique, where a focus group discuss the specifica-
tion to determine whether it will meet its objectives. Alterna-
tively, individuals can be asked to respond to a confidential 
survey, focusing on usability heuristics (Nielsen 2020).

Focus groups: Two or more focus groups of 5–6 partici-
pants could be recruited from EMS control-room operational 
teams to review and discuss the application of an EMS-
ModelOps framework to bushfire EMS. Table 2 proposes 
three questions (Q1, Q2, Q3) to scope the group’s conver-
sation, based on Flentge et al.’s (Flentge et al 2008) work 
with firefighters, incident managers and operators of critical 
infrastructures.

The format would be semi-unstructured, using open-
ended questions. The advantage of a focus group is in-depth 
information, however the facilitator must be able to respond 
to participant’s queries about the EMS-ModelOps frame-
work and how it might work as a prototype (Nielsen 2020).

Confidential survey: a survey of 20 or more participants 
could be recruited as per above. Participants would be pro-
vided with the research background and proposed frame-
work. Using three open-ended qualitative questions (as per 
Table 2) and six closed quantitative questions with a 5-point 
Likert scale (very poor, poor, neither poor nor good, good, 
very good) to rate feature usability (Nielsen 2020), the sur-
vey would provide data to assess the participants expectation 
of Met or Unmet need.

In addition to design reviews, a longitudinal Ethnographic 
observation study could be used, following Kox and Lüder 
(2021). Their methods are relevant for bushfire EMS sys-
tems, where sophisticated emergency teams interact regards 
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complex tasks and must coordinate and exchange real-time 
critical information. The study of incident control-room 
practices should be in a real-world setting, using a mixture 
of direct observation and interviews (Kox and Lüder 2021) 
to assess whether participants needs would be Met or Unmet 
under the proposed EMS-ModelOps framework.

5.2  Uncertainty of information hypotheses testing: 
prototype only

  Assuming an EMS-ModelOps framework could be proto-
typed, testing could occur against a series of performance-
related hypotheses. For example, does the prototype reduce 
the rate of errors? Are there less false alarms? Does it 
improve predictive capability?

Testers can apply the Uncertainty of Information (Raglin 
et al 2021) methodology. In the example below, testing uses 
concepts from Kothari (2004). 

 H0: Null Hypothesis - The uncertainty (error) in the EMS-
ModelOps prototype is identical to the prototype with-
out ModelOps technology.

 HA: Alternative Hypothesis - The uncertainty (error) in the 
EMS-ModelOps prototype is less than the prototype 
without ModelOps technology.

 Test: Run a selected UoI algorithm (Raglin et al 2021) in 
both prototypes to rank errors in the model output of 
“Model XYZ”. The independent variable is which 
prototype is in use: EMS-ModelOps or EMS without 
ModelOps. The dependent variable is the UoI algo-
rithm result.

 Analysis: Compare the rankings generated by the 
UoI computation.

 Interpretation: If, the uncertainty (error) in the EMS-
ModelOps prototype is less than the EMS prototype 
without ModelOps, then we have reduced the rate of 
errors. Note that it is possible that the uncertainty 
(error) in the EMS-ModelOps prototype is more than 
the EMS prototype without ModelOps, if so, then we 
have increased the rate of errors.

6  Threats to validity

  The review of bushfire EMS research and identification of 
issues have informed the development of the EMS-Mod-
elOps framework and have been cited where applicable. The 
17 EMS requirements are relatively high-level, as are the 17 
ModelOps features that are mapped to them. It is possible 
that both lists are missing important elements, which are 
likely to be identified by other researchers.

Commercial experience and sector knowledge helped to 
identify which of the ModelOps features are applicable to 
the EMS requirements and whether they result in Met or 
Unmet, which introduces the possibility of personal bias.

The project cited published research from Gartner and 
online articles from Forbes about the application of Mod-
elOps software in the private sector. There are no academic 
reviews of the quality of Gartner’s Information Technology 
research or their predictive capability.

There is a need to complete a wide-ranging review of 
XOps technologies, especially to assess what DataOps, 
ModelOps or DevOps features have been combined as XOps 

Table 2  HCI survey questions adapted from Flentge et al. (Flentge et al 2008) and Neilsen (Nielsen 2020)

Question Response type

Q1. Will the proposed system provide information about the current situation and the 
availability of resources, by processing and filtering incoming information and by 
contributing to the assessment of the current situation (Flentge et al 2008)?

Open-ended text

Q2. Will the proposed system provide advanced modelling, simulation, planning and 
analysis tools to improve the basis for decisions (Flentge et al 2008)?

Open-ended text

Q3. Will the proposed system provide capabilities to supply all involved parties with 
relevant information and improve command and control (Flentge et al 2008)?

Open-ended text

Q4. How do you rate the ability to keep users informed about what is occurring, 
through appropriate, timely information and feedback (Nielsen 2020)?

(very poor, poor, neither poor nor good, good, very good)

Q5. If an action is performed by mistake or an error made, how do you rate the abil-
ity to diagnose the error and provide methods for its correction (Nielsen 2020)?

(very poor, poor, neither poor nor good, good, very good)

Q6. How do you rate the ability to prevent errors (Nielsen 2020)? (very poor, poor, neither poor nor good, good, very good)
Q7. How do you rate the ability to precisely indicate the problem, and constructively 

suggest a solution (Nielsen 2020)?
(very poor, poor, neither poor nor good, good, very good)

Q8. How do you rate the ability to make elements, actions, and options visible, 
reducing the need for memory (Nielsen 2020)?

(very poor, poor, neither poor nor good, good, very good)

Q9. How do you rate the ability to provide information which is relevant, minimising 
information that is not useful (Nielsen 2020)?

(very poor, poor, neither poor nor good, good, very good)
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platform offerings. Access to commercial specifications 
would be useful.

To address potential gaps or criticism of the work, next 
steps could include (i) a survey of enterprise-level XOps sys-
tems, (e.g. Microsoft Azure, Databricks, MLflow, Kubeflow, 
DataRobot, ModelOp.com, SAS, etc.) to assess their func-
tionality; (ii) a high-level assessment of proprietary EMS 
applications against the EMS-ModelOps framework; or 
(iii) evaluation of the EMS-ModelOps framework by focus 
group discussion (Flentge et al 2008), survey of an expert 
user-group (Nielsen 2020) or observational study (Kox and 
Lüder 2021).

Given the framework is conceptual and experiments or 
tests were not conducted, there are no threats to the validity 
from issues with statistical methods, sampling, measure-
ments or observations (Matthay and Glymour 2020).

7  Conclusion

   Based on the research, the problem of managing huge, 
increasing volumes of heterogeneous data and complex 
“black box” AI/ML might be improved using ModelOps 
technology. The term black box is used to describe the prob-
lem of lack of human oversight of AI/ML decision-making 
and the European Commission has proposed legislation 
that critical software such as disaster management systems 
must enable such oversight. ModelOps, a nascent area of IT 
research, is increasingly common in the commercial sector 
and may be fit for this purpose.

The review of commercial sector research and investi-
gation of ModelOps products enabled development of a 
shortlist of ModelOps features that theoretically enable auto-
mation of data management pipelines, model management 
and AI/ML governance. Based on the earlier evaluation of 
bushfire EMS, the novel EMS-ModelOps framework, if 
implemented, could theoretically resolve many of the iden-
tified issues. Mapping the EMS requirements to ModelOps 
features resulted in a greater than 75% Met ratio. Based on 
such promising initial findings, further research into the 
application of ModelOps to EMS is justified.

The analysis indicates that the EMS-ModelOps frame-
work is generic and portable; it could be extended to other 
mission-critical applications through “bolted-on” technolo-
gies. To facilitate this, next steps should include (i) a survey 
of enterprise-level XOps systems to assess their capacity 
to integrate with existing proprietary applications and (ii) 
development of the EMS-ModelOps framework to a detailed 
technical level, with acceptance criteria.

During the literature review the project undertook a rapid 
review of the 2020 Office of the Chief Scientist report into 
Australia’s research and technology capabilities relevant to 

bushfire response, resilience, and recovery (Finkel, Alan 
and others 2020). Next steps could include a review of the 
Defence Science and Technology (DST) decision-support 
capability, with reference to XOps. It is unclear whether the 
DST’s “artificial intelligence and data fusion” capability 
or “quick integration of open source or unclassified data” 
includes DataOps, MLOps or ModelOps capabilities.

Finally, advances in architecture that support informa-
tion and communications infrastructure was out of scope 
but if successful, satellite-laser data transmission technol-
ogy (Gozzard 2021) will increase the frequency and volume 
of received satellite images. New ML/AI algorithms will be 
developed to process these data. Goodrick (2021) has also 
reviewed new wildfire simulation models that use coupled 
fire-atmosphere modelling to improve real-time forecasting. 
To take advantage of improvements in these technologies 
and improve EMS situational awareness, it will be important 
to prioritise EMS-ModelOps requirement R15, “Test new 
fire-event algorithms or models as they are published”.
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