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Abstract: Internet of Things (IoT) architectures generally focus on providing consistent performance
and reliable communications. The convergence of IoT, edge, fog, and cloud aims to improve the
quality of service of applications, which does not typically emphasize energy efficiency. Considering
energy in IoT architectures would reduce the energy impact from billions of IoT devices. The research
presented in this paper proposes an optimization framework that considers energy consumption of
nodes when selecting a node for processing an IoT request in edge-fog-cloud layered architecture.
The IoT use cases considered in this paper include smart grid, autonomous vehicles, and eHealth.
The proposed framework is evaluated using CPLEX simulations. The results provide insights
into mechanisms that can be used to select nodes energy-efficiently whilst meeting the application
requirements and other network constraints in multi-layered IoT architectures.

Keywords: IoT; energy; edge computing; cloud; fog; node selection; optimal; ILP

1. Introduction

With diverse IoT applications being introduced every day and a prediction of a signifi-
cant increase in the number of IoT devices, there is a demand for a stable and scalable IoT
infrastructure to accommodate futuristic IOT use cases. Current technological innovations
in computation and communication technologies are pivotal in defining an IoT commu-
nication infrastructure for supporting this exponential growth. A combination of 5G/6G
wireless communication, edge, fog, cloud computing, software-defined networking, and
artificial intelligence would help support this growth in the IoT network [1]. On the other
hand, the increasing energy demand, exponential increase in energy cost in IoT, and its
environmental impact have diverted industries towards identifying the best feasible ways
to control, manage, monitor, and save energy in IoT architectures. However, providing a
cost-effective and energy-efficient scalable infrastructure for emerging IoT applications by
incorporating these vast heterogeneous communications and other emerging technologies
has become a significant challenge. It is mainly because each technology has its require-
ments, architectures, and frameworks. It is important to be cautious when integrating these
advanced technologies, to effectively support emerging IOT use cases in a way that saves
energy and keeps the cost reasonable [2].

In the past few years, the research community has introduced use case-centric IoT
architectures and emphasized meeting quality of service (QoS) constraints for a single IOT
use case and its sub-applications. These architectures typically comprise edge or cloud tech-
nology and a communication network [3]. The QoS and network parameters considered,
include time synchronization, service accuracy, service priority, availability, response time,
reliability, delay, throughput, and security [4,5]. Apart from these parameters, researchers
have also highlighted the importance of task offloading and energy efficiency in an IoT
architecture in achieving sustainable IoT deployment and operations [6,7].
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To gain the full benefits of emerging IoT applications and to achieve cost-effectiveness
and energy efficiency, upcoming computation, communication, and caching mechanisms
need to be converged intelligently, considering all general IoT applications rather than
assuming a single use case [8]. A generalized flexible IoT network architecture is required,
which would be feasible to serve all the IoT use cases and their sub-applications that can
meet the QoS and application constraints. However, achieving energy-efficient opera-
tions combining diverse communication and computation technologies while satisfying
emerging user application QoS and network requirements, has received minimal attention.

In this paper, we have considered a distributed IoT architecture comprising edge, fog,
and cloud layer connected to heterogeneous appliances/gadgets at the edge layer, serving
diverse IoT use cases. Each layer consists of different nodes, and each node is equipped
with a custom number of servers that can perform various IoT requests. We also propose
an Integer Linear Programming (ILP)-based optimal node selection framework that can
minimize the energy consumption of the IoT network when selecting a node for processing
a new IoT request while meeting the IoT application and network requirements. The
framework considers the energy consumption of processing an IoT application at all three
layers, edge-fog-cloud. The framework is evaluated using CPLEX simulations considering
diverse IoT requests from use cases encompassing eHealth to autonomous vehicles.

The pivotal benefactions of this paper can be summarized as: (1) The exploration
of efficient IoT architecture comprising of edge, fog, and cloud layer for computation;
(2) the suggestion of optimal node selection technique to minimize the energy in the IoT
network architecture while fulfilling the constraints of IoT application and the limitations
of the connectivity network; (3) consideration of a custom number of servers deployed at
each node when selecting a node for processing new requests instigating from diverse IoT
applications with varying requirements; (4) providing insight into how the energy cost
affects the optimal selection of nodes.

The rest of this paper is ordered as follows. Section 2 presents a literature review
on the IoT architectures, task offloading, node selection mechanisms and frameworks for
emerging, advanced IoT applications and their energy management. In Section 3, we
elaborate on the research challenges in the node selection in heterogeneous IoT architecture
whilst achieving the energy efficiency. In Section 4, we explore a heterogeneous IoT network
architecture and present a comprehensive description of a suggested optimal node selection
framework. Our formulation includes mathematical details and aims to achieve energy-
efficient operation within the IoT network. Section 5 of the paper presents an assessment of
the proposed framework and Section 6 presents the comments on the entire paper and the
proposed framework while the concluding remarks can be found in Section 7.

2. Background on IoT Architectures and Energy Management

This section provides a concise overview of past research on IoT architectures and
associated frameworks, which have been designed to facilitate diverse use cases and
enhance energy efficiency.

2.1. IoT Architectures

IoT architectures have mainly used three computation layers, edge-fog-cloud for
on-demand services, and to provide shared and distributed resources to diverse IoT appli-
cations. IoT applications are used in many sectors, including defense, healthcare, smart
cities, industrial automation, and farming. Each of these applications use a single layer
for computation depending on the application requirements [9]. Figure 1 shows diverse
applications used in each layer. By utilizing pooled, virtualized, and scalable resources,
as well as flexible services and scalable storage, the cloud layer facilitates distributed
computing, which is bolstered by managed and controlled computing power [2]. The fog
layer, which offers virtualized, flexible, and adaptable operation of computation resources,
network management, and repository services, is a modern layer that is located closer to
the user than the cloud. It is gaining traction as an emerging technology and is expected
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to play a crucial role in the future of computing [10]. It mainly serves to reduce latency
and conserve bandwidth, with network security enhancement for IoT applications. On the
other hand, edge computing is an emerging computational technology where the compu-
tation is carried out in the vicinity of the data sources [2,10]. Edge computing provides
computational potential at the edge, to the increasing IoT devices and provides a solution
to the limitation of cloud computation in processing the data closer to the user, enabling
low latency communication.

Figure 1. Edge-Fog-Cloud layers in IoT.

2.2. Task Offloading and Node Selection in IoT networks

With the availability of a limited amount of computation and communication resources
in an IoT architecture, it is necessary to implement methods for achieving optimal utilization
of resources and performance optimization. With an exponential increase in the IoT requests
from billions of IoT devices, we would require task offload and sharing mechanisms to
manage the available resources. Therefore, efficient task offloading, load balancing, and
resource-sharing mechanisms have been investigated to offload the tasks and select the
most efficient resources for processing, while achieving the required QoS, reliability, and
energy efficiency.

2.2.1. Task Offloading

Task offloading mechanisms in IoT architectures emphasize sharing the load of the
IoT requests coming in from various IoT use cases, among the resources available across
multiple computation layers. It ensures that there is efficient utilization of local resources
and the resources available nearby, with the minimum energy usage for transmission [11].
In [12,13], researchers have suggested switching off/on device techniques in fog nodes
for task offloading, which would help save energy. The primary focus of an efficient task
offloading mechanism would be on balancing the tasks among available computational
resources. Hence, we need to consider load balancing for data management in the edge-
fog-cloud layer, to provide the anticipated quality of services. Load balancing algorithms
are also termed as task scheduling and task offloading algorithms. In load balancing
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algorithms, the cluster technique and bee colony have been used to decrease the load of the
system with the usage of virtual machines [14]. Several traditional optimization techniques,
including ACO, for load balancing, are also proposed to balance the load in smart grid
cloud computing systems [14]. Further, ACO and particle swarm optimization (PSO) are
also used to effectively load balance IoT tasks at the fog nodes under constraints including
communication cost and response time [14]. Edge computing deployment can be achieved
using a mobile resource-sharing framework that relies on mobile edge servers wherein the
edge resources could be shared by multiple IoT devices [15]. These frameworks that focus
on task offloading and load balancing emphasize reducing the resource utilization and load
at a single layer and lack consideration of all the computation layers.

2.2.2. Node Selection

The location of the nodes is critical for both resource allocation and ensuring that
end users’ QoS requirements are met. Different proposals reported mechanisms for fog
node placements. For example, the fog node placement framework has been proposed
in [16] in which traffic aggregation is used to optimize the number of fog nodes deployed
and minimize latency. The author also identified that it would not be ideal to store all the
locations of fog nodes and iterate the list to select each fog node every time a request comes
in. Another critical factor we need to consider is the active node selection, which is vital in
resolving issues like resource allocation, network lifetime, and data integrity.

The optimal fog node selection can also meet low latency demands and identify
anomalies in IoT networks. For example, authors in [17] proposed an unsupervised machine
learning-based mechanism incorporating k-means clustering with Principal Component
Analysis (PCA) for selecting nodes for meeting latency requirements. In [18], resource
utilization in the fog-edge layer was achieved using a profitable resource allocation scheme.
The number of nodes to process a request was decided using optimal node placement at
the fog layer. Batch processing of application placement in concurrent IoT applications in
fog/edge environments using the memetic algorithm was proposed in [19]. The authors
showed that the proposal minimized the execution time and energy consumption of IoT
applications. To place the most popular service as close to the user as possible using the
fog layer under the constraint of minimizing latency was proposed in [20,21]. Hence to
achieve this, user mobility pattern prediction and migration using virtual machines was
used for optimized request placement in the fog. In fog IoT architecture, path selection
optimization was achieved by breaking down application based on platform as a service
(PaaS) into components among fog and cloud layer in [7]. By using control parameters
like deadline, threshold capacity, cost and latency, virtual network functions (VNF) was
implemented via application graphs. In [22] , the Q-learning-based reinforcement learning
method with ascendant gradient was used for node selection in a fog-cloud IoT architecture.
The allocation was accomplished without using any preceding information about the
system and allocating the widely distributed resources under control parameters like
average request arrival rate, transfer rate, job size, process proportion spread. Most of
the research on fog-based IoT architectures has focused on optimizing a specific QoS
metric, and the optimization technique used for enhancing the performance of the IoT
architecture is very specific to an IoT application use cases. As categorized in the above
section, most researchers have focused on task offloading and node selection because
of the limitations on the availability of resources and an exponential increase in data
being generated and requests coming through. The researchers have emphasized various
IoT architectures at different layers to meet the resource requirements. The research in
resource allocation and node selection has highlighted energy efficiency, bandwidth, and
task scheduling as objective functions and has used the Markov determination procedure,
poly-time algorithm, Markov decision process, Q-learning based reinforcement algorithm
with control parameters like threshold, capacity, cost, latency, data rate, average request
arrival rate, transfer rate, job size, and CPU capacity. For fog-based node selection and
application placement, the researchers have emphasized path selection, collating fog nodes
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and optimized service placement as objective function using methodologies like linear
programming, ifogsim, icloudsim, cloudify, and control parameters like deadline threshold,
cost, data rate, latency, network usage, and energy consumption.

In the Edge Computing (EC)-based IoT architectures, it is observed that a system
with more EC performs better compared to a system with less EC [23], but the usage
of static resources increases the cost of running IoT services too. It is also identified that
another significant challenge in fog computing and edge computing-based IoT architectures
is the optimal allocation of nodes for workload management to meet the Service Level
Agreement(SLA) and QoS parameters. An optimal node selection framework has been
introduced by authors based on the usage of all three layers cloud, fog and edge in an IoT
architecture [24].

2.3. Energy Management in IoT Architectures

A scalable IoT architecture would be required to process the IoT request from billions
of IoT devices, which would incur massive energy usage. Further, the increasing energy
demand, exponential increase in energy cost, and environmental impact have diverted
end-users and utility companies to focus on energy management in IoT architectures.
For reducing and managing the energy consumption in the IoT architectures, researchers
have proposed different techniques. For example, the authors in [25] evaluated the fog
node selection methods for fog-based IoT architecture such as random selection, shortest
estimated buffer, and shortest estimated latency to efficiently select the fog nodes for data
transmission and thus reduce the overall energy consumption. To address the challenges of
energy consumption in an IoT network based on sensor nodes, a task allocation based on
clustering techniques have also been proposed [26]. The proposed framework enhances
network lifetime and minimizes energy consumption by balancing task allocations.

In [27], authors proposed a joint offloading decision and resource allocation algorithm
based on deep learning for addressing the problem of fog computation offloading under
QoS, like delay and energy. In [28] authors proposed to use a poly-log algorithm to minimize
the energy consumption in an edge layer-based IoT architecture. The most energy-efficient
and least delay-restricted resource was allocated from the edge layer for efficient application
placement and processing. In [4,5,28,29], energy consumption was used as one of the control
parameters for application placement in fog and edge-based IoT architectures. In [4,5,28,29]
authors have proposed breaking the application into components and use techniques like
module mapping, poly-log, placement and scheduling algorithms to efficiently place the
various application modules at optimal layers for processing.

Table 1 summarizes research undertaken in node selection using an energy-aware
approach, emphasizing architectures like device-to-device, device-to-fog, fog-to-fog, fog-
to-cloud, edge-cloud with the target as sensor node, fog node, IoT device. The critical
problems discussed were cooperation among sensor nodes to transfer the task to fog nodes,
selecting a suitable node, select a dumping device based on various parameters like energy,
popularity, workload; and different performance metrics used were the amount of energy
saved at the node, amount of energy consumed, delay, queue length, service time. To make
the architecture more energy efficient, the researcher has focused on usage of sensor nodes,
fog nodes, or user equipment. The critical problems the researchers focused on was finding
the shortest path, location optimal location for nodes, improve internal communication
using performance metrics like the amount of energy saved at the node, amount of energy
consumed, delay, latency, and load balance.
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Table 1. Comparison of Energy optimization techniques in IoT architectures.

Ref. Problem Technique Control
Parameters Outcome

[6]

Selecting radio frequency
based visible light

communication as an
access point and meet the

required QoS.

Markov
determination
procedure and

replay of experience
post determination
and reinforcement

learning
methodology

Usage status of
sub channel,

quality,
application

types

Achieved energy
efficiency with

required data rate
via network and

sub channel
selection

[27]
Allocation of energy
efficient and delay

restricted resource in fog

Deployment of
application using

Poly-time algorithm
Delay Energy and time

optimization

[30]

Fog computing being
geographically distributed

near end-users and
restricted to sufficient

services because of resource
limitations

Linear
programming

Low rental cost,
minimum data

Resource
optimization

using collation of
fog nodes and
deployment of

virtual machine

[4]

Deployment location for
resource and application
component in cloud-fog

environment

Resource
management layer
using application

placement and
scheduling

Latency,
network

congestion,
energy

consumption
and cost

Application
placement

optimization in
IoT using edge
and fog based
architecture

[5]

Selection of suitable
location for application

module in fog-edge
environment

ILP, analytical
modelling, resource

management
framework

Delay, latency,
energy usage

Module placement
optimization in

IoT using fog and
edge based
architecture

[29]
Ideal location in fog-cloud

environment for
application component

Module mapping
algorithm

Delay, network
usage,energy

Module placement
optimization in

IoT using fog and
cloud based
architecture

[28]

Suitable location in
mobile-edge clouds for

application or workload
processing

Online
approximation

algorithms with
polynomial-
logarithmic
(poly-log)

competitive ratio for
tree application

graph placement

Latency, energy
consumption,

resource
utilization

Workload
placement

optimization in
IoT using edge

cloud based
architecture

However, for energy integration into an IoT architecture landscape, QoS metrics from
communication layer as well as computation layer need to be considered for easier integra-
tion and efficient operation. Thus, the convergence of communication and computation
must be taken into account using three layers, edge-fog-cloud, which would help us achieve
the best of all the technologies available [31].

Network and Application QoS Constraints

We also need to consider the network and application QoS requirements to manage
energy. Advanced IoT use cases like smart cities, intelligent transportation systems, smart
health, Industry 4.0/5.0, and autonomous vehicles have a constraint on device cost, cost
of deployment, network and area coverage, privacy, operating life of battery, security,
and the number of supported devices. Most the IoT application can be supported via
communication technologies that span from low-range wireless networks such as Wi-Fi,
ZigBee, and Bluetooth to wide-area wireless networks including 4G and 5G [32–35].
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The IoT use case-specific requirements vary with the application type and are summa-
rized in Table 2. For example, the smart grid use cases need 5 Mbps–75 Mbps bandwidth
and data transfer rates around 1Mbps and latency of 1 milliseconds-200 milliseconds de-
pending on their sub-applications [1,36]. The autonomous vehicle use case requires quick
processing of surrounding videos with very high data transfer rates (bandwidth between
512–1024 Gbps) and in close proximity of the end-users and ensuring the deployment of
control messages with the least latency, which should be under a few milliseconds [36].
Advanced health IoT use cases consist of sub-applications such as remote health and remote
robotic surgery, with data rate requirements in range of 5 Gbps–10 Gbps (bandwidth be-
tween 5 Gbps–512 Gbps). The remote health application does not require ultra-low latency
in contrast to remote surgery applications, which involve remote implant monitoring and
remote robotic surgery. While considering various IoT use cases, we have focused on only
the IoT architecture and the requirements of the smart IoT use cases and not concerned
about the type of IoT devices connected at the edge layer. We have only considered IoT
devices as the devices from which the IoT requests are being generated. Though advanced
communication technologies such as 5G could meet many IoT use-case requirements, the
crucial challenge of supporting the exponentially increasing IoT devices and use cases still
sways around. Thus, achieving complete convergence of communication and computation
technologies would be necessary to defeat the communication infrastructure’s challenges.

Table 2. QoS metrics of IoT use-cases and its sub applications.

Metric Value

Smart Grid

Delay between devices 10 ms–1 ms

Latency(end-to-end) 1 ms

Teleprotection ≥10 ms

Synchrophasor applications ≈20 ms

SCADA and VoIP applications 100–200 ms

Smart metering and others upto few seconds

Bandwidth/throughput
5–10 Mbps one control
area and 25–75 Mbps for
inter control

Data rates/transmission rate 56 kbps–1 Mbps

Reliability/availability 99–99.99%

Autonomous Vehicle

Delay between devices ≈1 ms

Latency (end-to-end) ≈1 ms

Bandwidth/throughput 512 Gbps–1024 Gbps

Data rates/transmission rate 10–24 Gbps

Reliability/availability 99.99–100%

e-Health

Delay between devices 1 ms–25 ms

Latency (end-to-end) 1 ms–250 ms

Bandwidth/throughput 5 Gbps–512 Gbps

Data rates/transmission rate 5 Gbps–10 Gbps

Reliability/availability 99.99–100%

3. Research Challenges and Proposal

The literature review presented in Section 2 highlights the research opportunities
to provide enhanced assistance to the emerging advanced IoT use cases through full
convergence of computation and communication technologies.
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IoT architectures are predominantly designed with a focus on the end user, and
with one specific constraint related to the IoT application. These architectures will not
be adequate for encompassing all the IoT use cases with large-scale deployments for
supporting the upcoming billions of IoT devices. Therefore, developing an IoT network
architecture to meet the challenges of flexibility, feasibility, scalability, interoperability, and
heterogeneity is crucial for synchronous and uninterrupted operation. The simulation and
validation presented for the IoT architectures are limited by QoS parameters such as latency,
bandwidth, resource capacity, and energy. Usage of numerical data instead of real-time
data limits the evaluation process. Hence, exploring the efficiency and performance of such
IoT architectures under QoS constraints such as delay, energy efficiency, reliability, service
placement, and load balancing, is valuable.

The majority of the mechanisms for task offloading, energy management, and node
selection described earlier focused on service placement, optimal path selection, minimizing
the time for processing, reducing load by collating tasks together, or by collating the nodes
to perform batch processing at either the cloud or fog layer. The earlier research has
addressed edge computation using mobile edge devices as edge servers or fog nodes as
edge servers. However, the optimal node selection using all three layers for computation
needs further investigation in addition to the usage of stationery edge servers for processing
the advanced IoT use cases. Another critical challenge is the efficient energy utilization in
the IoT architectures. Energy efficiency is partially addressed in earlier research, but only
in a solitary IoT use case with limited usability. Using all the three layers for computation
adds extra complexities to energy usage. Hence, the efficient deployment of IoT resources
focusing on energy efficiency needs further investigation.

Further, the convergence of communication and computation would be critical in
providing real-time dynamic service for advanced IoT application use cases. Therefore,
during the design phase of the IoT architecture, advanced communication technologies like
5G/6G, network slicing, and software-defined networks(SDN) need to be considered at the
data layer, application layer, and access layer [8,37,38]. In addition, the usage of edge, fog,
and cloud layers would enable collating, handling, and storage of the data at these layers
dynamically in real-time.

With increasing IoT devices and an expected increase in the number of IoT requests,
it would require optimal node selection for processing each request, received at the edge-
fog-cloud layer. The selection of nodes for the IoT application would also be limited
by the QoS metrics and network constraints of the communication architecture. An IoT
network architecture with advanced communication and computation technologies can
be considered to overcome the challenges. However, the next challenge in using such
an architecture would be the optimal node selection mechanism to process IoT requests
considering energy-efficient and cost-effective deployment of IoT resources. Hence, this
paper proposes an optimal framework for node selection to process IoT requests at nodes
with a varying number of server capacities and with varying network and application
requirements. The framework can identify optimal nodes with the minimum energy usage
for processing the IoT request at all edge-fog-cloud layers.

4. Optimal Node Selection Framework

Our proposal takes into account a comprehensive IoT network architecture that en-
compasses edge, fog, and cloud as computation layers to cater for diverse, advanced IoT
applications. The IoT network architecture considered is illustrated in Figure 2. In this
architecture, all the nodes at three layers have been deployed with a varying number of
servers with variable resource capacity. At the top of the architecture is the cloud layer,
responsible for processing IoT requests with minimal QoS requirements. The middle tier is
the fog layer, consisting of fog nodes that perform collation, processing, and data analysis
for advanced IoT use cases such as smart cities, smart grids, and autonomous vehicles. The
final layer is the edge layer, comprising base stations that serve as edge servers for faster
processing of IoT use cases that have strict QoS requirements, including low latency. The
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edge servers have been deployed closer to the end user for quick access to IoT requests.
For faster and quick processing of most of the IoT requests, we have considered that each
node at fog and edge layers are deployed with a custom number of servers. To achieve
energy-efficient operation, an optimal node selection entity can be designed and deployed
at the edge layer to select and process each IoT request from different IoT devices, taking
advantage of all three layers of the IoT network architecture. The node selection entity
would be designed to verify that the application-specific QoS and IoT architecture-specific
network constraints are met for each IoT request. Our optimal node selection framework
considers the energy consumption of different components at all three layers. For optimized
energy management, the costs of energy consumption involved in activating and running
the servers/nodes at fog and edge layer are considered. Further, a steady energy cost of
processing the IoT request at cloud layer is considered because the actual cost of processing
a request at cloud layer would be complex to calculate due to the complex implementation
of the cloud architecture. The cost component for each of the layers is derived from [39].
Once we run the optimal node selection framework, the IoT request will be directed to an
optimally selected node for processing. In the next subsection, we elaborate on the mathe-
matical model used in our proposed optimization framework for optimal node selection.
This framework is an extension of the framework introduced in [24], which lacked the
flexibility of the number of servers deployed at each node and consideration of energy
component in the optimization framework. The limitation of our framework is that we
have not considered mobility of the IoT request after it has been received at a particular
node at the edge layer. Hence our framework emphasizes the fact that once an IoT request
is received at a particular node at the edge layer, the IoT request is steady and cannot be
mobile or move around to different nodes at the edge layer while it is being processed.

Figure 2. IoT network architecture.

4.1. Optimization Framework

It is crucial to have an optimal node selection mechanism for optimal resource handling
and efficient energy management in IoT networks with diverse use cases. The proposed
framework aims to minimize the overall energy usage of the entire IoT architecture when
processing all the IoT requests received at the edge layer within a predetermined time frame.
It takes into account the varying number of servers with different capacities deployed at
each node in the edge-fog-cloud layer architecture. We have also considered a finite energy
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cost utilized for running a single server at each node in edge-fog-cloud layers [39]. A finite
energy cost is also defined and considered for running a node at the fog and edge layer [39].

Our framework also considers active and inactive nodes. Active nodes mean the
nodes are currently active and are being used. The inactive node denotes that the node is
connected to the network, but none of its servers are activated or running. Making unused
computation nodes inactive, the energy consumption in the entire IoT architecture can be
reduced [24]. Moreover, the mechanism of activation and running of a node and server is
controlled by a defined cost involved in activating and running the node and the server
and various QoS metrics. With the usage of cost factor and QoS requirements like resource
availability and latency, our optimization framework balances the trade-off for processing
the IoT request between activation of an inactive node against an already active node. In
addition, the framework simultaneously balances the trade-off between usage of a server
at an already active node against usage of a server at an inactive node for processing the
IoT request.

The objective of the frameworks is to minimize the energy cost utilized for processing
the incoming IoT request at all three layers. In addition, the framework also ensures the
satisfaction of each and every demand of (1) IoT applications and their use cases, like delay,
bandwidth, latency, and resource processing capacity and (2) communication architecture,
like bandwidth availability, delay supported, and connectivity, are satisfied. Integer Linear
Programming (ILP) is used for developing the node selection optimization framework. ILP-
based optimisation frameworks were widely used in network optimisations [40,41]. The
next subsection clearly explains different sets, various parameters, and variables defined
and used in the proposed node selection optimization framework. We further emphasize
the proposed objective function and its respective constraints.

4.2. Parameters and Sets

We incorporate diverse sets and parameters to depict the requirements of various
IoT applications and data related to networks, computing nodes, their locations, and
connectivity.

4.2.1. Sets

• Let E = 1,. . . ,nE: denotes a set of all nodes to be considered the edge layer
• Let F = 1,. . . ,nF: denotes set of all nodes to be considered at the fog layer
• Let C = 1,. . . ,nC: denotes set of all nodes to be considered at the cloud layer
• Let Lo = 1, . . . , nL: denote the set of all the nodes collectively at all three layers,

Lo = E ∪ F ∪ C
• Let Es = 1, . . . , se : denote set of edge servers
• Let Fs = 1, . . . , s f : denote set of fog servers
• Let Cs = 1, . . . , sc : denote set of cloud servers
• Let jobn: 1, . . . , job List all IoT requests/jobs from various IoT use cases

4.2.2. Network Parameters

• nC: The overall count of nodes installed at the cloud layer.
• nF: The overall count of nodes installed at the fog layer
• nE: The overall count of nodes installed at the edge layer
• nL: The overall count of nodes installed in the IoT network
• se : Maximum number of edge servers that can be deployed at single edge node
• s f : Maximum number of fog servers that can be deployed at single fog node
• sc: Maximum number of cloud servers that can be deployed at single cloud node
• Le[l]: Parameter denoting location l where an edge node e is installed
• L f [l]: Parameter denoting location l where a fog node f is installed
• Lc[l]: Parameter denoting location l where a cloud node c is installed
• L[l]: Parameter denoting location l where a node has been deployed in the IoT network

graph
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• Ne[E]: Parameter denoting the number of servers installed at every node in edge layer
• N f [F]: Parameter denoting the number of servers installed at every node in fog layer
• Nc[C]: Parameter denoting the number of servers installed at every node in cloud

layer
• NEsi[x][y] : Boolean parameter, NEsi[x][y] = 1 if xth nodes has an initially deployed

active server at yth position , NEsi[x][y] = 0 otherwise, where y ∈ Es and x ∈ E
• NFsi[x][y] : Boolean parameter, NFsi[x][y] = 1 if xth nodes has an initially deployed

active server at yth position , NFsi[x][y] = 0 otherwise, where y ∈ Fs and x ∈ F
• NCsi[x][y] : Boolean parameter, NCsi[x][y] = 1 if xth nodes has an initially deployed

active server at yth position , NCsi[x][y] = 0 otherwise, where y ∈ Cs and x ∈ C
• Ren[l]: Remaining resource/processing capacity at the specific location denoted by l,

of an edge node
• R f n[l]: Remaining resource/processing capacity at the specific location denoted by l,

of a fog node
• Rcn[l]: Remaining resource/processing capacity at the specific location denoted by l,

of a cloud node
• Res[l]: denotes the resource/processing capacity of each server at an edge node in the

network at location l
• R f s[l]: denotes the resource/processing capacity of each server at a fog node in the

network l
• Rcs[l]: denotes the resource/processing capacity of each server at a cloud node in the

network location l
• Be[l]: Bandwidth supported for communication at the specific location denoted by l,

of an edge node
• B f [l]: Bandwidth supported for communication at the specific location denoted by l,

of an fog node
• Bc[l]: Bandwidth supported for communication at the specific location denoted by l,

of an cloud node
• d[x][y]: Total delay between the xth node and yth node in the IoT network
• g[x][y]: Boolean parameter denoting connectivity among nodes in the IoT network

architecture, g[x][y] =1 on a condition that connectivity exists among xth node and yth

node else 0
• Cen : Cost of activating an inactive E node for processing
• C f n:Cost of activating an inactive F node for processing
• Ces: Cost of activating an inactive server at edge node
• C f s: Cost of activating an inactive server at fog node
• Cc: Cost of running a job at cloud

4.2.3. IoT Application Job Request Parameters

• job: denotes the maximum count of IoT request/jobs
• jr: denotes resource/processing requirement of an IoT request
• jb: denotes bandwidth requirement of an IoT request
• jl : denotes latency requirement of an IoT request
• jo: denotes origin node of an IoT request

4.3. Variables

• e[j][e] : A Boolean variable, takes the value 1 if the jth job is assigned to the eth edge
node, and 0 otherwise, where e ∈ E and j ∈ jobn

• f [j][ f ] : is 1 if jth job is assigned to f th fog node, and 0 otherwise, where f ∈ F and
j ∈ jobn. This is a Boolean variable.

• c[j][c] : is 1 if jth job is assigned to cth cloud node, and 0 otherwise, where c ∈ C and
j ∈ jobn. This is a Boolean variable.

• Ea[e]: is Ea[e] = 1 if eth is an active edge node, Ea[e] =0 otherwise where e ∈ E.
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This is a Boolean variable that represents current active edge nodes.
• Fa[f ]: is Fa[f ] = 1 if f th is an active fog node, Fa[f ] = 0 otherwise where f ∈ F. This is a

Boolean variable that represents current active fog nodes.
• Ca[c]: is Ca[c] = 1 if cth is an active cloud node, Ca[c] = 0 otherwise where c ∈ C. This

is a Boolean variable that represents current active cloud nodes.
• NEs[e][x] : Boolean variable, NEs[e][x] = 1 if eth nodes has an active server at xth

position , NEs[e][x] = 0 otherwise, where x ∈ Es and e ∈ E
• NFs[ f ][x] : Boolean variable, NFs[ f ][x] = 1 if f th nodes has an active server at xth

position , NFs[ f ][x] = 0 otherwise, where x ∈ Fs and f ∈ F
• NCs[c][x] : Boolean variable, NCs[c][x] = 1 if cth nodes has an active server at xth

position , NCs[c][ f ] = 0 otherwise, where x ∈ Cs and c ∈ C

4.4. Objective Function of the Framework

The framework aims to minimize the objective function, which is the cost of energy
utilized for processing IoT requests in the IoT network architecture. The framework’s
objective function, as stated in Equation (1), aims to minimize overall energy cost across
the edge, fog, and cloud layers, when processing new IoT requests. The objective function
considers the cost of activating a new node at fog and edge layers, C f n and Cen, respectively.
The cost function also considers the cost of activating a server at an active node in fog and
edge layers, C f s and Ces, respectively. Further, it also consists of the cost of running a job at
the cloud layer, as the nodes will always be active.

Minimize(∑
xεE

(Ea[x]− Le[x]) ∗ Cen+

∑
xεE

∑
sεEs

(NEs[x][s]− NEsi[x][s]) ∗ Ces+

∑
yεF

(Fa[y]− L f [y]) ∗ C f n+

∑
xεF

∑
sεFs

(NFs[x][s]− NFsi[x][s]) ∗ C f s+

∑
zεC

(Ca[z]− Lc[z]) ∗ Cc) (1)

4.5. Constraints

The framework minimizes the cost of energy used for processing the IoT request whilst
satisfying the network and IoT application use case demands. This subsection presents the
constraints that pertain to these requirements and demands.

4.5.1. Network Constraints

• In the IoT architecture, allocating a new job/request to a node must be restricted so
that each IoT job is processed solely at a single node. This constraint is denoted in
Equation (2) wherein the variables e, f , j are used to correspondingly record the values
of every job assigned to each edge-fog-cloud location.

∑
xεE

e[j][x] + ∑
yεF

f [j][y] + ∑
zεC

c[j][z] = 1, ∀ j in jobn (2)

• To restrict the overall count of currently active nodes in the IoT network architecture,
we have defined a constraint in our framework to ensure that the count of active nodes
does not exceed the total count of nodes deployed at each layer. This is highlighted in
Equations (3)–(5), where the maximum allowable number of nodes at each layer are
denoted by nE, NC, nF and active nodes are denoted by Ea, Fa, Ca at edge, fog, and
cloud layers, respectively.

∑
lεE

Ea[l] ≤ nE (3)
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∑
lεF

Fa[l] ≤ nF (4)

∑
lεC

Ca[l] ≤ nC (5)

• A constraint is required to restrict the count of servers activated at each node, ensuring
that the number does not exceed the total count of servers installed at the correspond-
ing layer. This constraint is defined in Equations (6)–(8) where Ne, N f , Nc are the total
count of servers installed at each node at edge, fog, and cloud layers, respectively.

∑
sεEs

NEs[l][s] ≤ se[l], ∀ l ∈ E (6)

∑
sεFs

NFs[l][s] ≤ s f [l], ∀ l ∈ F (7)

∑
sεCs

NCs[l][s] ≤ sc[l], ∀ l ∈ C (8)

4.5.2. Application Constraints

• For verifying the delay requirement for IoT use cases and the network connectivity
among the nodes where the request has originated and the optimal node is selected
for processing the request, a constraint has been defined using Equations (9)–(11). The
delay and the network connectivity for all the layers cannot exceed the latency of the
IoT job request.

e[j][a] ∗ (g[jo[j]][a + nC + nF] ∗ (d[jo[j]][a + nC + nF])

<= jl [j] , ∀ j in jobn , ∀ a in E (9)

f [j][a] ∗ (g[jo[j]][a + nC] ∗ (d[jo[j]][a + nC])

<= jl [j] , ∀ j in jobn , ∀ a in F (10)

c[j][a] ∗ (g[jo[j]][a] ∗ (d[jo[j]][a]) <= jl [j] , ∀ j in

jobn , ∀ a in C (11)

• For each request allocated to a node, it is essential to ensure that the allocated node
has enough leftover capacity for processing the job, whether at the edge, fog, or cloud
layer. The remaining capacity at each node at edge-fog-cloud layer is denoted by
Ren, R f n, Rcn. The Equations (12)–(14) assist in upholding the constraint by veri-
fying that the difference between the resource capacity of a node and the resource
requirement of a job is non-negative across all three layers.

Res[l] ∗ Ne[l]− Ren[l]− ∑
jεjobn

e[j][l] ∗ jr[j] ≥ 0, ∀ l in E (12)

R f s[l] ∗ N f [l]− R f n[l]− ∑
jεjobn

f [j][l] ∗ jr[j] ≥ 0, ∀ l in F (13)

Rcs[l] ∗ Nc[l]− Rcn[l]− ∑
jεjobn

c[j][l] ∗ jr[j] ≥ 0, ∀ l in C (14)

• We formulate a constraint to ensure that the available bandwidth supported by
the node is adequate to satisfy the job’s bandwidth requirement, considering the
count of servers installed at each node in the edge-fog-cloud layer. It is defined in
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Equations (15)–(17) ,respectively. To adhere to the constraint, we subtract the job’s
required bandwidth from the node’s supported bandwidth and ensure that the result
is always a positive integer at the edge-fog-cloud layer.

Be[l]− ∑
jεjobn

e[j][l] ∗ jb[j] ≥ 0, ∀ l in E (15)

B f [l]− ∑
jεjobn

f [j][l] ∗ jb[j] ≥ 0, ∀ l in F (16)

Bc[l]− ∑
jεjobn

c[j][l] ∗ jb[j] ≥ 0, ∀ l in C (17)

4.5.3. Limits

• To ensure that the number of jobs allocated to a location at each layer does not exceed
the number of activated nodes at that layer, a constraint is required. Equations (18)–(20)
are used to define this constraint in the edge, fog, and cloud layers. This constraint
guarantees that when an IoT request is assigned to either of the nodes e, f , c, the
corresponding nodes Ea, Fa, Ca are active.

e[j][l] ≤ Ea[l], ∀ j in jobn ∀ l in E (18)

f [j][l] ≤ Fa[l], ∀ j in jobn ∀ l in F (19)

c[j][l] ≤ Ca[l], ∀ j in jobn ∀ l in C (20)

• A constraint is necessary to guarantee that while processing a new IoT request, the
total count of nodes being activated at a specific layer is greater than or equal to the
total count of activated nodes installed initially. Equations (21)–(23) are used to define
this constraint in the edge, fog, and cloud layers. These equations ensure that the total
count of activated nodes in each layer, denoted by Ea, Fa, and Ca, respectively, can be
equal to or greater than the total count of nodes initially deployed and activated at the
respective layer

Ea[l] ≥ Le[l], ∀ l in E (21)

Fa[l] ≥ L f [l], ∀ l in F (22)

Ca[l] ≥ Lc[l], ∀ l in C (23)

• A constraint is necessary to ensure that the total count of servers being activated at each
node at a specific layer for processing the incoming IoT job requests does not exceed
the total count of nodes already active at the respective layer. Equations (24)–(26) are
used to define this constraint in the edge, fog, and cloud layers, ensuring that the
activated servers at the edge (NEs), fog (NFs), and cloud layer (NCs) cannot exceed
the count of nodes already installed and active at each layer.

NEs[l][s] ≤ Ea[l], ∀ l in E, ∀ s in Es (24)

NFs[l][s] ≤ Fa[l], ∀ l in F, ∀ s in Fs (25)

NCs[l][s] ≤ Ca[l], ∀ l in C, ∀ s in Cs (26)
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• To ensure that the number of servers activated at each node in a layer for processing
the incoming IoT requests is not greater than the number of nodes already active at
that location, a constraint is required. Equations (27)–(29) make sure the constraint
is satisfied where the server activated at the edge (NEs), fog (NFs), and cloud (NCs)
layer can be greater than or equal to the number of active servers during the initial
deploymentNEsi, NFsi, and NCsi, respectively.

NEs[l][s] ≥ NEsi[l][s], ∀ l in E, ∀ s in Es (27)

NFs[l][s] ≥ NFsi[l][s], ∀ l in F, ∀ s in Fs (28)

NCs[l][s] ≥ NCsi[l][s], ∀ l in C, ∀ s in Cs (29)

5. Framework Evaluation

In this section, we assess the framework under diverse configurations. The proposed
framework is evaluated using IBM CPLEX. Throughout this section, we use network graphs
to present the data sets and optimal solutions of our framework. Therefore, we first use
a sample network graph shown in Figure 3 to explain the notations used in the network
graphs. As shown in the sample network graph, different nodes are deployed at cloud, fog,
and edge layers.

The network graph has active and inactive nodes. An active node is a node that is
available for computation. Though some of the nodes are inactive, the communication
links that connect all the nodes are always active. In the graphs, active nodes are denoted in
green circles, and inactive nodes are denoted in red circles. Each node’s supported resource
capacity and bandwidth are represented by R and B, respectively. Each node is numbered
for easy identification. Most of the nodes are deployed with a single server. However, the
nodes deployed with more than one server are also represented in the graph. For example,
Node 5 has two servers, and therefore, Node 5 is attached to two blue server icons in
Figure 3. The direct connectivity between the nodes at all the layers is represented by a solid
line. The number on the black solid line represents the delay of the corresponding link.

Figure 3. Sample network graph for multi-layered IoT architecture
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In the network graph, the incoming IoT requests are illustrated with different icons
representing the type of IoT request. Each IoT request is numbered and connected to a
node at which they were received or processed with a dotted line. For example, in Figure 3,
the IoT request 1, which is an eHealth application, is received at Node 4 in the edge layer.
For the evaluation, we consider requests from diverse IoT applications, like smart health,
smart city/grid, smart vehicles, and smart factories.

Next, we provide detailed analyses of each experiment and scenarios that we consider
for the framework evaluation and their outcome.

5.1. Optimal Solutions of Experiment 1

Figure 4 illustrates the network data set we consider for experiment 1. The data set
consists of eight edge, five fog, and two cloud nodes deployed at respective layers. The
node number, their respective processing capacity, and the bandwidth supported by the
respective node have been highlighted in Figure 4. There is an energy cost for running
each node and a cost for running a server at each node at the edge and fog layers. We
only consider the cost of executing a job in the cloud, as the cloud nodes will always be
active. The energy costs of activating and running the node and the servers have been
defined using [39]. The energy cost has been normalized for result analysis and a graphical
representation. The cost considered at each node and at each layer, is the cost of running
the switch, the router and the server. The normalized cost is one tenth of the actual cost
incurred at each node at edge, fog and cloud layer. The cost of running the edge and fog
servers at each node is defined as 50 and 30, respectively. The cost of activating an edge and
fog node is 20 and 50, respectively. The cost for executing the job at the cloud node is 90.
The inter-connectivity and latency between the nodes are computed beforehand and saved
in the parameters g and d, respectively. Please note that the energy cost values presented in
the rest of the paper are the normalized energy cost values.

Figure 4. Network configuration of Experiment 1.

The network nodes are deployed in various locations and have varying resource
capacities and bandwidth to be supported. A varying number of servers are also deployed
at each node location. We consider various IoT requests with varying requirements for
evaluation. Each new incoming request is associated with several parameters such as its
computation resource (jr), bandwidth (jb), and latency (jl) requirements, as well as its origin
node (jo). As a result, each new request identified by a unique job/request number j can be
described as "Job j[jr, jb, jl , jo]". The framework is evaluated using four distinct scenarios to
examine its performance under various conditions and request parameters.
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In the initial scenario, we have deactivated node 2 from the cloud layer, node 4 from
the fog layer, and nodes 9 and 10 from the edge layer, leading to 11 active nodes in our
IoT network for computation, with one server deployed at each node. None of the servers
are active during initial deployment, as shown in Figure 4. In this scenario, to assess the
effectiveness of our optimization framework, we consider the case where a low-latency IoT
request originated at edge node 12 and is labeled as Job 1[40, 1000, 10, 12]. Upon applying
our framework to this request, we find that the job can be assigned to the existing active
node 12 at the edge layer without activating any further nodes in the IoT network and
activating only a single server at edge node 12. The total amount of energy used to process
that request is 50. As can be seen in the optimal solution, a single server in Node 12 is
activated to process the request over activating an additional node to process the request.
The dotted lines in Figure 5 represent the chosen node for processing a specific IoT request.

For the second scenario, we consider the same graph as in the above scenario with an
increasing number of incoming IoT job requests. We have three IoT job requests originating
from eHealth, autonomous vehicles, and smart grid applications with varying requirements,
and they are represented as Job 1[40, 1000, 10, 12], Job 2[30, 1100, 6, 13], and Job 3[30, 1100,
65, 13], respectively. The optimal allocation for these three jobs was obtained using the
proposed optimization framework. The optimal allocation is shown in Figure 5. Jobs 1, 2,
and 3 are allocated to edge nodes 12, 13, and 15, respectively, with one server being activated
at the respective locations. The optimal cost of energy used for processing the three requests
is 150. The results show that the total count of active nodes stayed unchanged, indicating
that the framework ensures the processing of the requests with minimal utilization of
resources, nodes, servers, and energy.

For the third scenario, the IoT network graph maintained from scenario 2, with 11
active nodes, was utilized but with an increased number of servers at edge node 13 to two
and the rest of the nodes with a single server each. The received IoT jobs were the same
as in scenario 2, and we utilized our optimization framework to obtain the best allocation
for the jobs. As shown in Figure 5, jobs 1, 2, and 3 were assigned to node 12, node 13, and
node 13, all at the edge layer, respectively, with one server activated at edge node 12 and
both the servers activated at edge node 13, respectively. Moreover, the minimum energy
cost used to process the request was 150, which was the optimal solution. Based on the
result, we can conclude that the number of active nodes remained constant in scenario 3,
indicating that the framework was effective in minimizing the use of servers, nodes, and
energy while processing all the received requests efficiently. Thus with the two servers
deployed at edge node 13 and for processing the IoT requests, the optimization framework,
balanced the trade-off- between activation of new node against usage of the node which
was already active and also the trade-off between activating a new server at an already
active node against activating the server at an inactive node.

In the fourth scenario, we utilize the IoT network graph described in Figure 4 with
11 active nodes, 2 servers deployed at edge node 13, and a single server deployed at all
other nodes. In this scenario, 7 different jobs with specific requirements were received,
labeled as Job 1 to Job 7, each with varying amounts of data, latency requirements, and
destination nodes. Using the optimization framework, the best allocation for jobs (from 1
to 7) was determined. The optimal allocation framework assigned Job 1 to edge node 12,
Job 2 and 3 to edge node 13, Job 4 to fog node 5, Job 5 to fog node 6, Job 6 to edge node
10, and Job 7 to edge node 8. The allocation was based on the framework’s optimization
of resource utilization, such as servers, nodes, and energy. The results show that the
framework was capable of processing different types of jobs with diverse requirements
while using minimal resources. The allocation is visualized in Figure 5, with two servers
activated at edge node 13 and a single server activated at each respective node where the
job was processed. Further, the minimum energy cost incurred in processing the request
was 330, which is the optimal solution. The outcome demonstrates that the number of
active nodes remained constant, implying that the framework effectively processes all IoT
requests while minimizing the use of servers, nodes, and energy.
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Figure 5. Graphical illustration of the optimal solution for Scenario 4.

We have compared the optimal energy cost for scenarios when the optimization
framework was not used to conduct the node selection. When the optimization framework
was not used, the job was allocated to its nearest node and assuming all the nodes were
active and were deployed with a single server. Figure 6 illustrates the comparison results
of scenarios 1,2, 3, and 4. Figure 6a shows the energy cost comparison, and Figure 6b
indicates the total IoT requests received and the range of IoT requests denied in all scenarios.
As we can see from Figure 6a, for processing different IoT requests with the usage of
the optimization framework, the energy costs incurred for scenarios 1, 2, and 3 were
significantly low, compared to the energy cost incurred for processing IoT request without
the optimization framework. Further, in scenario 4, the energy cost incurred to process all
the seven IoT requests with optimization was slightly high in comparison to those without
optimization framework. This was mainly because, when the optimization framework was
not used, three IoT requests were denied, as shown in Figure 6b. When the optimization
framework was used, all the requests were processed by allocating them to available nodes
in the edge-fog-cloud layer that can satisfy the application requirements.

Figure 6. (a) Energy cost comparison with and without optimization (b) Comparison of IoT request
received and denied without usage of optimization, for Scenarios 1, 2, 3, and 4.
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5.2. Optimal Solutions of Experiment 2

In experiment 2, we have considered a more complex network data set with 2 cloud
nodes, 5 fog nodes, and 16 edge nodes. The data set is illustrated in Figure 7. The energy
cost has been normalized for result analysis and a graphical representation. The cost of
running the edge and fog servers at each node is defined as 60 and 30, respectively. The
cost of activating an edge and fog node is 80 and 50, respectively. The cost for executing
the job at the cloud node is 90. We evaluated this data set under five scenarios ranging
from scenario 0 to scenario 4. These five scenarios illustrate different conditions of the IoT
architecture, cost values, and the frameworks used to obtain the allocations.

Figure 7. Network configuration of Experiment 2.

5.2.1. Scenario 0: Optimal Solution

In this scenario, we have considered a three-layered IoT architecture, and all the nodes
in the IoT architecture have limited resources and connectivity/latency between the nodes.
Each new IoT request received by the IoT architecture is defined with a job number and
is illustrated in Table 3. All the IoT requests received at the edge layer are from different
IoT use cases like eHealth, autonomous vehicles, smart grids, and smart factories. We
have considered that we run our proposed optimization framework with normal cost
derived after analyzing the actual power consumption involved in running the edge and
fog layer devices. The incoming 16 jobs are shown in Table 3. The outcome after running
the optimization framework is shown in Figure 8 with dotted lines, which highlights
the allocation of each job/IoT request at the respective node capable of processing the
respective IoT request at either of the layers. The resulting minimized cost after running the
optimization framework was 1100. The optimally allocated nodes for processing each IoT
request with custom requirements is also shown in Table 3. This was the optimal solution
for the complex data set using our optimization framework. If we were to run the above
optimization framework for the same set of IoT requests but with an assumption that all
the nodes were active and have unlimited resources and there is not any limitation on
connectivity/latency, then all the nodes at the edge layer would be utilized to process all
the 16 IoT requests and the cost incurred in processing all the IoT requests would be 1330.
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Table 3. IoT Jobs considered for Scenario 4 and the optimal solution.

Job Number Job Resource
Requirement

Job
Bandwidth

Job
Latency

Job
Origin

Optimally
Selected
Node

1 40 1000 10 12 12

2 30 1100 6 13 13

3 30 1100 65 13 20

4 80 60 8 11 5

5 60 70 100 16 6

6 40 1000 10 16 16

7 30 2000 10 17 17

8 60 80 8 17 4

9 35 2500 65 21 19

10 30 2000 65 23 15

11 25 1500 1 23 23

12 25 1500 110 18 13

13 25 750 6 20 21

14 45 900 60 14 11

15 60 70 100 10 7

16 50 85 100 11 3

Figure 8. Graphical illustration of the optimal solution.

5.2.2. Scenario 1: Cost Sensitivity

We are aware that the cost of deployment of the cloud layer is too high, and it is
not really flexible to manage the nodes at the cloud layer. Hence, in this scenario, we
have emphasized the fact that when the cost of the edge layer or fog layer( usage and
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deployment) is too high, then how the optimization framework performs, allocates the
jobs, and how the overall cost is affected. Hence, we have compared the cost of running
the edge-cloud layer against the fog-cloud layer using their ratios for our considered IoT
architecture with the optimization framework. We ran the optimization framework for
the same set of 16 jobs as shown in Table 3 but with the cost of the fog-to-edge layer ratio
as 1:2 and produced the optimization results. The resultant cost after optimization was
1790, wherein the framework activated the maximum possible fog nodes and the least
amount of edge nodes to meet their requirements. Hence we have used 5 fog nodes and
10 edge nodes with a single server activated and utilized at each node. We re-run the
framework for the same set of 16 jobs as shown in Table 3, but now the ratio of fog to
edge layer was 2:1. The resultant cost after optimization goes down, as most of the IoT
requests were being processed at an edge node and the optimization framework activated
the least amount of fog nodes. Hence we have incurred a total cost of 650 and have used
3 fog nodes and 12 edge nodes with a server activated and used at each node. Figure 9
represents the comparison of the cost sensitivity between the fog layer and edge layer when
the cost ratio was 1:2, 1:1, 2:1, and optimal ratio, respectively. It can be observed from
Figure 9 that when the cost ratio of the fog-to-edge layer was optimal, the cost incurred in
processing the IoT requests using our optimization framework was balanced, and there
was optimal utilization of IoT architecture resources. However, when the cost ratio of the
fog-to-edge layer was 1:1 and 2:1, the cost incurred in processing the IoT requests was low,
the IoT architecture resources was over-utilized at either of the layers, which would not
be beneficial in the long run for the IoT architecture. Hence, we can draw the conclusion
that there should be a balance between the deployment and utilization of the fog layer and
edge layer, and not all IoT requests can be processed by increasing the number of nodes at
either the fog or edge layers, ideally.

Figure 9. Cost sensitivity Analysis for Fog and Edge layer.

5.2.3. Scenario 2: Single Layer Deployed (Either Edge/Fog Layer)

With the layered IoT architecture initially being considered, we have focused on the
deployment of only two layers which are only fog and cloud layer and no edge layer. So
when the same 16 IoT requests described in Table 3 are considered, only 5 IoT request
numbers 4, 5, 8, 15, and 16 would be processed, and the rest of the 10 IoT requests would
be ignored by our optimization framework, as the IoT architecture and the framework will
not be able to meet their requirements. Similarly, later, we considered the deployment of
only two layers which were the edge layer and the cloud layer, and there was no fog layer
in our architecture. With those same 16 IoT requests being received by our IoT architecture,
only 13 IoT requests would be processed, and the other 3 IoT request numbers 4, 5, and
15 ignored by our optimization framework because of the lack of the IoT architecture and
the framework, to meet their requirements. In Figure 10, we have compared the sensitivity
of the layers used against the number of IoT requests processed and a number of IoT
requests denied processing. As we can see from Figure 10, when three layers were used in
an IoT network architecture, all the IoT requests were getting processed by our optimization
framework, while the number of IoT requests denied processing was high when either of
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the fog or edge layer was not used in our IoT architecture. From Figure 11, we can conclude
that the cost incurred in processing all the IoT requests was higher when all three layers,
edge, fog, and cloud, were used. Hence we can conclude that all three layers must be
utilized to make sure all the IoT requests are processed, but we would need to sacrifice cost
incurred while doing so.

Figure 10. Efficiency of request processing against the sensitivity of the layer deployed.

Figure 11. Sensitivity of layer deployed against cost.

5.2.4. Scenario 3: Allocation of IoT Requests on Basis of First Come First Serve (FCFS)

In this scenario, we have considered a three-layered IoT architecture, and no optimiza-
tion framework was deployed, as shown in Figure 7, but all the nodes at all three layers
were always active. Hence, when the 16 IoT jobs/requests described in Table 3 come in,
they would be allocated to either node which was available, and no QoS metrics would
be considered while allocating the IoT requests to the nodes at all the layers. As all 16 IoT
requests were generated at the edge layer, of the 16 IoT requests received, only 13 IoT
requests were executed, considering that each node was active and had infinite resource
capacity and bandwidth to process each request. The IoT requests ignored were IoT request
numbers 6, 8, and 16. In addition, the total cost incurred in processing the 16 IoT requests
was 1230. However, if we consider that each node had limited and custom resource capacity
and bandwidth that is listed in Figure 7 and all the nodes were active, then out of 16 IoT
requests received by the IoT architecture, only 9 IoT requests were processed which are
IoT request numbers 1, 2, 4, 5, 7, 11, 13, 15, 16 and the other 7 IoT requests were denied
processing. Moreover, the total cost incurred in processing the IoT requests was 910. Hence
we can conclude that if there was no usage of optimization framework, then the number of
IoT requests denied processing would be high, and there would be no optimal usage of IoT
architecture resources.

5.2.5. Scenario 4: Allocation Based on Nearest Available Node

In this scenario, we consider a three-layered IoT architecture with no optimization
framework deployed. We have considered the same data set as shown in Figure 7 wherein
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all the nodes were restricted by limited resources and connectivity. When an IoT job/request
was received by our IoT framework, the request would be allocated to the node where
the request was received, and if the node was incapable of processing the request, then
it would be allocated to the nearest immediate adjacent node available. If the adjacent
node was inactive, it will be activated immediately to process the request. Hence, when the
16 IoT jobs/requests described in Table 3 were received by our IoT framework, IoT request
numbers 1, 2, 4, 6, 7, 8, 11, 13, 15, 16 were processed, and IoT request numbers 3, 5, 9, 10,
12, 14 were denied processing, as the nodes were not capable to process them. The total
cost incurred by the framework was 830. Now, if we were to consider that all the nodes
in the IoT architecture were always active and have unlimited resources to process each
IoT request received. Hence, with the same incoming 16 IoT jobs/requests for the same
data set described in Figure 7, the IoT architecture processed all the 16 IoT requests, and
the total cost incurred was 1180.

In Figure 12, we have compared the cost incurred for processing the IoT requests for
scenarios like the optimal solution, nearest available node, and FCFS with limited and
unlimited resources, respectively. We can see from Figure 12, that the cost incurred for the
optimal solution with limited resources is average, and the least cost is incurred for the
nearest available node. In addition for unlimited resources, the highest cost is incurred
for the optimal solution. However, when we compare the number of IoT requests denied
processing in Figure 13 for the same set of scenarios, it can be observed that it is zero
for the optimal solution with both limited and unlimited resources while it is higher for
other scenarios. Thus from Figures 12 and 13 we can conclude that the best results are
achieved for an optimal solution where the cost is average, and all the IoT requests are
getting processed too.

Figure 12. Cost comparison of Scenarios with unlimited and limited resources.

Figure 13. Scenario comparison with unlimited and limited resources against number of IoT request
denied processing.

Based on the assessment above, it can be inferred that the examined IoT network
structure, in conjunction with the ILP framework, can efficiently distribute requests from



Sensors 2023, 23, 6039 24 of 27

diverse modern IoT use cases, like smart grids, e-Health, and autonomous vehicles. This is
accomplished while minimizing energy costs and fulfilling both the scenarios constraints
and communication limitations. Since integer linear programming cannot be solved in
polynomial time, we utilized a CPLEX programming solver to determine solutions across
diverse scenarios of an IoT network. The time taken to solve and produce a solution
in CPLEX is heavily influenced by the dataset size and the computational ability of the
machine executing the proposed framework. Consequently, in further research, a plan
is to investigate heuristic approaches for optimal node selection in a three-layered IoT
architecture and later evaluate the proposed framework using authentic live data obtained
from a range of IoT applications and compare the outcomes.

6. Discussion

In this paper, we have examined the potential benefits of three layered IoT architectures
with consideration of task offloading, node selection, and energy efficiency. Using a three-
layered IoT architecture makes handling the increasing number of incoming IoT requests
from upcoming advanced IoT use cases easier. With the implementation of task offloading
and node selection mechanisms, processing IoT requests simultaneously is practically
possible. Our proposed optimal node selection optimization framework ensures minimum
energy is utilized while processing incoming IoT requests from advanced IoT use cases in
addition to meeting the QoS metrics like resource capacity availability, latency, connectivity,
bandwidth supported, servers availability and node activation.

Section 5 provided an elaboration on the significance of each layer with its cost
relevance. Our framework gives us an estimate on time required to process the incoming
IoT requests, but as the data-set size increases, the time required for processing all the IoT
requests, will go up too. The limitation of our paper is the consideration of the mobility of
the IoT request after being received at a node at the edge layer. Hence once an IoT request
is received at an edge node at the edge layer, it is assumed that the IoT request stays steady
at the exact location until it is processed.

7. Conclusions

This paper has explored the usage of a three layered IoT architecture including edge-
fog-cloud, to promote modern advanced IoT use cases. We investigated how this general-
ized IoT architecture can be energy-efficiently used to process incoming IoT requests by
optimally allocating the request to a node, at any given layer. We proposed an ILP-based
optimal node selection framework to process all the incoming IoT requests energy effi-
ciently while accommodating strict application-specific and network constraints. We have
considered the energy costs for processing the IoT request at each layer and activating new
servers and nodes at the fog and edge layers. For the implementation of our framework,
we utilized CPLEX, and we assessed the practicality of our methodology by applying it to
efficiently and optimally choose nodes for executing diverse IoT applications and their use
cases, such as autonomous vehicles, smart grid, and eHealth, across various scenarios.

The results presented in this paper, highlight the importance of using all three layers
in an IoT architecture along with the optimal node selection framework to achieve the
required performance whilst minimising the energy usage. For example, the results showed
that when using only two layers (cloud-fog or cloud-edge) in an IoT architecture with the
optimal node selection framework, the majority of IoT requests were not being processed
as the IoT architecture was unable to satisfy their requirements. We have also analyzed the
impact of the energy cost at each layer on the optimal solution and on the performance
of the IoT architecture. Overall, the results provided insight into the approaches and
scenarios that can be used to achieve energy efficiency using a generic IoT architecture
while serving diverse IoT use cases. Our future work will focus on using a heuristic
approach to handle real-time node selection and measuring its performance against our
proposed ILP framework.
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