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Abstract

Drone swarms consist of multiple drones that can achieve tasks that individual drones can not, such as search and recovery
or surveillance over a large area. A swarm’s internal structure typically consists of multiple drones operating autonomously.
Reliable detection and tracking of swarms and individual drones allow a greater understanding of the behaviour and movement
of a swarm. Increased understanding of drone behaviour allows better coordination, collision avoidance, and performance
monitoring of individual drones in the swarm. The research presented in this paper proposes a deep learning-based approach for
reliable detection and tracking of individual drones within a swarm using stereo-vision cameras in real time. The motivation
behind this research is in the need to gain a deeper understanding of swarm dynamics, enabling improved coordination,
collision avoidance, and performance monitoring of individual drones within a swarm. The proposed solution provides a
precise tracking system and considers the highly dense and dynamic behaviour of drones. The approach is evaluated in both
sparse and dense networks in a variety of configurations. The accuracy and efficiency of the proposed solution have been
analysed by implementing a series of comparative experiments that demonstrate reasonable accuracy in detecting and tracking
drones within a swarm.

Keywords Swarm robotics - Drone tracking - Computer vision - Multi object tracking - Vision based detection - Real-Time
surveillance - Machine learning - Object tracking

1 Introduction interactions with one another and with their surroundings

lead to the emergence of collective behaviour [3]. The main

Swarms are made up of large or dense groups of nodes with
common goals that communicate locally [1]. Swarm robotics
(SR) is a special sub-discipline of cooperative robotics in
which swarm intelligence methods are used. SR is an alter-
native method for coordinating systems with several robots
that use a large number of autonomous nodes [2]. Drone’s
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idea behind this domain research strategy is to build a large
number of tiny low-budget robots that are expected to do the
same job as a single complex robot or a small group of com-
plex robots. The aim of multiple drones is to significantly
increase group efficiency and make decisions about prospec-
tive outcomes collectively.

Future generations of society will be profoundly impacted
by SR [4]. Swarms are expected to play an important role [5,
6] in the future, where they will be confronted with a variety
of disruptions including adversarial attacks and equipment
malfunctions [7]. The proposed research aims to establish
the first step towards understanding the interactions between
swarms of drones by investigating a novel drone tracking
system. Designing tracking systems faces a major hurdle
in detecting and tracing drones that possess high dynamic
characteristics and distinguishing their behaviour amidst a
considerable drone population [8, 9]. The proposed method
aims to address these issues by concentrating on the creation
of an identification and tracking system to detect the intercon-
nection of the swarm. A high-level overview of the proposed
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method is depicted in Fig. 1, in which a stereo camera is
used to capture images of drones in the swarm, and then the
images are fed into the detection and tracking algorithm to
track drones.

The importance of tracking swarms is best demonstrated
by the importance of trying to disrupt them. Once the swarm
is dispersed, it would be possible to use the information
gathered to identify the network structure and communica-
tion links among them. To avoid this, an approach known
as confusion can be used. Highly dynamic swarm behaviour
which is often referred to as the confusion effect, exhibits
certain dynamic features, such as high speed, uniform move-
ment, large numbers, high densities and strong uniformity
in appearance [10, 11]. The confusion effect is often consid-
ered as a worst-case scenario and is one of the difficult tasks
for tracking and is not explored in terms of target tracking.
When identifying swarm behaviour, drones that move in a
crisscross movement and have a strong uniform appearance
are particularly difficult because of density issues and over-
lapping of drones [12]. This worst-case scenario misleads the
detection of swarm nodes, and the proposed research analy-
ses and identifies each swarm individually over time [13] to
address this scenario.

The increasing use of drones in various contexts has raised
critical concerns. Drones, when operating in swarms, present
unique challenges that demand specialized tracking meth-
ods. The potential risks associated with unauthorized drone
use in public spaces, sensitive regions, and vital infrastruc-
ture underscore the need for robust and accurate tracking
solutions. The absence of such solutions may compromise
privacy, security, and public safety.

The motivation for this research is the need to create
sophisticated tracking techniques that can effectively handle
the difficulties presented by a swarm of drones. The increas-
ing number of drones, together with their capacity to function

Fig.1 Drone Swarm Tracking
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as a group, necessitates advanced tracking technologies. We
are driven to explore novel solutions to address the essen-
tial need to limit the risks connected with unregulated drone
activities.

The research presented in this paper proposes a deep
learning-based autonomous drone detection, identification
and tracking system. Moreover, a lightweight model of the
YOLOV6 (You only look once) deep learning method, which
has lately gained popularity due to its resilience and accuracy,
is used to detect and identify drones using stereo-vision cam-
eras [14]and a Kalman filter is used for tracking the identified
drones. This research builds upon the YOLOvV6 framework
as an object detection framework and adds Non-maximum
Suppression (NMS) and a Kalman Filter to enhance its appli-
cability to drone swarm tracking. The following are the most
significant findings of the paper:

1. The implementation of an innovative deep learning-
based approach, incorporating YOLOvV6 for detection
and Kalman filtering for tracking, to achieve reliable
detection, identification, and real-time tracking of drone
swarms through the utilization of stereo-vision cameras.

2. The establishment of a robust framework utilizing the
approach to effectively identify drones and establish
correspondences between detected drones in real-time
scenarios, contributes to improved situational awareness
and tracking precision.

3. Comprehensive experimental analyses conducted under
diverse conditions, including variations in swarm den-
sity, the number of drones, camera distances, and other
relevant parameters. The outcomes consistently demon-
strated satisfactory results for detecting and tracking
drone swarms, highlighting the adaptability and reliability
of the proposed algorithm across a spectrum of opera-
tional scenarios.
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The remainder of the paper is organised as follows. Sec-
tion 2 present the discussion on swarms with their respective
application and details the existing literature on drone track-
ing. Section 3 describes the proposed framework for the
detection and tracking of drone swarms. Section 4 presents
the experimental evaluation of the drones in a simulation
environment. Finally, section 5 summarises the proposed
research, and section 6 provides the concluding remarks and
future work.

2 Background

The term swarm is commonly used to describe a collection
of autonomous agents that collaborate to achieve a common
goal or desirable behaviour [15-17]. Drones have rapidly
grown in popularity in recent years, both on the battlefield
and in everyday life. While modernised drones tend to receive
the majority of attention, a significant transformation in war-
fare is currently taking place. This transformation involves
the emergence of drone swarms, which consist of intelligent
drones that operate as a cohesive unit and respond to the
battlefield in a synchronised manner, maintaining a constant
speed [13].

Military from all over the world is interested in swarm
drone technology because of its special advantages such as
reducing the amount of time soldiers must spend in training,
increasing the durability of military weapons and enhancing
operational effectiveness. Their interest has increased sig-
nificantly over the past several years. The technology has
the potential to completely change the way future wars are
handled and can even be applied to search and rescue oper-
ations. For instance, the US has been engaged in research to
create mini drones that can be launched from aeroplanes and
used for reconnaissance missions. According to sources, the
US[18, 19]is also investigating drones that can communicate
with one another and collaborate to eliminate opponents.

2.1 Drone Swarm

Drone swarms equipped with Al is used in a variety of
ways for different applications, including, but not limited to,
surveillance, search and rescue [20], intelligent security [21],
health care [22], autonomous surveillance of buildings [23],
monitoring of forest areas [24], explore unknown zones [25],
and flying robots [26]. Swarm technology is rapidly devel-
oping and its use is increasing as the market expands at an
increasing rate. The drone swarm can automatically recog-
nize and attack the enemies weapons. It’s all because of how
many drones may be in the air at once and are treated as
though there were only one. Among the main benefits of this
technology is that they would be able to occupy a wider area.

In drone swarm technology, drones make decisions based
on the information they get from each other and have the
potential to completely change the way wars are fought.
Swarms will be useful in many aspects of regional and
border security and they may also be used to look for
enemy submarines in the water. To locate and destroy enemy
surface-to-air missiles and other air defenses, drones might
be dispersed across huge areas. Drone swarms are an exciting
new development in technology but realising their maximum
capabilities will need research and development in a selected
few areas: swarm density, swarm characteristics [27].

Every day, innovative uses and features are developed, and
one of the major challenges is keeping up with the swarm
of drones. As there are now more drones in the air, there
is a greater chance of complications and accidents. Never-
theless, the precise figure varies with each individual job.
Many of these characteristics were mentioned in the preced-
ing paragraph. Drones can move around independently, find
each other, predict how they will move and stay out of each
others way. Assuring the accomplishment of a shared goal
by cooperative efforts [28].

The process of detecting and tracking can be accomplished
through the employment of singular sensor technology, like
radio frequency (RF) detection and spoofing, RADAR, opti-
cal devices (thermal and RGB cameras), or audio sensors, as
evidenced by [29-31]. Alternatively, detection and tracking
can be achieved by integrating multiple sensor technolo-
gies. RF signal analyses, which seek to record transmissions
between the drone and the ground controller, are the most
widely adopted method for drone surveillance [32]. The pri-
mary difficulty with this strategy is that the drone might be
flown without any sort of ground control, either by follow-
ing a predetermined flight route or completely autonomously.
Drones may also be detected via acoustics, with microphone
arrays [33, 34]. Drones try to classify the sounds of their
rotors but they fail miserably when it comes to accuracy and
range. The longest distance that audio-assisted devices can
go is around 200 m — 250 m. The technique also has the
drawback of being impractical in busy and noisy places like
airports.

In the context of encountering multiple unmanned aerial
vehicles (UAVs), conventional countermeasures exhibit a
reduction in efficacy. Consequently, scholars have shifted
their attention towards developing systems that involve the
pursuit of multiple UAVs [35]. High detection accuracy and a
huge effective range make video-based recognition a power-
ful tool for detecting drones [36, 37]. The supervised learning
method used in this study is a strong computer vision tool
and it is used to do detection on real-time data.

Previous work typically relied on cameras for control and
localisation in these hazardous areas when GPS availability
could not be guaranteed. This makes it hard to distinguish one
drone from another, as it requires linking a drone’s unique
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physical identifier with its unique visual identifier (such as
an object tracker output). LEDs [38] or coloured marker [39]
have been used in previous attempts to solve this challenge
by providing visually distinct information for identification.
These techniques however can make deployment more com-
plicated, are fragile to environmental variations, can’t scale
well with distance and may imply better equipment [40].

2.2 Multi Object Tracking

In computer vision, Multiple Object Tracking (MOT) plays
a significant role which is [41] mainly divided by an input
video to detect various targets, securing their identification
and return their different orientation. The artifacts may be
tracked for example, swarms of drones performing target
search [42, 43], recognising swarm formations [44, 45] post-
disaster [46], swarm of drones in military operations (such as
Iraq and Syria) [47], street pedestrians [48, 49], road sports
automobiles on the court etc). While various methods have
been suggested to resolve this issue because of different fac-
tors such as sudden changes in appearance and extreme object
occlusions, it still lacking in further experiments. The attacks
mentioned above are likely to happen more often as the num-
ber of drone attacks increases each year. There are only a few
ways to stop drones from engaging in activities that are both
harmful and unlawful. There are devices on the market that
may be purchased from these companies such as Dedrone,
Drone Shield, and Orelia; however, because of the high price
of these goods, it is generally agreed that they cannot be
used for personal applications on a small scale in residential
areas [50].

A study [12] on MOT investigated the use of high num-
bers, uniform movement and strong uniformity in appear-
ance. They proposed a technique that uses both the reliable
monitoring efficiency of recurrent neural networks and the
fast testing of the memory formation to estimate the suc-
ceeding measure of the swarm. Swarming species have
adapted habits that deliberately confuse prospective preda-
tors and the process is called the confusion effect however
this study could not track and solve the density issue of
swarms. Researchers present a method for swarm robots to
simultaneously investigate many targets using a grouping
approach based on the Particle Swarm Optimisation (PSO)
algorithm [51]. A simulation platform is used to show how
the search process works and to test the approach. The sug-
gested technique has a high flexibility and success rate while
searching for numerous targets (flocking behaviour of birds)
according to the results. However, the study did not con-
sider the confusing swarm characteristics in terms of target
tracking. Some studies [52, 53] discuss tracking as an indi-
vidual part and as a result of a program for pattern detection
or video monitoring, object tracking is used. A study [54]
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investigated visual image monitoring strategies, like visual
tracking appearance templates. Some research review and
implement general visual tracking benchmarks [55] and on
particular object tracking [56].

The literature presents how group density affects the con-
fusion effect but the findings are conflicting with some
information leaning in one regard [57] and some in the
opposite [58]. Despite these challenges, it has been pro-
posed that apparent rises in group densities with predators
may assist in enlarging the confusion effect [59]. There are
multiple research initiatives to study the MOT issue. How-
ever, different studies show research on factors that amplify
the effects include high speed, uniform movement, large
numbers, high densities, crisscross movement and strong uni-
formity in appearance [10, 11] but there has not been any
comprehensive study that addressed all these factors related
to MOT. The proposed approach will track each drone of a
swarm over time towards a goal that can help to get reliable
identification and track each drone in a swarm in real-time.

The increasing prevalence of drone swarm applications
has underscored the urgency for robust tracking methodolo-
gies, a facet that has garnered attention in recent literature.
Several studies have explored the challenges associated with
drone swarm tracking, focusing on aspects such as coordi-
nation, collision avoidance, and overall system performance.
However, acomprehensive examination reveals a notable gap
in the existing research landscape, particularly in addressing
the highly dense and dynamic behaviours exhibited by drone
swarms.

Recent works [60, 61] provide valuable insights into the
complexities of drone swarm dynamics. However, the spe-
cific challenges associated with dense and dynamic swarm
configurations have yet to be adequately addressed. This is
where our proposed approach aims to make a distinct con-
tribution. By utilizing deep learning-based techniques, as
demonstrated by this research intends to fill this crucial gap
in the literature.

This work aligns with and advances the field by introduc-
ing a novel methodology for real-time detection and tracking
of individual drones within dense swarms. This approach not
only enhances the understanding of swarm behaviour but also
facilitates improved coordination, collision avoidance, and
performance monitoring. The significance of this contribu-
tion becomes apparent when considering the limitations of
existing methods, as highlighted by [62, 63].

In conclusion, the literature review establishes a founda-
tion for this study, emphasizing the need for a specialized
approach in the context of dense drone swarms. By address-
ing this gap, this work not only contributes to the existing
body of knowledge but also provides a practical solution to
the challenges posed by dense and dynamic drone swarm
scenarios.
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3 A Framework for Swarm Drone Tracking

Among the various challenges, MOT is the biggest challenge
in the computer vision domain. Recently several bench-
marks have been presented in various MOT methodologies
to improve MOT research. Building single to multi-object
tracking is more difficult since there are typically many tar-
gets in a single frame rather than one [55, 64]. Due to the
increased mobility in recent years, drone use has increased
significantly [65]. In computer vision, the MOT is among
the most essential aspects for analyzing video and has a
wide range of uses, including surveillance cameras and
robotic systems [66]. The ability to detect drones is a cru-
cial requirement for establishing a seamless environment
that accommodates all drone operators. This includes both
air traffic control and surface security (to prevent drones
from crashing in midair or injuring people or damaging prop-
erty). In the subsequent sections, a detailed description of a
comprehensive drone swarm tracking pipeline is provided,
including the process for calculating three-dimensional
coordinates.

3.1 Drone Swarm Tracking Pipeline

This research focuses on the challenge of finding and fol-
lowing fixed or moving targets in chaotic situations without
knowing their position or the arrangement of impediments.
The drone swarm’s core objective is to take decisions using
the knowledge that they exchange with one another. Due to
their connection to a shared communications link, drones
would be able to carry out a variety of functions. Various
tasks in national security domains, such as those intended to
overwhelm adversary sensors with targets.

Algorithm 1 Drones Swarm Tracking Pipeline
1: Input: Stereo Images

2: Output: 3D Coordinates

3: Detect the Image < True

4: while True do

5: CNN Prediction of b_boxes // bounding boxes

6:  if b_boxes == Multiple then

7 Object Disambiguation (NMS) // Non Maxima Suppression
8: Compute Filtered b_box

9:  endif

10: if b_boxes < True then

11: Apply Sort Tracker <— 3D Coordinates

12:  else if Tracking Lost <— T'rue then

13: Apply Kalman Filter for Prediction

14: Tracking Success Gets <— Missing Coordinates
15:  else

16: Tracking Lost < False

17:  endif

18: end while

Drones are used to carry out associated searching and
tracking operations. The locations of the targets, which may

be dynamic in this scenario, would shift over time and be
monitored using the stereo-vision camera as shown in Fig. 2.
It may be a reasonably low economical method of fending off
an opponent swarm attack. Combining the YOLOv6 detec-
tion method with NMS and the Kalman filter tracking method
from computer vision and robotics yields a framework for
detecting and tracking swarms of drones. These additions
enhance the performance of the tracking framework for drone
swarms.

1. YOLOVG6 Detection: YOLOV6 excels in detecting and
tracking objects with speed and precision, making it par-
ticularly well-suited for our task of reliable detection and
tracking of individual drones within a swarm. The archi-
tecture of YOLOVG6 is characterized by a deep neural
network with a focus on dividing the input image into
a grid and predicting bounding boxes and class proba-
bilities directly. This approach aligns with our goal of
achieving real-time performance and accurate identifica-
tion of drones in dynamic swarm scenarios. By utilizing
the capabilities of YOLOV6, our methodology benefits
from the model’s ability to handle dense and complex
scenes efficiently.

YOLOVG6 can be trained on a dataset of drone images
and videos then it can identify drones in real-time video
with speed and accuracy. YOLOV6 is a cutting-edge object
detection algorithm that quickly and accurately locates
various items within a single picture or video frame. It
can detect drone swarms by recognising individual drones
as distinct objects in the captured video or image. For
object detection in real-time applications, the YOLOvV6
deep learning technique is widely employed. However,
sometimes it generates redundant tracking data due to its
tendency to yield multiple bounding boxes for a single
object. To solve this issue a technique called non-maxima
suppression is used.

This study uses the newest YOLOV6 algorithm, which is
specifically designed to identify different types of drones.
There are four main steps in the recognition process. First,
the input data is carefully prepared to make sure it works
with the suggested network. After that, the model goes
through a training process to learn how to recognize the
given types of drones. This creates a weight file that will be
used for testing later. The trained model is then put through
tests to see how well it works and how well it can recog-
nize different kinds of drones. Lastly, the suggested deep
learning network is carefully tested using standard meth-
ods, which gives a numerical value to its precision and
usefulness. These steps, taken in order, show the whole
process we used in our study. This study focused on devel-
oping, training, testing, and evaluating the YOLO-based
network for versatile object detection.
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Fig.2 Concept Diagram for Reliable Swarm Detection

2. Non-maxima Suppression: Non-Maxima Suppression The prediction step entails utilising the state transition

(NMS) is a method that can be utilised to deal with this
problem. In object detection, NMS is used to eliminate
duplicate detections and keep only the best detection.
NMS’s fundamental principle is to compare all detections
and find the ones that are most likely to be identical. In this
research NMS is employed to refine the detection results,
eliminating redundant bounding boxes and enhancing the
accuracy of localization. This integration is particularly
beneficial in swarm scenarios where multiple drones are
detected in dense conditions.

. Kalman Filter: A popular example of Bayesian fil-
ter techniques is known as Kalman filter [67]. It is a
method that more accurately guesses unidentified param-
eters from a set of data that has been collected over time
but includes noise and other irregularities. In 1960, it was
first suggested by R.E. Kalman [68] and has since evolved
into a widely used method for an optimal estimate. In the
areas of orbit computation, military surveillance and nav-
igational the Kalman filter has found widespread usage
due to its advantages of real-time, quick, efficient and
strong anti-interference. Also, it has a significant impact
in the areas of digital image processing as well as other
study areas like machine learning [69].

The combination of computer vision methodologies,
specifically the utilisation of YOLOV6 detection, in con-
junction with Kalman filtering, presents a robust and
effective approach for achieving precise and real-time
tracking. The integration of the Kalman Filter stands
out as a key modification, providing a robust mech-
anism for tracking individual drones over time. The
Kalman Filter, by modelling the dynamic movements of
drones, contributes to better trajectory predictions and
enhanced tracking precision, particularly in scenarios
marked by dynamic swarm behaviour. The Kalman fil-
ter is comprised of two fundamental stages: prediction,
which involves the propagation of the system state, and
update, which entails the incorporation of measurements.

@ Springer

model to forecast the future state estimate by extrapolat-
ing the current state estimate. The update step integrates
the YOLOV6 detection outcomes to enhance the accuracy
of the state estimate and covariance matrix. We started by
determining the object’s state vector using the X', ) and
Z coordinates in the camera coordination frame, which
represents the relative positions and velocities from the
camera. In addition, the fact that the dynamic state of the
target exhibited a consistent velocity, an assumption is
made that all states, measurements, and noises followed
a Gaussian distribution. As a result, the Kalman filter is
used to describe the drone swarm’s dynamic system. This
one filter keeps predicting the track of all drones [70].

Q and R are covariance matrices, representing process and
measurement noise, and are used to model and reflect the
uncertainty in the state transition model and observations.
The utilisation of matrices is important in the process of
adapting the behaviour of the Kalman filter to align with
the specific attributes of both the system and the sensor. To
get the best results and make sure the tracking is robust,
it’s essential to fine-tune the parameters Q and R. This
method provides a robust solution for practical situations
by making use of the state transition model, observations,
and noise matrices.

NMS algorithm is applied to each frame to get rid of any
drone detections that happen more than once. Next, tracking
drones in real-time and predicting their future location is
possible with Kalman filtering. The state of a system can
be estimated using noisy observations and the mathematical
technique of Kalman filtering. Kalman filtering is useful for
estimating the position, velocity and acceleration of a drone
using noisy sensor measurements obtained either from the
drone itself or from other sensors.

The Kalman filter in conjunction with NMS allows for
precise drone location tracking with few false positives. Each
drone’s position and speed are estimated by the Kalman filter,
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which then predicts the drone’s next location. In general,
drone swarm technology can benefit from the integration of
YOLOV6 detection, NMS and Kalman filter tracking due
to the reduction of false detections and the enrichment of
individual drone tracking.

This research indeed considers the complex dynamics
of drone swarms, and we acknowledge the need for a
more detailed explanation of the specific adaptations. Here
are additional insights into how this approach captures
swarm behaviour patterns beyond simple density and number
changes:

This study used stereo cameras and the triangulation
method used for 3D to understand how drones move together.
These cameras and math help the model to see patterns
in how drones arrange themselves and how they move
over time, e.g., figuring out formations like flocking and
interactions. To handle variations in drone sizes within the
swarm, dynamic object scaling is employed, ensuring the
model effectively detects and tracks drones of different
sizes. Swarm behaviours such as flocking patterns and inter-
drone distances are integrated, providing the model with a
basis for understanding and predicting behaviour beyond
density changes. The model can dynamically adjust the
parameters based on observed swarm behaviour, contribut-
ing to improved accuracy by allowing the model to adapt to
evolving dynamics and making it better at predicting their
movements. Feature extraction is applied for anomaly detec-
tion, identifying changes from expected patterns in swarm
behaviour to enhance the model’s ability to capture swarm
behaviour beyond simple density and number changes.

3.2 Estimating 3D Coordinates of Drones from
Stereo Images:

Depth (2) perception arises from the Disparity (D) of a given
three-dimensional point in the left and right retinal images.
Information from two images is used to find the depth of any
point in the given image. When the depth or distance is found
to every point, depth maps can be created with colours repre-
senting the distance away from the camera. Depth maps and
stereo-vision cameras can be used in many real-life appli-
cations to estimate the distance to different objects. In this
scenario, the depth map is used to know the depth of every
drone in the frames.
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Disparity (D): The term disparity is used to describe the
visual shift that occurs between two cameras due to the per-
spective projection of the same 3D point.

When using a stereo camera for positioning 3D coordi-
nates, the following parameters are required:

e Focal length (F) : Camera’s focal length in (pixel)

e Baseline (B) : Distance between the two cameras in
(meter)

e Image size (resolution) : height * width in (pixel)

e The point we locate is (X2, V) , (AR, YR) (unit: pixel)

The coordinates of the ideal camera midpoint are Cy =
width/2, Cy = height/2, respectively. From the above param-
eters, we can get the following calculation X, ) and Z
position. Binocular disparity is a concept in computer vision
that pertains to the variation in coordinates of corresponding
features between two stereo images. Formulas used to get
X, Y and Z coordinates are defined in the Egs. 1, 2, and 3
respectively.

Within the domain of computer vision, the term disparity
plays an essential role in the process of finding the relative
location of objects that are perceived by a stereo camera sys-
tem. The absolute difference between the horizontal pixel
coordinates of the corresponding points in the left and right
pictures (X and X ) is referred to as disparity, and it is used
to quantify the pixel level separation across views. By apply-
ing this concept, the calculation of the three-dimensional
(3D) cartesian coordinates (X, ) and Z) of an object point
can be achieved by taking into account the baseline B, the
focal length FL of the camera, and the distances Cy and Cy,
from the optical centres to the point. The calculation of the
X-coordinate involves multiplying the normalised disparity
by the baseline and then dividing the result by the depth
D. Likewise, the ))-coordinate is derived from an analogous
equation. The estimation of the Z-coordinate, which repre-
sents the depth, is obtained by taking the reciprocal of the
disparity normalised by the focal length. The calculations
represent the fundamental principles of the disparity-based
approach for estimating the three-dimensional spatial char-
acteristics of a point (Xz, V) or (¥R, VR) in relation to
the intrinsic properties of the camera system, including the
focal length, baseline, and image resolution. This formula-
tion enhances the comprehension of the geometric principles
involved in transforming pixel-level disparities into real-
world 3D coordinates within the domain of computer vision
research [71].

In this study, the main approach taken to track the drone
swarm is that the information is taken from two images using
stereo cameras as can be seen in flowchart Fig. 3 to find the
depth of any point in the image. When the depth or distance
to every point is found depth maps can be created the depth
map is used to know the depth of each drone in the frames.
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Left/Right Images

Fig.3 Flowchart for Reliable Swarm Detection

Once the frames are detected using bounding boxes the NMS
method is applied to extract or filter the correct bounding
boxes from multiple bounding boxes in a single frame. After
getting the correct predicted bounding box tracking is done
by using the Kalman filter to predict the new locations of
each drone and finally, 3D coordinates are calculated.

4 Evaluation

The experiments are designed to provide new informa-
tion about the drone swarm. The Section 4 consists of
implementation details and experimental setup to detect
and track the position of each drone over time. In this
paper, a computer-based method is presented for training and
assessing networks. The configuration of the drone detection
system is shown in Table 1.

In this study, experiments are conducted in the 3D Gazebo
simulator, while robots use a Robot Operating System (ROS)
that serves as the interface. Integrating both of these develops
apowerful robot simulator and it is implemented in Python. It
is a multi-robot simulator that is both efficient (good perfor-
mance with many robots up to several thousand) and flexible
(the possibility for the user to add new features such as a new
robot or new sensors) at the same time. Gazebo is also used
for inertia, gravity, illumination and physical engine etc. A
lot of other 3D structures like robots can easily be created
on a computer with the help of Gazebo. Originally it was
designed to evaluate algorithms for robots. The presented
study focuses on exploring the potential applications of the
research in the context of drone swarm motion.

Table 1 Experiment Platform Configuration

Experiment Platform Configuration

Drone Detection/ GPU 4GB NVIDIA T500
Tracking CPU Intel Core i7-1165G7 Quad Core
Technique System 64-bit
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4.1 Implementation

In this section, the swarm tracking challenge is described
in Fig. 4 in the form of a flowchart which is the task of
achieving a synchronized control scheme for a group of
drones that allows them to accomplish and manage a certain
desired behaviour. The focus is on the problem of sustaining
a specified geometrical formation. To ascertain the afore-
mentioned swarm position tracking CVBridge is used which
is a ROS library that allows linking ROS and OpenCV in
the same environment. The OpenCV library, which is open-
source image processing software, is utilized to do separate
processing on each and every frame that is captured by the
stereo camera. This library is used to convert ROS images into
OpenCV images using stereo-vision cameras. Stereo vision
creates the original three-dimensional sequences by combin-
ing two stereo images having different angles.

Data holds a pivotal role in training models, and an inade-
quate dataset may lead to underfitting. To address this, we
gathered 8000 images from simulations, capturing drone
images at various angles, initially unlabeled. Utilizing the
Labellmg tool, we labelled these images in YOLO format,
denoted as object class-ID, Xcenter, Ycenter» Width and height,
after opening an image with a drone and creating a rectangu-
lar box around it. The labelled data was then saved in a text
file. This labelling process is instrumental for bounding box
assignment and subsequent training. The dataset was subse-
quently split into training and testing subsets as can be seen
in Fig. 5. We used the YOLOv6 model with drone images as
input. With YOLO, a CNN network can do detection and clas-
sification in one pass, as opposed to the sequential procedures
used by previous models. Convolutional layers play a vital
role in feature extraction from images by addressing spatial
redundancy through weight sharing. Through this process of
redundancy reduction, the network gains a compressed yet
rich representation of the image content. As the depth of the
convolutional layers increases, the network becomes more
adept at extracting accurate semantic features, contributing to
heightened precision in feature representation. In the classi-
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fication and regression step the classification in YOLO refers
to the task of assigning a specific class label to each detected
object within an image and regression in YOLO involves
predicting the coordinates of the bounding box that tightly
encloses the detected object. The model, functioning on a
grid system, divides each drone image into a grid of fixed
dimensions. Grid cells are considered potential drone detec-
tors when the drone’s centre falls within a cell. Each grid cell
predicts bounding boxes and confidence scores, reflecting
the presence of a drone in the box and the model’s prediction
accuracy. Notably, the YOLO algorithm predicts multiple
boxes per grid cell during the training phase, with only one
bounding box predictor assigned for an object based on the
highest Intersection over Union (IOU) with the ground truth.

Training &

Feature Extraction Testing Set

CONV
Layers

= ]

Input Image

=

T

Fig.5 Training Approach Using YOLOvV6

This meticulous process ensures effective training and accu-
rate predictions for drone detection. Figure 6 depicts the
decrease in loss with respect to raining epochs.

To accomplish the desired goal the camera is placed 3 m
away from the centre of the cube. Using the COCO pre-
trained system as initialisation parameters and the YOLOv6
framework as the basis for their identification and catego-
rization of deep learning techniques. Input images are 800
x 800 pixels in size, and the training cycle consists of 80
epochs. The model is developed on an NVIDIA T500 GPU
having 4GB of RAM and a batch size of 48, where the deep
learning techniques are conducted. The algorithm is stochas-
tic gradient descent (SGD), and its parameters are as follows:
weight decay 5 x 10~*, momentum = 0.9. Using a 1 epoch
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warm-up and a cosine processing schedule, the starting learn-
ing rate is 1073, The entire duration of training is around 2
to 3 days. The system employs RGB stereo cameras posi-
tioned on top of the swarm to monitor and record the drone
swarm’s behaviour. A Linux desktop or embedded device
with an NVIDIA GPU is employed as the major processing
unit. Both RGB cameras have the same design, specifica-
tions, and performance levels as high-end industrial models.
The cameras can provide a resolution of 800 x 800 pixels at a

Iteration number in cfg max_batches=10000

frame rate of about 25 frames per second. We are interested
in identifying drones from far away, even if they are very
small. The method uses the depth image’s 3D information
to do this. The detection technique is broken down into its
component parts and depicted in Figs. 7 and 8. A detailed
explanation is given in experiment 1 and experiment 2. To
attain tracking accuracy for hidden drones the Kalman fil-
ter is used to predict their location and track overlapped and
hidden drones over time.
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4.2 Experiment Setup

In this research, we are focused on modelling a drone swarm
operating within a Gazebo environment. The primary goal of
this simulation is to analyze the performance and behaviour
of the drone swarm under various conditions. To achieve
this, we have carefully selected specific parameters, includ-
ing drone size and simulation size, and have defined a camera
distance range.

The drone size of 30 cm closely resembles dimensions
seen in commercial drones used in various applications,
allowing us to model realistic movements without over-
whelming computational resources. By opting for this size,
we can effectively model the movements and interactions of
drones within our simulation without introducing unneces-
sary complexity or computational overhead. It allows us to
maintain a reasonable level of realism while ensuring that the
simulation remains manageable and resource-efficient.

The obtained 3D positions (X, Y, Z) derived from track-
ing accurately depict the location of the drone within a
three-dimensional domain. The dimensions of the simulation
environment are 200 cm along each axis which is represented
as 200x200x200 cm. The choice of a 200cm simulation size
in each axis is deliberate and serves the purpose of providing
ample space for our drone swarm to operate. This size ensures
that the virtual environment can comfortably accommodate
multiple drones and any potential obstacles or structures that
may be encountered during simulation. While it is impor-
tant to reflect real-world conditions, maintaining a compact
enough environment is essential for efficient simulation. This
simulation size strikes a suitable balance between realism
and computational feasibility, facilitating meaningful exper-
imentation with swarm behaviours.

The distance between the two cameras which is the base-
line is 1.3962 mm. Unless otherwise provided, the high
detection score threshold 7y ¢, is set to 0.6, the low detection
score threshold t;,,, is set to 0.1, and the trajectory initialisa-
tion score € is set to 0.7. At the linear assignment phase, the
matching will be discarded if the intersection over the union
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between the detection box and the tracklet box is less than
0.2. The data is stored for the missing tracks for 25 frames
in case they reappear during that time.

The specified camera distance range of 2 meters to 9
meters is a key parameter that allows us to explore a wide
range of spatial configurations and swarm behaviours within
our simulation. This range encompasses distances that are
both close and farther apart, mimicking scenarios where
drones might operate in various real-world applications. By
testing our drone swarm under these conditions, we gain
insights into their adaptability and performance in differ-
ent proximity scenarios, which has direct implications for
tasks like surveillance, inspection, and coordination. Another
reason for choosing this distance is that moving the camera
farther away in the simulation does not capture drones or
drones that are not visible for more than this distance in simu-
lation however in the real world using high resolution camera
can be implemented with more distance. It is worth noting
that in our simulation, capturing drones or making them visi-
ble beyond this distance is restricted, reflecting real-world
limitations, although in practical applications using high-
resolution cameras, longer distances could be achieved.

Image resolution is a critical aspect of our simulation,
especially in relation to camera distance. As the camera
moves further away from the drones, maintaining image qual-
ity and object recognition becomes increasingly challenging.
To address this, we have carefully selected an image resolu-
tion that aligns with the specified camera distance range. This
means that we employ higher resolutions when the camera is
positioned farther from the drones to ensure that details are
adequately preserved in the captured images. This param-
eter choice is essential for accurately simulating the visual
feedback and challenges encountered by drones at varying
distances from their target objects or points of interest.

The experiments conducted different ways drones could
be close together and arranged, mainly focusing on track-
ing individual drones within a swarm. This made us think
about whether the network design used has special settings
for this. The network architecture is made carefully to han-
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dle the specific challenges that come with tracking individual
drones within a swarm. Some important things the system
does include: it pays more attention to important parts of
the information, helping it find and follow individual drones
accurately, especially in dense swarm scenarios. It adjusts
its learning speed depending on how challenging the infor-
mation is, ensuring effective learning in various situations
when tracking drones within a swarm. It uses a specific way
of looking at the information to understand both how indi-
vidual drones are placed and how they move, making the
tracking more accurate. Also, the system can change how
much it can do based on how many drones are there, making
sure it works well in different situations of tracking individual
drones within a swarm. These mechanism-driven optimiza-
tions play a vital role in the network’s design, contributing to
its robustness and effectiveness in addressing the challenges
specific to drone swarm tracking, underscoring its suitability
for real-world applications.

4.3 Experiment 1: Drone Detection

In experiment 1, the approach for detecting drone swarms
is shown and identifying individual drones can be used to
identify drones in real-time by finding matching pairs. In the
first phase, the approach used is called contour detection and
depth triangulation using a stereo camera, the experiment is
conducted multiple times and a number of drones (2) are sim-
ulated with different positions and angles. Initially, a single
frame of 2 drones was detected. Once the results were satis-
fying then increased the number of drones (30) with random
positions as shown in Fig. 7. The procedure is repeated for
30 drones and tracked the single frame of all the 30 drones
and took the Euclidean distance between actual and tracked
coordinates. Overall by calculating the average distance, this
experiment got high accuracy for each run. The overall aver-
age distance is 0.068 between actual and tracked coordinates
which means data is consistent and very close to the mean.

4.4 Experiment 2: Drone Disambiguation

Experiment 2 demonstrates the details of tracking the correct
bounding boxes of our drone swarm detection framework for
drone identification. The aim of this experiment is to detect
multiple drones with the correct bounding box. A computer
vision technique called NMS is used. To enhance the per-
formance and enable the detection of drones from various
angles, the algorithms utilise predictive techniques to gen-
erate multiple bounding boxes of varying sizes and aspect
ratios. NMS constitutes the final stage of object detection
algorithms, serving the purpose of identifying the bounding
box that is most suitable for the drone. Using this method,
the less likely bounding boxes are suppressed in favour of the

@ Springer

most optimal ones. The method for choosing the best bound-
ing box with NMS is as follows. Figure 8 shows the output
of using NMS before and after steps.

e Step 1: The selection of the box that has the highest objec-
tiveness score.

e Step 2: Compare how this box overlaps with other boxes
(intersection over union).

e Step 3: bounding boxes that have an intersection over
union greater than >50% are eliminated.

e Step 4: Then, choose the next best score for the objec-
tiveness score.

e Step 5: Finally, repeat steps 2-4.

4.5 Experiment 3: Framework Validation and
Scalability

Experiment 3 demonstrates the details of tracking each drone
over time. The aim of this experiment is to track multiple
drones over time. For this experiment, a simulation of 30
moving drones and a computer vision algorithm is used for
image detection. Despite the best efforts of the system, it
may be possible to retrieve some of the missing frames using
the tracking-based approach. The semantic structure of the
deep learning-based YOLOvV6 algorithm allows the system to
achieve highly promising performance for a main detection
method even with a small number of filters.

4.5.1 Tracking of 10 Drones:

Initially, the experiment was conducted to track the sin-
gle frame of all 10 drones and took the Euclidean distance
between actual and tracked coordinates as seen in Fig. 9. The
experiment is conducted numerous times with random posi-
tions and by calculating the average distance, this experiment
got high accuracy for each run by comparing it with ground
truth values. The ground truth values are the random initial
actual position and the movement of the drones in each itera-
tion is considered as the baseline criteria for comparison. The
overall average distance is 0.068 between actual and tracked
coordinates additionally the o = 0.025 which means data is
consistent and very close to the mean.

The experiment was conducted 10 times for 10 drones at
random positions (Fig. 10). Figure 11(a) shows the average
error between the actual and the tracked location of drones
at 10 iterations. The average error is very low at initial iter-
ations indicating high accuracy but it fluctuates due to the
random positions of drones used at each iteration. Further-
more, Fig. 11(b) depicts the standard deviation of the distance
between the actual and tracked locations and it gives infor-
mation on how the locations deviated from the mean of the
distance between them. Overall, this experiment is conducted
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Fig. 11 Output of 10 Drones

with random locations each time to analyze the accuracy of
the algorithm.

The metrics presented in Figs. 11, 12, and 13 do indeed
represent the average error and standard deviation in the esti-
mation of drone distances. These metrics were calculated for
all drones for 10 iterations within the respective swarm con-
figurations.
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In the initial iteration of our experiments, we introduced 10
drones, all of which were initially visible and evenly spaced
from each other. However, it is important to note that the
behaviour of these drones in our simulation is inherently
dynamic and stochastic. As the simulation progresses, the
swarm of drones starts moving, and their positions begin to
change. Due to the inherent randomness and dynamic nature



Journal of Intelligent & Robotic Systems (2024) 110:84

Page 15 of 31 84

31
9] I
25 1 2.394 2473
8 I
8 I 1.992 2.007
a 1 : .
T 1.907
P 2 1 868 4 49
o I
a 1
51 1.376 1.37
! 37 1 269
- I
o] 4
B I 09830974
w14
° T
o0 I 0.612
o T 0453
2057 oz79
To.068 0.097 0.102 0-152
o] m [ | [ |
1 2 3 4 19 20
No. of Iteration
M Average Error
(a) Accuracy Over time
31
25 §
5 .1 1.96 1.962
s 27
8 I
> 1
o I
Q31571
'E .
© I
-c -
§ 1+
8 T
(%] 4
05 1
1o
0 J
i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No. of Iteration
—e—STDEV

(b) Standard Deviation

Fig. 12 Output of 20 Drones

of the swarm behaviour, these initially equidistant drones
gradually overlap each other as the simulation evolves.

The variations observed in the average error and standard
deviation for the 10 drone swarm are a direct consequence of
this dynamic behaviour. As drones move and overlap during
the simulation, the distances between them change, leading
to fluctuations in the localization estimates. This dynamic
nature of the behaviour of the swarm, which results in over-

lapping drones, contributes to the significant variations seen
in the localization accuracy.

When the experiments are extended to include 20 and 30
drones, the complexity of swarm dynamics increases, fur-
ther accentuating the variations in localization estimates. The
interactions between a larger number of drones within the
swarm can lead to more intricate movement patterns and
overlaps, amplifying the variations observed in the results.
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In summary, the observed variations in the localiza-  where drone movements are inherently unpredictable and
tion estimates are a direct reflection of the random and  can lead to similar variations in localization accuracy.
dynamic nature of drone swarm behaviour in our simulation.
These variations should be seen as an intrinsic characteristic
of swarm dynamics rather than a limitation of the pro-
posed scheme. We believe that this understanding of swarm
behaviour dynamics is crucial for designing effective swarm
detection and tracking algorithms in real-world scenarios,

4.5.2 Tracking of 20 Drones:

In this experiment, the number of drones is increased to 20
with random positions. The same procedure is repeated for
20 drones and tracked the single frame of all the 20 drones

@ Springer



Journal of Intelligent & Robotic Systems (2024) 110:84

Page 17 of 31 84

and took the Euclidean distance between actual and tracked
coordinates. By comparing it with ground truth values and
calculating the average error this experiment got high accu-
racy for each run. The overall average distance calculated
is 0.097 drone distance and the standard o = 0.02 which
means data is quite consistent and is very close to the mean.

The experiment with 20 iterations for 20 drones at differ-
ent positions is shown in Fig. 12(a). The bar graph gives the
measured distance between the actual and tracked position
and it increases significantly for every iteration as the swarm
of drones gets denser at each time step which specifies the
average accuracy over time. Moreover, Fig. 12(b) portrays
the standard deviation of the experiment and it is evident
that the standard deviation is low at the start and it increases
rapidly with the increase in iterations. However, as can be
seen in iterations 7, 12 and 14, there is a random behaviour
of standard deviation, one possible reason for this behaviour
is the uncontrolled random selection of drone position where
the network is sparse and/or dense at different iterations.

These results show that our algorithm performs better at
tracking drones in both sparse and dense networks when
compared with the original ground truth values of drones,
nonetheless, the accuracy of the algorithm decreases with
the dense network and distance increases in iterations.

4.5.3 Tracking of 30 Drones:

This experiment is conducted by increasing the number of
drones to 30. In this experiment, some drones overlap and
are therefore not clearly visible to the camera. The overall
average distance for 30 drones is 1.376 drone distance and
the 0 = 0.659 which means a higher number of drones leads
to a denser swarm and makes it hard to track all the swarms
with high accuracy. Overall the accuracy is higher when the
drone count is 20 to 25 and decreases to some extent when the
drone count is 30 to 35. However, the algorithm works quite
well and is successful in detecting the maximum number of
drones in a single frame.

The last experiment has 30 iterations for 30 drones at a
random position. Figure 13(a) shows the accuracy (in terms
of distance) for 30 drones at each iteration. when compared
with the original coordinates it is evident that the distance
between the actual and tracked position is a minimum of high
accuracy at first however, the distance is gradually increas-
ing accuracy decreasing with an increase in the number of
iterations. The standard deviation of the distance between
actual and tracked locations is shown in Fig. 13(b), and it is
evident that our algorithm performs well at the start but the
performance is affected when the network is denser.

With the denser network, it is difficult to track the precise
locations and values standard deviation is entirely deviated
from the mean and it is the limitation of our approach. Over-
all, in this experiment, it can be concluded that because of

the density issue, the algorithm is not able to track the drones
more accurately, however, the algorithm performs well for
the sparse network.

Regarding the interpretation of Figs. 11, 12, and 13 and
the question about whether the y-axis depicts the average
error and standard deviation for all drones for each iteration
or the average error and standard deviation for each drone
across all iterations. This aspect has been discussed in detail
in our previous responses, where we clarified that the results
indeed represent the average error and standard deviation for
all drones in each iteration.

To reiterate, the observed variations in these figures are
primarily due to the inherent randomness and dynamic
behaviour of the drone swarm during the simulation, which
leads to changes in drone positions and overlaps. The pro-
vided results collectively contribute to our understanding of
the algorithm’s performance and adaptability under varying
conditions.

4.6 Experiment 4: Varying Camera Position

The aim of this experiment is to test varying camera positions
to stress the performance of detection and tracking multiple
drones over time under different conditions. The approach
evaluates the accuracy of tracking by varying the position
of the stereo camera at different angles. All experiments
use an input image size of 800x800 pixels. This experiment
demonstrates the details of tracking each drone over time by
changing the angle of the camera at different positions of 0°
to 90°. A YOLOvV6 algorithm is employed to detect moving
objects drones in real-time. Figure 14 shows the camera setup
on different angles with visibility under 3 m at each angle.

In general, altering the viewpoint at which a swarm of
drones is observed can have a significant impact on the
amount of information and perspective that can be captured
by the camera, even if the visibility distance between the
camera and the swarm remains constant. Some of the views
may include, top-down view, this perspective is useful for
understanding the structure and behaviour of the drone as
a whole. In addition, this viewpoint allows the observation
of potential formations or configurations that the drones may
form. Second, a front/side view, in which the camera is offset
to one side of the swarm, can reveal interesting information
about the lateral mobility of drones, it has the ability to give
information on swarm’s interactions with its surroundings
(obstacles as well as drones).

This research considered the top-view scenario to observe
the overall structure and behaviour of a swarm of drones.
In this scenario, the experiment is conducted 10 times with
random positions of drones. Furthermore, the trained model
has the ability to identify drone swarm at varying angles
ranging from 0° to 90° by improving detection results with
predictions from the Kalman filter. To further validate the per-
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Fig. 14 Camera Position with
Varying Angles
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formance of drone detection, the presented framework was
compared to the ground truth values obtained from the exper-
iment. On the other hand, the trained model has achieved an
80% mAP (mean average precision) score at the intersection
over the union threshold of 0.3.

In this experiment, the stereo camera angle is varied from
0° to 90°, and this experiment was repeated for 10 drones.
Then, the tracking of various frames of drone locations takes
place to calculate the Euclidean distance between actual and

tracked locations of drones. Most of the drones are not visible
to the camera from 0° to 20°. Figure 15, illustrates at 30°, a
few drones are visible. The error at each angle is shown in
graphs (Fig. 15) and it can be observed that our algorithm
has a lower error at 90° almost all the drones are visible at
this angle. The overall accuracy with varying angles can be
seen in Fig. 16.

The presented line graph illustrates the number of drone
detections across various angles. There are a total of ten
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drones and one hundred iterations. For each individual drone,
we conducted 100 iterations for 10 drones with 1000 data
points. After executing the simulation calculated the per-
centage of identified drones at each angle and plotted the
resulting graph. This line facilitates the observation of the
relationship between the number of drones and the varia-
tion in angle. The algorithm obtains higher accuracy when
the camera angle is 90°. In Fig. 17 a box and whisker plot
is presented, showcasing the distribution characteristics of
errors. The plot consists of a rectangular box, whiskers, and
individual data points (outliers) that fall outside the normal
range of values. The x-axis represents the different angles
of inclination, ranging from 30° to 90°. The y-axis indicates
the magnitude of the errors, which provides insights into the
variability and accuracy of measurements at each angle. It is
interesting to note that the error at 30° inclination exhibits a
relatively higher error value and a larger interquartile range

compared to other angles. This suggests a tendency for mea-
surements taken at 30° to have a higher central error value
and greater variability. On the other hand, the error at 90°
inclination displays a lower median value and a narrower
interquartile range, indicating better accuracy and consis-
tency in measurements. Experiments illustrate that the lack
of detection is due to the highly mobile nature of drones,
however, Kalman filter prediction has provided some useful
information for tracking drones.

The seeming discrepancy between the results in Figs. 11,
15 and 18 arises from the different experimental setups and
objectives underlying these figures. In Figs. 11, 12, and 13,
we conducted a set of initial experiments with a fixed number
of drones (10, 20, and 30, respectively) to evaluate the per-
formance of the algorithm. However, it is important to note
that in these experiments, the behaviour of the drones was
inherently random.

This random behaviour meant that the drones started out in
equidistant positions from one another, but as the simulation
progressed, their movements became unpredictable. Con-
sequently, we observed variations in localization accuracy
among different iterations of these experiments. Figures 15
and 18 represent a distinct set of experiments where we
deliberately manipulated various parameters, such as drone
density, camera distance, and the number of drones, to assess
the algorithm’s adaptability and robustness under diverse
conditions. In these scenarios, the randomness of drone
behaviour was retained, reflecting real-world unpredictabil-
ity.

What is crucial to understand is that the seemingly con-
tradictory results highlight the ability of the algorithm to
adapt to varying conditions. In scenarios with higher drone
density, larger view angles, or other parameter changes,
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Fig. 18 Error Graphs for 0.5 0.5
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the algorithm demonstrated improved detection and track-
ing accuracy. This can be attributed to the capacity of the
algorithm to handle complex swarm dynamics, even when
drones exhibit random behaviours. The variations in perfor-
mance under different conditions, as highlighted in Figs. 15
and 18 emphasize the potential of the algorithm to excel under
varying scenarios. This adaptability is a valuable asset when
dealing with real-world drone swarms, which are character-
ized by diverse and often unpredictable behaviours.

In summary, the variations in results between Figs. 11,
15 and 18 stem from the difference in experimental objec-
tives. While the initial experiments showed variations due to
the inherent randomness in drone behaviour, the subsequent
experiments intentionally introduced variations in param-
eters to assess the algorithm’s adaptability. These diverse
scenarios and their corresponding results collectively con-
tribute to a comprehensive analysis, allowing us to develop a
more robust solution for drone swarm detection and tracking
in real-world applications.

4.7 Experiment 5: Varying Observer Distance

The aim of this experiment is to evaluate the performance
of the proposed framework by varying camera distance. This
approach evaluates the accuracy of tracking by varying the
position of the stereo camera for 10 drones to observe the
drone swarms individual behaviour. The swarm can signif-
icantly change depth perception and clarity when deciding

@ Springer

No. of Iterations
(d) Distance 6 m

how far away to keep the camera few points should be con-
sidered.

When the camera is at 2 m — 3 m, distance from the
swarm, it can capture detailed images of the individual drones
and their flight patterns. This can be helpful when evaluating
drones one at a time or when researching swarm behaviour as
a whole. Furthermore, when the camerais at 3.5m — 4.5 m,
the distance from the swarm can observe the activity of the
drone as well as any patterns or formations they may be form-
ing. This can be helpful for investigating the swarm as a
whole. Additionally, at a distance of 5 m — 6 m, the camera
will only observe the swarm as a whole and not be capable
of identifying individual drones. In particular, the appropri-
ate camera distance can change based on what exactly is
being observed. To better understand the drone’s individual
behaviour and where they are in real-time within the swarm,
a camera distance of 3 m is recommended for the current
simulation scenario, however, for real-world applications,
a distance of a few kilometres is recommended with high-
resolution cameras.

In this experiment, the stereo camera distance is varied
from 2 m — 6 m, and this experiment was repeated for 10
drones. Then, the tracking of various frames of drone loca-
tions takes place to calculate the Euclidean distance between
the actual and tracked location of drones. The results achieved
are quite encouraging, especially considering the aim was to
identify a swarm of drones at varying camera distances. By
looking at different graphs shown in Fig. 18 at 2 m only a
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few of the drones are visible. The error at each camera dis-
tance is shown in graphs and it is apparent that our algorithm
has promising results or higher accuracy at 3 m where most
of the time all drones are visible. The overall accuracy with
varying camera distances can be seen in Fig. 19.

The presented box and whisker chart in Fig. 20 offers an
insightful representation of the variation in errors observed
in a dataset collected at different camera distances. These
distances range from 3 m — 6 m. The horizontal axis (x-
axis) on the chart represents the camera distances in meters.
Specifically, it ranges from 3 m — 6 m. The vertical axis

Camera Distance (m)

(y-axis) quantifies the magnitude of errors, which measures
the extent of deviation from the expected values. These plots
comprise a rectangular box that symbolizes the interquar-
tile range (IQR), which encapsulates the middle >50% of
the error values. The lower and upper edges of the box sig-
nify the lower quartile (25th percentile) and upper quartile
(75th percentile), respectively. The width of the box provides
insights into the dispersion of errors for each camera distance.
The whiskers visualize the range of error values. Data points
falling beyond the whiskers are identified as outliers and are
indicative of instances with exceptionally high or low error
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values. These outliers signify extreme deviations from the
norm and offer insights into exceptional conditions during
data collection.

4.8 Experiment 6: Varying Number of Drones

The aim of this experiment is to evaluate the performance
of the proposed framework by varying the number of drones
keeping the same camera distance. Changes in the number of
drones in a swarm can affect the detail and perspective visible
to the observer, even when the viewing distance is constant.
Some factors to think about when adjusting the number of
drone count are as follows:

If the swarm is small, the camera may get a far better view
of the individual drones and their motions from the same
camera distance. Possible applications include researching
the behaviour of small swarms or tracking individual drones.
Observers may be able to see the swarms general form and
motion, as well as any patterns or formations the drones
are forming if the swarm comprises a moderate number of
drones. This could be helpful in understanding the social
dynamics of a population of moderate size. If there are a
large number of drones in the swarm, the observer may only
see the swarm as a whole, with no way to tell them apart, even
if the camera’s distance is kept constant. This could be help-
ful for understanding the size and route of massive groups.
It is worth noting that the optimal swarm size for different
observations can differ greatly in the number of drones used.
To better examine individual drone behaviour, for instance, a

smaller swarm may be ideal. A swarm of medium or large size
may be preferable for research on its collective behaviour.

In this experiment, the number of drones varied from 5
drones to 25 drones. Then, the tracking of various frames of
all the drone locations takes place to calculate the Euclidean
distance between the actual and tracked location of drones.
The results achieved are quite encouraging, especially con-
sidering the aim was to identify a swarm of drones in varying
numbers of drones. By looking at different graphs shown in
Fig. 21 at varying numbers of drones the error can be seen
in graphs and it is evident that our algorithm has promising
results or higher accuracy at 10 drones graph where most
of the time all drones are visible. The overall accuracy at
increasing no. of drones can be seen in Fig. 22.

The box and whisker chart in Fig. 23 illustrates the fluctu-
ating errors as the number of drones within an environment
progressively increases, encompassing scenarios from 10 to
25 drones. A notable trend emerges as the number of drones
increases from 10 to 25. At 10 drones, the error exhibits
a lower median value and a narrower interquartile range,
indicating higher accuracy and consistency in detection. Con-
versely, with 25 drones, the error displays a higher median
value and wider interquartile range, reflecting decreased
accuracy and heightened variability. This trend underscores
the challenge of drone detection as the number of drones
increases, primarily due to overlapping drones that limit vis-
ibility.

Regarding Fig. 22 it is important to note that this experi-
ment involved varying the number of drones from 10 to 25,
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which had a direct impact on drone density within the swarm.
In scenarios with low swarm density, where a higher number
of drones were present within a fixed simulation space, the
drones became densely overlapped and consequently were
not visible to the camera. This led to a significant drop in
detection accuracy, with less than 20% accuracy observed
for a 25 drone swarm.

However, it is crucial to emphasize that this experi-
ment was designed to investigate the performance of the
algorithm under extreme conditions, where drones were
intentionally made to overlap excessively. Such conditions
are seldom encountered in practical drone swarm scenar-
ios, where maintaining a certain minimum distance between
drones is typically adhered to.

In all other experiments and scenarios in our research,
we maintained a fixed number of drones, representing
more typical operational conditions. Under these conditions,

the algorithm consistently demonstrated good accuracy in
detecting and tracking drones within the swarm.

Overall, Fig. 22 results offer insights into the behaviour
of the algorithm when subjected to challenging and rare sit-
uations where drone density is exceptionally high due to an
increased number of drones. These results do not reflect the
algorithm overall performance under standard operational
scenarios, where maintaining a practical drone density is
the norm. Our research aims to provide a comprehensive
understanding of the algorithm capabilities and limitations
to develop a robust detection and tracking system for practi-
cal drone swarm applications.

4.9 Experiment 7: Varying Density of Drones

The aim of this experiment is to evaluate the performance of
the proposed framework by varying density between drone
swarms. The approach evaluates the accuracy of tracking by
varying the density of drones keeping the same position of
the stereo camera. To observe the drone swarm individual
behaviour, the experiment was repeated for 10 drones in a
dense environment. If the drones are far apart in the swarm,
the observer may get a clear view of each one and its motions,
regardless of how remote the camera is. This could be help-
ful for analysing the behaviour of sparse swarms or checking
individual drones. With a medium density, an observer has
a better chance of making out the swarm’s general shape
and motion, as well as any patterns or formations formed
by the drones. This could be helpful in understanding how
swarms of medium density interact with one another. When
the drones in a swarm are packed in tightly, it can be impossi-
ble to tell them apart with the naked eye even if the cameras
focal length is increased to its maximum. The density and
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motion of dense swarms could be better understood with this
method. It is interesting to note that the optimal swarm den-
sity of drones can change with the goals of the observation.
A low-density swarm may be preferable, for instance, if the
purpose is to investigate drone behaviour at the individual
level. A swarm of medium or high density may be preferable
for research on its collective behaviour.

As in this experiment, the density of the swarm of drones
varied from 1.33/m3 to 3.38/m3. This procedure repeated
and tracked the multiple frames of all the drone locations.
Then, the tracking of various frames of all the drone locations
takes place to calculate the Euclidean distance between the
actual and tracked location of drones. The results achieved
are quite promising. By looking at different graphs shown in
Fig. 24 at 1.73/m> few of the drones are visible. Similarly, at
each denser swarm graph, the error is shown and it is evident
that our algorithm has promising results or higher accuracy
at 3.38/m> where most of the time all drones are visible.
The overall accuracy with varying density can be seen in
Fig. 25. The presented box and whisker chart in Fig. 26 offers
a comprehensive visualization of errors observed as the sim-
ulation size for drones increases, with densities ranging from
1.73/m?> to 3.38/m3. The recorded errors are closely tied to
the complexities of simulating drone operations, where lower
errors indicate more precise modelling and higher errors are
associated with challenges posed by increased drone density
and overlapping. At 1.73/m? errors exhibit a higher median
value and a wider interquartile range, reflecting the complex-

@ Springer

ities introduced by increased drone density and overlapping.
Conversely, at3.38/m?> the error displays a lower median
value and a narrower interquartile range, indicating more
accurate modelling and less variability.

4.10 Experiment 8: Comparison with Other
Approaches

This experiment aims to compare the proposed approach with
other state-of-the-art object-tracking methods. The experi-
mental setup involves tracking a swarm of 10 drones using
a stereo camera positioned at a 90° angle. This setup allows
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us to use the triangulation method to extract images from
both the left and right cameras to extract a depth map. This
depth map serves as a foundational layer for generating point
cloud data, representing the spatial distribution of the drones
in three dimensions. The transformation from depth maps to
point clouds is instrumental in our analysis, as it provides a
detailed representation of the drone swarm’s configuration
in 3D space. With the point cloud data, we implemented
various tracking algorithms, each designed to determine the
precise position of each drone within the swarm. This con-
figuration is chosen to evaluate the tracking accuracy of
each method under identical conditions. The algorithms com-
pared in this study are Deepsort [72], MOTDT (Multi-Object
Tracking with Dual Matching Attentional Networks) [73],

2.75
Simulation Size(m?3)

and Bytetrack [74]. The accuracy of each tracking algorithm
is evaluated based on its ability to detect and track drones
across 100 iterations. Each iteration represented a discrete
time step in the drone’s flight, with the position data generated
to simulate real-world tracking scenarios. The performance
metric used for comparison is the average tracking error, cal-
culated as the deviation from the drone’s actual positions.
Under these conditions, the proposed algorithm consistently
demonstrated good accuracy in detecting and tracking drones
within the swarm.

By looking at different graphs shown in Fig. 27 faceted
grid plot above visualizes the error trend across iterations
for each tracking approach. Each subplot corresponds to
one of the approaches, showing how the error changes over
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iterations. This visualization technique allows for detailed
comparison within the context of each approach while main-
taining an overall view across the dataset.

In Fig. 28 a bar graph is constructed to display the average
tracking error for each approach across 100 iterations. This
graph highlights the numerical value of the error above each
bar, enabling a clear comparison of the overall effectiveness
of each tracking method. The proposed algorithm demon-
strated superior accuracy in detecting and tracking drones
within the swarm, showcasing its potential as a robust solu-
tion for drone tracking applications. The combined graphical
representation in Fig. 29 the line graph shows the compari-
son of average error across all tracking algorithms (proposed
approach, Deepsort, MOTDT, BYTETRACK) for the 10
drones based on the first 10 iterations. This comparative visu-

BYTETRACK

MOTDT

alization makes it easier to see how each drone performed
under different algorithms, providing further evidence of the
proposed approach’s enhanced performance.

5 Discussion

Drones or UAVs, have become more popular recently
because of their adaptability and usability. But the grow-
ing number of drones has brought up concerns about privacy,
protection, and personal security. In particular, public events,
sensitive regions, and vital infrastructure can all be endan-
gered by unauthorised drone use. To address this issue, this
research explored methods for detecting and tracking drones
using computer vision techniques. In the previous section,

oach

3

Fig.29 Average Error for 10 1.0 ‘ ‘
Iterations —e— Proposed Appr
—o— Deepsort
—e— MOTDT
0.8 1 —e— BYTETRACK
—
o
t 0.6
w
()
(®)]
@©
0.4
2 d
[
0.2 A\
[
0.0

@ Springer

w

4 5 6 7 8 9
Drone ID



Journal of Intelligent & Robotic Systems (2024) 110:84

Page 27 of 31 84

the results of drone swarm identification and tracking are
presented using various methods. These findings highlight
the efficacy of the presented method in detecting and track-
ing the maximum possible number of drones, both in dense
and sparse networks.

In terms of the performance of the given framework, it is
required that swarms exhibit sufficient distance between
nodes to facilitate faster detection and tracking performance.
However, as seen above, the very high level of density in the
swarm results in poor performance of the algorithm. To over-
come this challenge, utilizing images from a stereo camera
for identifying drone swarms appears to be a feasible solution.

The Kalman filter-based tracking method possesses the
smoothing and predictive properties necessary for a steady
aim. Several experiments have been conducted to determine
the algorithm’s precision. Drone detection is tested using
two drones at first and then the number of drones is grad-
ually increased in multiple experiments. One problem that
arose was that several bounding boxes, or false positives,
were generated by the drone identification process. The NMS
is employed to overcome this problem by obtaining reliable
detections by extracting proper bounding boxes. These meth-
ods collectively contribute to a substantial improvement in
the performance of the tracking framework for drone swarms,
as evidenced by the experimental results. We have conducted
extensive testing in varied environments and swarm densities,
demonstrating that the presented framework significantly
outperforms existing methods in terms of tracking accuracy,
detection speed, and robustness against various challenges.

In addition to this another experiment for tracking drone
swarms has been tested by changing drone numbers from
10 to 30. Every experiment computes the Euclidean distance
between the actual and tracked location and takes the aver-
age mean. The 10 drones actual and tracked locations are
very close, indicating good precision and with 20 drones, the
average distance is and found average accuracy, indicating
that the data is consistent and close to the mean. Ultimately,
by raising the number of drones to 30 in the following exper-
iment, some drones overlap and are not visible to the camera.
As can be observed, when drone numbers are increased the
swarm becomes denser due to this the accuracy decreases.
It is evident that our algorithm performs well at the start
but the performance is affected when the network is denser.
Once the results were satisfying for detection and tracking
of swarm drones, other experiments were tested by varying
angles, varying number of drones, varying camera distance
and finally varying density of drones. Overall, the proposed
method is ideal for detecting multiple drones and tracking
them with high precision. This can be further used to under-
stand the behaviour/pattern in which swarm operations are
taking place and tackle them accordingly.

In this study, a notable challenge was the dense arrange-
ment of drones in the swarm, affecting the algorithm’s

performance. The findings indicate a reduction in accuracy,
mainly due to drones overlapping when their number reached
30 in our experiments. Unfortunately, this overlap caused
some drones to be hidden from the camera’s view, making
them undetectable.

The algorithm demonstrated effective performance in
detecting and tracking swarm drones with high precision
under less dense swarm conditions. However, as the den-
sity of the swarm increased, the algorithm’s effectiveness
declined, indicating a notable limitation.

To address this issue comprehensively, we conducted var-
ious experiments to assess the algorithm’s robustness under
different conditions, such as varying angles, the number of
drones, camera distance, and drone density. While the algo-
rithm showcased strong performance initially, the impact of
swarm density became evident as these factors were altered.

Despite these challenges, it is crucial to emphasize that
our proposed method proves to be well-suited for detecting
multiple drones and tracking them with exceptional preci-
sion, particularly under less dense swarm scenarios. This
capability holds significant promise for understanding and
monitoring the behaviour and patterns of swarm operations,
offering valuable insights for addressing them effectively.

Although this works conclusions are built on the algo-
rithm’s performance, they are generalizable and should apply
to other algorithms that rely on effective communication
between drones to discover the best possible answer. Extend-
ing the current ideas to include a large number of drone
swarm detection and overcoming the overlapping issue with
improved accuracy using an extended Kalman filter (EKF)
will be the focus of future studies in this area.

In terms of the real-world performance of a drone swarm
tracking system that combines YOLOv6 detection with
Kalman filter can be influenced by several factors, includ-
ing the processing power, density and speed of drone swarm,
accuracy requirements frame rate, processing time and the
number of tracked objects or swarms. The initial stage in
utilizing YOLOV6 tiny involves the production of a cus-
tom dataset for the purpose of training. In general, it is
recommended that each training class has a minimum of
2000 images. The frame rate refers to the number of frames
(images) processed per second by the tracking system. A
higher frame rate allows for more frequent updates and
smoother tracking. However, increasing the frame rate also
demands more computational resources. Processing time
refers to the time it takes for the tracking system to process
each frame, including YOLOvV6 detection, Kalman filtering,
and any other computations. Lower processing time is desir-
able for real-time applications to ensure timely updates. As
the number of tracked objects or swarms increases, the pro-
cessing time per frame generally increases. More objects
require more YOLOv6 detections and more Kalman filter
updates, resulting in longer processing times. If the process-
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ing time per frame exceeds the frame rate, the system may fall
behind real-time, causing delays in updates and potentially
affecting the quality of tracking. Hence In practice, frame
rates for drone swarm scenarios can vary widely. For a gen-
eral starting point, one might consider frame rates in the range
of 15 to 30 frames per second (FPS). This range is commonly
used for many real-time computer vision applications.

The objective of this research is to gain insights into solu-
tions to infer the communication network topology of highly
dynamic swarms. By identifying high-impact nodes we will
fracture the swarm and will use a co-evolutionary technique
to detect these high-impact nodes and to evolve counter-
measures in the swarm that make them more robust towards
targeted elimination. Processes developed in this project can
be used to study bird flocks and fish schools. This work can
also be used for defence purposes when one wants to frac-
ture hostile swarms or one wants to deploy swarms that can
withstand targeted eliminations style attacks.

In addition to the presented findings, further insights into
the main results shed light on the significance and implica-
tions of our research:

1. Swarm Density Impact: The observed decrease in algo-
rithm accuracy under high swarm density underscores
the critical need for methods that can effectively handle
densely packed drone swarms. This insight emphasizes
the challenges associated with real-world scenarios where
drones may operate in close proximity.

2. Algorithm Robustness: Despite the challenges posed
by high-density swarms, our proposed method exhibited
commendable robustness under less dense swarm con-
ditions. This highlights the adaptability of the algorithm
in scenarios where drones are more sparsely distributed,
showcasing its versatility in various operational contexts.

3. Extended Kalman Filter (EKF) Potential: The iden-
tified challenge of decreased accuracy under high drone
density points to the potential efficacy of an Extended
Kalman Filter (EKF) as a future enhancement. Future
research focusing on integrating an EKF could address
the overlapping issue, further improving the algorithm’s
performance in dense swarm scenarios.

4. Real-World Applicability: The considerations regarding
frame rate, processing time, and the number of tracked
objects underscore the practical challenges of imple-
menting drone swarm tracking systems in real-world
settings. Striking a balance between these factors becomes
imperative for achieving real-time tracking with optimal
accuracy.

Parametric uncertainty, referring to the lack of precise
knowledge about specific characteristics or settings within
a model or system [75, 76], can significantly affect the per-
formance of detection and tracking methods. In the case of
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YOLO for drone detection, this uncertainty might arise due
to variations in lighting conditions, camera angles, and the
visual appearance of drones in images. The Kalman filter
used in tracking, uncertainties in the initial state estimate,
imprecise knowledge of system dynamics, and variations in
sensor measurements contribute to parametric uncertainty.
We are already exploring this idea by tweaking different sets
of parameters to see how it impacts the results. However, in
the current study, I've been using a fixed set of parameters
consistently without introducing any variations. In the cur-
rent approach, a fixed set of parameters has been consistently
employed for all experiments.

We utilized pre-trained model weights from the COCO
dataset with YOLOV6. Fine-tuning our model on these
pre-trained weights allowed us to benefit from existing
knowledge while tailoring the model to our specific appli-
cation.

In summary, our adoption of YOLOV6, and strategic use of
pre-trained weights collectively contribute to the efficiency
and adaptability of our deep-learning model for drone swarm
tracking.

6 Conclusion and Future Work

The paper proposed a reliable identification and tracking
method for drone swarms to understand the behaviour of
each drone in a swarm. The proposed framework utilized a
stereo-vision camera to observe a drone in a swarm. A deep
learning-based detection method YOLOV6 is employed to
detect the drone swarms in conjunction with NMS, and then,
each detected drone swarm is tracked by using the Kalman
filter technique. This research enhances the basic capabilities
of YOLOV6 through specific improvements and the integra-
tion of advanced techniques, significantly improving drone
swarm tracking. Integrating these components allows for the
detection and tracking of multiple drones with high accuracy.
YOLO efficiently detects drones in real-time, NMS reduces
redundant detections, and the Kalman Filter accurately pre-
dicts the drones movements, considering both the current and
past state uncertainties. The performance of the proposal was
evaluated under a number of different scenarios by varying
the position of the stereo camera, swarm density, number of
drones, and observing camera distance. The findings show
conclusively that the suggested framework is capable to iden-
tify and track drones in a swarm.

The experimental analysis clearly shows that the proposed
tracking algorithm works better for tracking drones as com-
pared to other methods. The comparative visualizations not
only highlight its performance but also emphasize the algo-
rithm’s reliability, making it a potential tool for future drone
tracking applications. The detailed research and creative
approach to designing this algorithm open up new possibil-
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ities for more precise, dependable drone tracking solutions.
This work highlights how important it is to develop technol-
ogy specifically for drones as they become more common
and their uses continue to grow.

To further improve the performance of the proposed
framework in terms of accuracy and timely detection, the
possibility of embedding an extended Kalman filter will be
investigated. This would allow extending the current work to
create a system that can handle uncertainty and noise, making
it more robust in real-world circumstances.

In future work, there is a recognition of the necessity to
go beyond the current focus on tracking individual drones.
Drones in practical scenarios often operate in swarms with
complex communication dynamics and diverse organisa-
tional structures (centralized, decentralized, adaptive intel-
ligence). To tackle this complexity, active development is
underway to create methodologies for visually analysing and
interpreting coordinated swarm behaviours. This involves
not only monitoring individual drone trajectories but also
analysing patterns arising from communication and collabo-
ration within the swarm.

Visually analysing swarm behaviour poses unique chal-
lenges due to its asynchronous nature. Unlike observing
individual drones, where movements are relatively inde-
pendent, swarm coordination involves intricate interactions
that may not be readily apparent through visual observa-
tion alone. The asynchronous communication among swarm
members further complicates the analysis, requiring inno-
vative approaches to capture and interpret these dynamic
interactions. Even with these challenges, gaining insights
into the visual representation of swarm coordination is
expected to significantly contribute to the robustness and
applicability of simulated experiments, bringing a step closer
to replicating real-world conditions.
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