
SOCA
DOI 10.1007/s11761-017-0213-1

ORIGINAL RESEARCH PAPER

A global generic architecture for the future Internet of Things

Wei Wang1 · Kevin Lee2 · David Murray1

Received: 4 December 2016 / Revised: 1 June 2017 / Accepted: 5 June 2017
© Springer-Verlag London Ltd. 2017

Abstract The envisioned 6A Connectivity of the future
Internet of Things (IoT) aims to allow people and objects
to be connected anytime, anyplace, with anything and any-
one, using any path/network and any service. Due to diverse
resources, incompatible standards and communication pat-
terns, the current IoT is constrained to specific devices,
platforms, networks and domains. As the standards have
been accepted worldwide, most existing IoT platforms use
Web Services to integrate heterogeneous devices. Human-
readable protocols of Web Services cause non-negligible
overhead in object-to-object communication. Other issues,
such as lack of applications and modularized services, high
cost of devices and software development, also hinder the
common use of the IoT. In this paper, a global generic archi-
tecture for the future IoT (GGIoT) is proposed to meet the
envisioned 6AConnectivity of the future IoT. GGIoT is inde-
pendent of particular devices, platforms, networks, domains
and applications, and it can minimize transmission message
size to fit devices with minimal capabilities, such as passive
RFID tags. As a result, lower physical size and cost are pos-
sible, and network overhead can be reduced. The proposed

The authors Kevin Lee and David Murray were Wei Wang’s
supervisors.

B Wei Wang
jeffustc@hotmail.com

Kevin Lee
kevin.lee@ntu.ac.uk

David Murray
d.murray@murdoch.edu.au

1 School of Engineering and Information Technology, Murdoch
University, 90, South St, Murdoch, WA 6150, Australia

2 School of Science and Technology, Nottingham Trent
University, Burton Street, Nottingham NG1 4BU, UK

GGIoT is evaluated via performance analysis and proof-of-
concept case studies.

Keywords Internet of Things · SOA · Generic architecture ·
Middleware · Ontology

1 Introduction

The Internet of Things connects physical objects on the Inter-
net. A thing is a virtualized object in information systems [1].
The virtual object has identities, attributes and communicates
via its interfaces. The IoT involves people-to-people, people-
to-object (P2O) and object-to-object (O2O) communication.
Traditional Internet applications, such as blogs and online
games, are facilitated by people-to-people communication.
On the Internet, people can interact with the physical world
via P2O communication, such as monitoring and tracking
physical objects. In O2O communication, objects communi-
cate with other objects, such as Near-Field Communications
(NFC) [2].

The development of the IoT depends on innovation across
many domains and industries, such as hardware manufac-
ture and information technologies [3]. To collect real-time
status of physical objects, barcodes [4], wireless sensor net-
works [5] and RFID technologies [6] are necessary. To
process devicemessages,CloudComputing canprovide elas-
tic resources to process excessive real-time events [7]. With
mobile networks, smart phones can act as proxies to connect
objects to the Internet [2]. To exchange large amounts of data
in networks, bandwidth requires many increases [1].

The development of the IoT can be classified into four
phases: (1) Intranet of Things, (2) Extranet of Things, (3)
Internet of Things, (4) future Internet of Things and people
[8]. Most existing RFID applications in closed systems are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-017-0213-1&domain=pdf


SOCA

considered as Intranet of Things and Extranet of things, and
little demand is required for exchanging data across domains
[8]. The third phase points to the current IoT designed for
specific devices, platforms, networks, domains, services and
applications. The fourth phase, future Internet of Things and
people, aims to connect people and objects on a global scale
across domains and industries [8]. In the future IoT, objects
will become context-aware and make spontaneous decisions
to communicate with people and machines [9].

The envisioned 6A Connectivity of the future IoT allows
people and objects to be connected anytime, anyplace, with
anything and anyone, using any path/network and any ser-
vice [3], which is the goal of the IoT architecture in this
paper. In terms of anytime, the future IoT is required to pro-
cess received data on demand. IoT applications have different
demands for latency, which may vary from a few seconds to
a few days [8]. Previous work shows that the performance of
Web Services is currently acceptable for most IoT applica-
tions [10]. For some time-sensitive IoT applications, such as
self-driving vehicles, latency needs to be further decreased
to guarantee QoS.

In the future IoT, objects and devices access the Internet
via different networks and paths. With respect to anyplace
and any path/network, it needs to integrate heterogeneous
networks. To enable the anything connectivity, size and cost
of sensors and RFID tags must be further reduced to fit most
common objects, as technologies inmany domains are evolv-
ing. In regard to anyone, the future IoT should provide an easy
manner to allow third-parties to offer and consume services
without programming. Personalization delivers customized
services to meet user needs [11]. The future IoT will connect
trillions of objects. The future IoT should enable third-parties
to use their own words to customize and share created virtual
entities worldwide.

Many issues, such as incompatible standards, diverse com-
munication patterns and lack of scalable frameworks, may
hinder the envisioned future IoT. There is no single set of
standards for the IoT currently. Some organizations are stan-
dardizing the IoT in different domains, such as EPC-global
[12], ISO/IEC [13] and ZigBee [14]. These standards are
evolving and incompatible with each other. It is impractical
to ignore existing standards and create new standard sets for
the future IoT. In this paper, the proposed IoT architecture
utilizes existing infrastructure, and it can integrate emerging
resources independent of specific standards.

The future IoT will be an integral paradigm across many
domains, in which objects can seamlessly communicate with
each other [11]. The future IoT requires an open architecture
to realize interoperability among heterogeneous resources
[1]. This paper presents a global generic architecture for the
future IoT (GGIoT), which has many advantages. First, as
the IoT is crossing many domains, a generic architecture
improves interoperability across systems. Second, because

technologies are evolving and application requirements are
changing, developing applications on a generic architecture
can reduce time and cost to suit to the changes. Third, a
generic IoT architecture allows third-parties to offer and con-
sume services on public platforms in a simple way.

This paper is structured as follows: Section 2 presents
architectural requirements for the future IoT. Section 3 ana-
lyzes constraints of existing IoTplatforms. Section 4 presents
a global generic architecture (GGIoT) for the future IoT. In
Sect. 5, the architecture is evaluated via performance analysis
and proof-of-concept case studies. Finally, Sect. 6 concludes
this paper.

2 Architectural requirements for the future IoT

In this paper, a global generic architecture is presented for
the future IoT and aims to resolve the following issues.

2.1 Interoperability

In the IoT, interoperability is the capability of integrating
heterogeneous devices, networks, systems, services, APIs
and data representation across domains and systems [15].
It includes network, syntactic and semantic levels [16].
Network interoperability concerns connectivity of diverse
devices across diverse networks, but does not concern shared
content. The IoT involves diverse devices, such as wire-
less sensors, barcode and RFID tags, to collect and transmit
real-time status of physical objects. To integrate heteroge-
neous devices, Web Services enable standard web protocols
to request data from IP-enabled devices [17]. The future IoT
will connect numerous resource-constrained devices that do
not supportWeb Services. It is required to use a globally con-
sistent method to connect lightweight devices independent of
networks, platforms and systems, and to integrate emerging
resources in the future [7]. In the proposed IoT architecture,
heterogeneous devices can be seamlessly integrated at mid-
dleware in the distributed proxies, and it is independent of
platforms and networks.

The future IoT needs to interpret the meaning of device
messages worldwide. It is challenging to standardize object
description by defining mandatory rules. It is similar to
enforcing all people to speak the same language globally.
When device messages are exchanged across systems, the
incompatible data structures hinder data parsing. Syntactic
interoperation is realized by defining common data format
and structure for exchanged messages in traditional web
applications, such as HTML [16]. In the IoT, HTML adds
significant overhead for sensors [18]; Resource Description
Framework (RDF) is also heavy for resource-constrained
devices [19]. Considering a trade-off between description
level and the produced overhead, XML, JSON and CSV are

123



SOCA

accepted as the most suitable formats to describe objects in
the IoT [8]. The difference is that these formats utilize dif-
ferent delimiters to separate data elements.

As entities are diversely described in device messages,
semantic integration can be achieved by converting the entity
description into a system-readable representation via cus-
tomized adaptors and then interpret the meanings [20]. This
method adds high design complexity to the adaptors, as the
interpretation of an adaptor is limited to pre-defined patterns.

Building ontologies regularize rules to represent entities
[16]. For example, SensorNetworkOntology describes types
of sensors and sensor networks [21]. To classify sensors and
services, a ontology uses three sub-ontologies to describe
the hosted services of sensors, locations and physical prop-
erties [22]. As entities cannot be customized by third-parties,
description capability of the ontology is limited and the ontol-
ogy lacks scalability. In the IoT, the physical world involves
an enormous number of objects and the number is increasing
indefinitely. It is challenging to design a representation of all
entities of the physical world by some organizations or com-
munities. In the IoT-A project, the class information model is
used to classify fine-grained entities and build complex rela-
tions between the entities [23]. This model does not specify
how entities can be represented in sensor messages and how
context is abstracted and interpreted in IoT applications.

In the proposed IoT architecture, devicemessages are inte-
grated at the syntactic and semantic levels by building ontolo-
gies. The ontologies are able to describe fine-grained entities
and can be personalized by third-parties. The description
capability can be indefinitely extended without influencing
relations between existing entities. Third-party users can use
their own vocabularies to customize entities and define data
schema in the ontologies, rather than in device messages.
Meanwhile, semantic meaning of the described entities is
globally consistent.

2.2 The SOA principle

To allow third-parties to offer and consume services, the
service-oriented architecture (SOA) is a design style that
is independent of specific technologies and products [24].
SOA is not limited to theWS-* standards. Component-based
models can also be SOA-enabled, such as the EJB specifica-
tion. Compared to using Web Services, binary protocols are
allowed in communication in component-based middleware,
which permits a lower data rate in networks and lower over-
head for sensor devices [25]. Traditional Internet applications
are mostly designed for people-to-people communication.
Human-readable web protocols facilitate third-parties to
provide and consume services easily. However, most IoT
applications, such as Smart Home and Smart Transport,
are based on O2O communication. Using machine-readable
binary protocols is beneficial for improving the overall per-

formance. In the architecture GGIoT, O2O communication
is enabled by binary protocols in component-based middle-
ware.

2.3 Service modularization and loose coupling

Due to diversity of physical objects, services and devices,
most existing IoTplatforms donot provide reusable andmod-
ularized services. Itmakes providing and consuming services
difficult for third-party users and also increases development
costs. In the proposed IoT architecture, a physical object
or service is virtualized as a primitive middleware compo-
nent. Cost and time can be reduced by reusing many atomic
components to combine a composed service via the globally
consistent interface.

Combing many modularized services into a composed
service needs a loosely coupled architecture. It enables the
logical separation of virtual objects and services. Each prim-
itive virtual object and service can be individually added,
removed and reconfigured. Web Services provide relatively
coarse-grained services, and component-based middleware
enables more fine-grained services. However, a composed
Web Service should not consist of many constituent Web
Services, as the accumulated latency is intolerant for some
time-sensitive applications [25]. For component-based mod-
els, services can also be designed as coarse-grained on
demand. For example, the Façade Pattern allows many ser-
vice components to be composed into a coarse-grained
service to meet application needs [26]. Loose coupling of
component-based models is also key enablers of the pro-
posed architecture.

2.4 Multipoint communication

In the future IoT, an object needs to communicate with
multiple objects at the same time. For example, a self-
driving vehicle should concurrently interact with the near
cars and traffic signals [27]. Multipoint communication can
also be used to combine child objects into a parent object
and ensure that all the child objects and parent object can be
individually addressed, such as a machine consists of many
parts. Moreover, multithreading is also needed for object-to-
service communication. One service needs to concurrently
interact with multiple objects, or one object offers services
to many entities. For example, an Appliance Monitor service
allows a user tomonitor all appliances in SmartHome scenar-
ios [28]. In Smart Retail scenarios, many customers need to
receive information from the same product simultaneously.
Thus, multipoint communication is an essential architectural
requirement when composing services in the future IoT. In
GGIoT, a virtual object or service can simultaneously con-
nected to multiple objects and services on demand.

123



SOCA

2.5 Dynamicity and runtime reconfiguration

The dynamicity of the future IoT involves many aspects.
Devices are added and removed dynamically in networks,
due tomany reasons, such as shutting down devices andmov-
ing devices between networks. The caused network topology
may change in real time and require dynamic allocation of
system resources for all connected objects and services [15],
and create dynamic flows among objects, services and sys-
tems [29]. To add or remove connections between objects and
services, existing connectionswith other objects and services
should not be influenced. To enable it, interaction among vir-
tual objects and services should not be pre-configured and
hard-coded. Connections among objects and services need
to be reconfigured at runtime [15]. The WS-* standards can-
not achieve this, as the dependency resolutionmechanism are
hard-coded in the Web Services. For component-based mid-
dleware, the components need to be fine-grained to enable
runtime reconfiguration; the coupling between components
needs to be managed from outside mechanisms [30].

In the proposed IoT architecture, all virtual objects and
services can be reconfigured on runtime. Thus, a Service
Composer can dynamically coordinate interaction between
virtual objects and services, such as coupling or decou-
pling connections between objects and services. Objects and
services are dynamically virtualized or terminated to meet
specific application needs.

2.6 Controlled interaction and decentralization

The future IoT will reach a global scale. When physi-
cal objects move between spaces, it is difficult to handle
the uncertainties and the unexpected interactions between
objects [31]. If an object discovers many unknown objects
nearby, it should only interact with certain types of objects.
Otherwise, building a full connection between all objects
in a network would cause many meaningless connections
and waste resources. In the proposed IoT architecture, O2O
communication is coordinated by the distributed proxy. If
no service can be provided to two objects, the interaction is
meaningless. By analyzing relations among all objects and
services network-wide, a proxy can coordinate interaction
among these objects to avoid unexpected interaction.

In the future IoT, an enormous number of objects will
generate a massive of real-time events, and object prop-
erty values change constantly. To update real-time status of
physical objects, events need to be immediately transmitted
and processed. Most existing IoT platforms use remote web
servers to request sensor data via HTTP and to provide URIs
to access sensor data in the RESTful style. Apart from the
high overhead of web protocols, indirectly accessing sen-
sor data in remote web servers and through many networks
also increases access latency. Moreover, the centralized IoT

architecture has security, privacy, trust, responsibility and
data ownership issues [1]. The future IoT should support dis-
tributed data accessing, processing, storage and ownership.
Users can decide which parts of data can be shared in pub-
lic or private groups [15]. GGIoT uses distributed proxies to
coordinate local communication, and a global management
system to handle communication across distributed proxies.

2.7 Simplified deployment

Simplified deployment can improve the common use of
the IoT. In the proposed architecture GGIoT, to reduce
development cost, third-party users can reuse existing ser-
vices to compose services. A plug-and-play mode can
connect diverse devices transparently and seamlessly, and
no-programming is enabled to deploy virtual devices and
services. In addition, GGIoT also allows third-parties to use
their own words to represent entities and personalize virtual
objects and services by modifying existing virtual objects
and services.

3 Existing IoT platforms

Most existing IoT platforms are designed for particular
devices, platforms, networks, domains and applications.
These IoT platforms use RESTful APIs to access sensor
devices and to retrieve, store, update and delete data via the
standard HTTP operations such as Get, Post, Put and Delete.
The exchanged data formats are XML, JSON or CSV. Sen-
sor data is stored in cloud-based databases for processing and
accessing. Platforms, such as Xively [32], ThingWorx [33],
ARMmbed [34], Arrayent [35] Carriots [36], Bugswarm
[37], DIGI Device Cloud [38], Evrythng [39], Thingspeak
[40], Nimbits [41] and GroveStreams [42] all follow this
style. They have differences in somenon-core functions, such
as business model, data storage policy, data management,
visualization, data analysis, event notification and access per-
mission control.

The existing IoT platforms share many constraints that
may hinder the deployment of the future IoT. To send data to
the platforms, sensors must support Web Services, which
is not suitable for resource-constrained devices. Another
method is to use proxies to post sensor data to the RESTful
API via manual programming. This method adds complexity
for non-expert users.Most commercial platforms collaborate
with their hardware manufacturers and have specific require-
ments on devices and networks. For example, a device used
in the AXEDA platform needs to support mobile network,
and the ARMmbed platform uses 6LoWPAN networks.
The Xively platform requires users to write key pairs into
firmware of the designated devices. The envisioned future
IoT should be device and network-independent. The diversi-

123



SOCA

ties and constraints may hinder the ubiquity of devices and
networks in the IoT.

The average cost of a single sensor device is too high if
connecting many ordinary objects for common use. Some
IoT platforms, such as Kaa [43], offer open-source codes
to third-parties for building applications. However, cost of
the required devices is still a barrier for connecting ordinary
objects to the IoT; the size of the sensors may also be too
big to attach them on small objects. To reduce device size
and development cost, barcode and RFID tags can replace
sensors in parts of applications. For example, the Evrythng
IoT platform enables connection of barcode and RFID tags
by posting static object descriptions via the RESTful APIs.

These IoT platforms do not provide ontologies, which
hinder the interpretation of device messages from different
parties. Third-parties describe entities in device messages.
This constraint increases the message size and consumes
more energy of devices. Due to diverse representation, it
is also difficult to integrate sensor data at the syntactic and
semantic level. Some IoT platforms, such as Arrayent and
Kaa, allow the users to create and share user-defined data
models. The Arrayent platform enables describing device
properties using the shared vocabularies, but it is limited
to specified device properties. Other features, such context-
awareness, service composition, service optimization and
automation, also cannot be realized. Therefore, the exist-
ing IoT platforms are far from meeting the envisioned 6A
Connectivity of the future IoT.

As the existing IoT platforms do not offer off-the-shelf
applications, users need to build applications from scratch,
or to write code by using the provided tools and manuals.
It requires programming skills for non-expert users, reduces
service reusability, and also increases cost. The future IoT
should provide simplicity to non-experts users. Some IoT
platforms provide customized services to their clients, such
as system integration, software development and hardware
design. It would further increase the cost of using the IoT,
because of the lack of standardization and interoperability
across heterogeneous platforms.

4 Building a global generic architecture for the IoT

4.1 Design principle

GGIoT aims to integrate heterogeneous resources into the
IoT and to meet the 6A Connectivity of the future IoT.
As some devices cannot run node-level middleware, device
messages are integrated in gateway-level middleware to
shield hardware details of the devices. The local proxy
uses component-based middleware to receive, exchange and
process device messages. O2O communication is enabled
by binary protocols, as it can reduce message size to fit

devices with minimal capabilities and also reduce network
overhead [44]. Each sensor message consists of a system-
allocated object ID and collected dynamic object property
values. Object properties, static property values, measure
of units and data models are described in object templates
in ontologies. Thus, message size can be reduced to a
minimum to fit energy-constrained devices. In ontologies,
third-parties are able to customize description of entities and
share the descriptionworldwide. The ontologies can be easily
expanded, and description of entities is also globally consis-
tent. Each entity is described in a template. By mapping a
sensor message with the related template in the ontologies,
the message meaning can be interpreted.

In middleware, an object component is a virtualized
object, which is allowed to interface with multiple service
components via the consistent APIs. Many atomic object
and service components can be combined to provide a com-
posed service. The reuse of primitive services can improve
the common use of the IoT, reduce development cost and
facilitate easy deployment. The middleware tier provides
consistent APIs of modularized services to IoT applications.
Between the middleware and applications, communication
patterns can be designed as pull, push or publish-subscribe,
to fulfill different application needs without concerning the
underlying devices and networks. This paper focuses on the
virtualization and integration of heterogeneous resources at
the middleware tier.

4.2 Object description

In the IoT, object-attached devices have diverse physical size,
memory, energy source, processing and sensing ability. It is
necessary to use a globally consistent method for describ-
ing entities in device messages and enable the method to fit
devices with minimal capabilities. Passive RFID tags do not
have the ability to sense and to store too complex data. Static
properties of the connected objects can be described in detail
in the backend systems, and an object identifier is described
in device messages to link the description in the backend
systems. Barcode tags also do not have sensing ability, and
similar methods can be used to index object description in
systems.

In GGIoT, dynamic property values of objects, such as
temperature and location, are collected by sensors, active
RFID tags and GPS devices, to represent real-time states of
the labeled objects. A sensor message consists of two data
fields: object identifier and dynamic property values. Other
elements, such as message schema, static property and the
values, and unit of measure, are considered as the description
overhead, as they are constantly static in object description.
By moving the description overhead to the backend system,
the size of sensor messages can be significantly reduced to
fit lightweight devices. Stripping the overhead from sensor

123



SOCA

Fig. 1 Stripping the description overhead from a sensor message

messages can also maintain the description consistency and
shield complexity from users.

Figure 1 illustrates an example of the stripping process.
A sensor message only contains a system-allocated object
ID and the collected dynamic property value “16.” Other
data elements are filled into in a generic milk template by a
third-party user, which results in creating a customized object
template. The customized template is stored in the ontolo-
gies for interpreting messages from the attached object. The
gateway-level middleware abstracts each data elements of
receivedmessages. Bymatching them to the registered object
template in the ontologies,meaning of receivedmessages can
be interpreted. The update of the ontologies is synchronized
worldwide.Meanings of entity descriptions are globally con-
sistent. Virtual objects and services across systems can be
composed in middleware without using data conversion.

Some devices do not have data encryption ability; themes-
sages can be intercepted maliciously between devices and
gateways. In GGIoT, the message description method can
provide a potential solution to alleviate the “last mile privacy
issue.” As a sensor message does not contain any description
about ownership, property, unit of measure and data schema,
the message needs the associated template to interpret it. The
devicemessage is only system-readable. For barcodes or pas-
sive RFID tags do not have sensing ability, a device message
or an image only contains an object ID used to index a static
object template in systems.

4.3 The overall architecture of GGIoT

GGIoT is component-based, proxy-integrated and binary-
protocol-enabled. GGIoT is independent of the underlying
devices, platform networks, systems and applications. The
globally consistent description of entities enables GGIoT
to integrate resources across domains and parties. Figure 2
demonstrates the overall framework which includes: percep-
tion tier, routing tier,middleware tier and globalmanagement
system (GMS).

The perception tier collects raw data from the physical
world using different devices and to represent the data as

Fig. 2 Overall framework of GGIoT

dynamic property values of virtual objects in middleware.
The routing tier builds communication channels between var-
ious devices and the middleware in the proxies. A variety of
intermediate devices, such as mobile phones, tablets and lap-
tops can be used to relay messages from end-point devices
to nearby gateways. The gateways then route aggregated
messages to the middleware tier via the Internet. As mobile
networks cover most places of the world, mobile devices can
route messages in areas other networks are unavailable. Con-
sidering security or privacy issues, the public routing devices
should be managed by trusted parties, and relevant legisla-
tions need to be issued.

At the middleware tier, a distributed proxy consists of
ontologies, identification mechanism, lookup, database, vir-
tualization and application system. The virtualization system
virtualizes a device message of a physical object into an
object component and modularizes a service as a service
component in middleware. Many primitive object and ser-
vice components can be combined as a composed service to
reduce development cost. Each component runs temporar-
ily in middleware. If a component is removed, the unused
resource is released.

The identification mechanism assigns a global unique
identifier (GUID) for a virtual object. In device messages, an
object ID is pre-allocated by Identifier Manager before ini-
tializing the object component in middleware. The assigned
object component ID is identical to the object ID in device

123



SOCA

messages. The aim of this design is to discover the virtual
objects using system-allocated component IDs. The IDs are
temporarily allocated to object and service components and
can be recycled and reused. In GGIoT, the lookup system
provides a discovery mechanism to enable the discovery of
virtual objects and services, or classification of objects and
services in the ontologies.

The application system can offer various development
tools for third-parties. For example, template editing tools
can be plugged into browsers and to allow third-party users
to describe objects and services in templates rather than
in device messages. Third-parties can also use their own
words to find suitable existing templates to match connected
objects and services. Objects and services can be customized
by modifying existing generic templates. Thus, third-party
developers focus on application design without concern for
hardware details of sensory devices. GGIoT also allows
using multiple off-the-shelf services to compose a service
on demand.

The object and service ontology describe the relation
between virtual objects and services. The unit ontology
describes units of measure. Moreover, location, device, time
and other types of entities can also be described in the ontolo-
gies. The ontologies can be updated to adapt to new emerging
entities. To ensure global consistency, all ontology data are
managed by the GMS. Other distributed proxies periodically
download updates. The GMS allocates a range of identifiers
to all distributed proxies. Then, each distributed proxy further
assigns the allocated identifiers to the local virtual objects and
services.

AsmostO2Ocommunication occurswithin specific areas,
using a distributed proxy to handle communication of near
objects and services can reduce network traffic and access
latency. The distributed proxies can run on a local network,
metropolitan area network, private and public cloud. Loca-
tion and specification of a proxy are determined by the
hosted objects and services, required resources and appli-
cation needs. All distributed proxies form a global network.
If O2O communication is beyond the range of a proxy, the
GMS can coordinate the communication of the involved vir-
tual objects and services in different proxies. The GSM can
be used for discovering objects and services across prox-
ies. Images of the GSM can be backed up and synchronized
in different locations worldwide. The design of the GSM is
beyond the scope of this paper.

4.4 Object virtualization

GGIoT enables a globally consistent description of entities
before virtualizing objects into middleware. Third-parties,
such as end users and manufactures, use their own words
to look for off-the-shelf templates in ontologies to map
connected objects and services. The user-defined keywords

Fig. 3 Process of object virtualization in GGIoT

are analyzed in search engines, and then the most suited
templates are discovered to represent static status of the
connected objects. GGIoT provides flexibility to allow third-
parties to use their own language to represent entities in the
IoT, and all participants need to commit the rules for data
representation in device messages. In middleware, an object
component relays messages from the object-attached device
to the wired service components. By mapping the messages
into the associated object templates, meaning of the object
state can be interpreted. Figure 3 illustrates the object virtu-
alization process in GGIoT.

In step 1, third-party users login to a user management
system. It allows users to store user profiles and manage
virtual objects via web browsers. Step 2 is used to verify
user identities by authentication methods, such as security
devices and password. In step 3, third-parties discover an
existing template to describe a connected object. Users can
specify a template ID to access an object template, or use their
own language as keywords to find themost suitable template.
It is difficult to standardize languages to describe entities
worldwide. GGIoT offers flexibility of allowing third-party
users to represent entities using their own language in the
IoT.

In step 4, the ontologies analyze the search keywords
and find some suitable template candidates to match the
connected object. The discovered object templates can be
translated into different languages depending on users’ pref-
erences. Then URIs of the translated templates are sent to
the users. In step 5, when the users receive the system-
recommended object templates, they can select the most
suitable template to describe the new connected object. The
URI of the selected template is returned to the systems for
registration. If the users cannot find a ready-made object tem-

123



SOCA

plate, they can fill blanks of a generic object template. The
filled object template is registered in ontologies, and a tem-
plate ID is assigned for the template.

In step 6 and step 7, a GUID is allocated to the object.
The object ID is formatted into device messages by the users
and is identical to the component ID of the virtual object
in middleware. Thus, the object can be discovered via the
system-allocated object ID. A mapping between the object
ID and the related template ID is registered in a distributed
proxy. As a result, it is unnecessary to present the template
ID in the device messages. It is beneficial to remove the
description overhead from the messages and enhance pri-
vacy strength of the transmitted data. In a device message,
another data field Values of Dynamic Properties is collected
from the physical object in real time. For example, in a sensor
message “MFS003412 16,” “MFS003412” is the system-
allocated object ID and “16” is the dynamic property value
of Temperature, which is collected by a sensor. As a template
ID “FOODB812” is pre-associated with the object ID in a
proxy, the template can be used to interpret meaning of the
sensor message.

In step 8, the middleware receives the sensor messages
and maps them into the related object template to interpret
the message meaning. The middleware can also generate an
object component to relay the devicemessage to other service
components in real time.

4.5 Building ontologies

In GGIoT, ontologies describe entities and the relations
between entities. The object ontology, service ontology and
unit ontology are the basic ontologies that describe the rela-
tions among objects, services and units of measure. Other
ontologies, such as the location, time and device ontology,
can be used to describe other types of entities. Each template
describes one type of entities and the relations with other
entity types. All templates form the ontologies in GGIoT.
To achieve the consistency, the templates are published, cus-
tomized and discovered on public platforms. In GGIoT, the
ontologies are in a tree structure and can be extended by
adding new templates to describe new type of entities.

An object template describes static states of one type of
objects. An object component outputs the received device
messages to update dynamic property values of the object
instance. A clear separation of object type and instance can
offer a loosely coupled communication pattern in GGIoT.
The ontologies verify types of objects and services when a
proxy coordinates O2O communication among the objects.
An object is limited to communicate with pre-defined types
of objects and services to avoid unexpected interaction.
All object templates constitute the object ontology. Reusing
existing templates can simplify deployment, save time and
cost, and enable consistent entity description worldwide.

Fig. 4 Adding service and ownership into object template

Third-parties can also customize objects by editing existing
object templates. By adding new object properties into an
existing template, a new object template is generated. One
type of objects is constrained to consume limited types of
services, which can also be defined in the object template.

Figure 4 illustrates an object template of a bottle of milk.
If adding a <Service> field into the object template, the
object component is entitled to interface with a service of
Temperature Monitor. “TM2371” is the URI of the service
template in the service ontology. <Connector> declares
the interface type, and <Interface> locates the interface.
In the ontologies, shared templates are public templates,
and private templates can only be accessed by authorized
users. By adding the <Private> field into the object tem-
plate, the associated object component can only be accessed
by two communities “US69043222” and “AUS4732973”.
The<Created> field indicates the creator of the customized
template. The creator can also grant different access rights,
such as reading, deleting and modifying, to other users.

A physical object consists of a set of physical prop-
erties and uses different units to measure the values. In
GGIoT, the unit ontology classifies the units of measure;
describes the relations between units; maintains semantic
consistency of units. In the process of service composi-
tion, a unit can be converted into other units to adapt to
interface of the wired components. For example, one meter
can be converted to 10dm, or 100cm. In a unit template,
a field <UnitID> contains an identifier used to access the
unit template; a field <Subclass> indicates classification
of the unit; <definition> defines the semantic meaning;
and <Conversion> describes the relations with other units.

Inmiddleware, a service component offers a primitive ser-
vice. It receives messages from the wired components and
then outputs the processed data. A service template describes
one type of service and is the primitive unit to form the
service ontology. A service template contains a class used
to generate service components. To customize new types of
services, existing service templates can be edited by third-
parties, which results in registering new templates in the

123



SOCA

Fig. 5 Service template of Temperature Monitor

service ontology. Figure 5 illustrates a service template for a
Temperature Monitor service. The service can send a notifi-
cation message to subscribers if the temperature value of an
object falls below a threshold.

The data fields <TypeID>, <Name> and <Definition>
can be used for identification and discovery. <Subclass>
indicates the service classification. The fields <Input>
and <Output> declare receptacle and interface of the
service component. For a virtual service, the receptacle
receives messages and the interface outputs the processed
data. <DateType> is referred to data-type ontology that
describes data types and the relations among them. Thus,
output data of a service component can be converted into a
compatible data type to connect another service. For exam-
ple, integer data can be converted into real data to adapt
to input of a service component. The temperature thresh-
old value and notification message are adjustable variables.
In the field <Set>, third-parties are allowed to edit the
threshold values, which resulting in generating a customized
service template and a new ID is allocated for the new tem-
plate. <Code> can provide the class source code used to
generate instances of service components.

Due to the global scale of the future IoT, if an objectmoves
to a new network, the object would be unaware of the exis-
tence of objects nearby. The object needs to select particular
types of objects for interaction. In GGIoT, the limitations
are defined in the object template. The relation among vir-
tual objects and services is many to many. For instance, a
refrigerator can use a Voltage Monitor service to monitor its
voltage and concurrently subscribes the Temperature Moni-
tor service. One service can also be used by multiple virtual
objects. For example, a Speed Monitor service can be used
to measure speed of multiple vehicles at the same time.

The device ontology describes properties of object-
connected devices. By adding a<device>field into an object
template, description of the connected device can be linked
to the device template. Other ontologies, such as time and
location, can be created to describe other domain-specific
entities. All the ontologies use a template as the primitive

Fig. 6 Virtualization system in GGIoT

unit and can be customized to generate new templates. As
the IoT is evolving, it is difficult to pre-design all ontolo-
gies once and for all. In GGIoT, the ontologies are expanded
by third-parties to suit emerging entities without losing the
relations with existing entities.

4.6 Virtualization system

The virtualization system is used to virtualize physical
objects and services into components in middleware and to
combine primitive object and service components to provide
composed services. In GGIoT, the loose-coupling feature
enables efficient service composition via globally consistent
interfaces of virtual objects and services. Figure 6 illustrates
the virtualization system.

In a proxy, the gathered messages consist of multiple lines
of text. Each message is received from an object-connected
device. A message consists of two data fields: (1) an object
ID allocated by the Identifier Manager and (2) collected data
to represent dynamic object property values. TheComponent
Factory can relay the devicemessages to the associated object
components. By mapping the device messages to the object
templates in ontologies,messagemeaning can be interpreted.
As the object ID in a message is pre-allocated by the Identi-
fier Manager, the proxy can judge if the virtual object exists.
If a virtual object does not exist, the Component Factory
initializes a new middleware component for receiving mes-
sages from the object, and the Identifier Manager allocates a
GUID for the new generated component. The component ID
is identical to the object ID in the device message.

If a message is from an already-virtualized object, the
message is routed to the related object component. Other

123



SOCA

components wired to the object component can currently
receive the message. The message is used to update the
dynamic property values of the object in real time. As inter-
faces and receptacles of distributed components are globally
consistent, virtual objects and services can be seamlessly
integrated in middleware, and heterogeneity of the under-
lying devices is hidden. As barcode tags and RFID tags do
not have sensing ability, the labeled objects are virtualized
as static virtual objects that do not have incoming messages.

Each object component has an expiration period. If the vir-
tualization system has not received message from an object
above a pre-defined period, the object component is altered to
inactive state. If the object reconnects to a proxy, the compo-
nent can be reactivated. The temporary disconnections can be
caused by many reasons, such as turning off sensors, moving
objects between networks, or rebooting a router.

If the object component fails to receive message from an
object, it may be caused by low battery, abandoning objects,
hardware error of devices and other issues. The object com-
ponent is removed from middleware to release the unused
system resource. The assigned component ID and object
ID are recycled for reusing as well. Users can set a period
threshold for the temporary and permanent disconnection.
The Backup Centre is used to provide a recovery mechanism
to recover the removed component and to rewire previous
bindings with other components.

To offer virtual services, the Component Factory can also
generate service components on demand. In GGIoT, a ser-
vice is represented as a middleware component as well. The
virtualization process of a service is similar to virtualizing
an object in middleware. The main difference is that a virtual
object receives messages from the object-connected device;
a service component receives messages from the connected
virtual objects and services. Thus, a virtual object has only
one receptacle to receive message of a physical object, but a
service component is allowed to use multiple receptacles to
receive messages from multiple connected components. In
GGIoT, this design enables multipoint communication and
composition of atomic object and service components. The
composition workflow can be coordinated by a component
of service composer, which is discussed in Sect. 4.7.

4.7 Service coordination

A service composer is a component generated by the Compo-
nent Factory. It contains rules and algorithms used to control
workflow in service coordination. To fulfill different appli-
cation needs, third-parties customize the workflow and rules
in template of the service composer. A service composer is
entitled to couple and uncouple a connection between two
components from the outside. The decision making depends
on collected context and pre-defined rules in a workflow. In
service composition, the required dynamic context is col-

lected from the related object and service components, and
the static context can be looked up in the object and service
templates in the ontologies. A service composer needs to be
aware of states of all involved components. To update com-
ponent states, events are sent to the Event Manager when a
component is activated, suspended or removed.

A composed service may suffer context change in the
dynamic environments. To adapt to change, components
are dynamically wired or unwired to other components
by following pre-defined rules. With runtime reconfigura-
tion, components and the wiring between components can
be reconfigured without rebooting systems. Reconfiguration
Manager can register, inspect and reconfigure components
on runtime. By invoking control commands, components can
be activated, suspended, removed, wired or unwired to other
components. All components are loosely coupled; unwiring
two components does not affect the coupling with other com-
ponents. The loose-coupling feature can enable multipoint
communication of virtual objects and services.

A GUID is assigned for an object or service independent
of location and networks. An object ID is static during the
lifetime of the object. If an object is moved from one place
to another where uses another proxy, the object component
in the previous proxy is terminated, and the setting of the
object component is stored in the Backup Centre. Then, the
newproxy downloads the setting from theBackupCentre and
generates a new object component with the previous setting.
The wiring with other components in the previous proxy can
be rewired in the new proxy. The aim of the decentralized
design is to reduce network traffic and access latency when
objects move between proxies.

5 Evaluation

This section presents a proof-of-concept evaluation of the
virtual system in GGIoT. As diverse devices are integrated
at the gateway-level middleware, the use of devices is not
a consideration in the test. As device messages are routed
to a proxy from different networks and paths, GGIoT is
also independent of networks and communication channels.
In middleware, as virtual objects and services use compat-
ible interfaces and receptacles to exchange messages, the
entity representation in device messages is globally consis-
tent. Thus, GGIoT has generality to integrate heterogeneous
and emerging resources. The features of the architecture are
not confined to devices, systems, setting, performance anal-
ysis, services and case studies in this evaluation.

5.1 Implementation setup

Figure 7 shows the implementation setup. Device messages
were formatted into the Arduino UNO [45] and transmitted

123



SOCA

Fig. 7 Setup of the implementation

via the Zigbee Xbee [14]. A dual-core PC acts a distributed
proxy. A ZigBee Xbee Explorer is used as a sink node to
aggregate messages from all objects in a WSN and bridge
the WSN with the proxy. The proxy receives the messages
from the sink node via a USB port. GGIoT is independent
of operating systems; both Ubuntu 10.10 and Windows XP
were tested as underlying systems.

The proxy runs the virtualization system based on the
LooCI/OSGI V1.0 [46]. LooCI middleware was taken off-
the-shelf to support evaluation of the virtualization system
[47], for three reasons. First, LooCI components run on Java
Virtual Machine rather than on physical platforms; the mid-
dleware is independent of processors, platforms and systems.
Therefore, it can meet the device-independency need. Sec-
ond, as LooCI supports runtime reconfiguration in the LooCI
network, components and bindings between the components
can be reconfigured without a recompilation or restart, which
can fulfill the loose-coupling need. Compared tomiddleware,
such as OpenCOM [48], LooCI supports multithreading
among components, which can enable multipoint commu-
nication in the proposed architecture GGIoT.

5.2 Virtualization process

In this test, Ubuntu 10.10 was installed on the proxy. A sen-
sor message has three fields: ObjectID, Temperature value,
and Sending time. This test assumes that the data fields of
Temperature value and Sending time are the two dynamic
property values of an object. Figure 8 illustrates the logical
model and virtualization process workflow. A component of
Sensor Relay was designed to interpret gathered sensor mes-
sages from the sink node. ObjectID are abstracted from each
message by the Sensor Relay and are sent to the Identifier
Manager. As an ObjectID is pre-registered in the Identifier
Manager, the registration can be verified by the proxy. If
a device message is from a registered object, the message
will be further processed. Otherwise, the message is dis-
carded.

Reconfiguration Center can reconfigure components and
the binding between components on runtime. It also stores
the states of each component, such as initialized, activated or
wiring. These states can be requested by the commands, such
as GetState and GetInterface [49]. In this evaluation, if state
of a target object component is activated, related messages

Fig. 8 Logical model and workflow of object virtualization

are routed to the object component. Otherwise, a new object
component is initialized to receivemessages from the object-
attached device.

A component of Component Factory was designed to
generate object components in middleware. Source codes,
used to generate object components, were pre-stored in a
Java file. The Component Factory can fill some data fields,
such as object identifier, of the source code with captured
data from messages and proxies. The filled source code
is compiled to generate byte code, such as Class and Jar
files. By executing the byte code in JVM, object compo-
nents can be deployed in heterogeneous platforms. InGGIoT,
object components can be transferred from one proxy to
another. As byte code of object components is portable, it
can be backed up in the GSM and then moved to other prox-
ies.

In this test, by parsing aggregated messages from the sink
node, the virtualization system dynamically generated object
components for objects in a WSN. The components were
published on the event bus and can be subscribed by other
components in the middleware. Each component was indi-
vidually accessed by the component ID and IP address of the
proxy. As these object components use compatible interfaces
to output the dynamic object property values, middleware
components in other platforms are able to wire to them with-
out data conversion of adaptors.

123



SOCA

5.3 Memory footprint and overhead testing

Compared to executing middleware or Web Services on sen-
sors, GGIoT runs all middleware components in the proxies.
Thus, devices with minimal capabilities can be integrated.
The previous test shows that the visualization system used
196 KB to initialize the first object component [50]. Upon
activating additional components, footprint of each compo-
nent decreased from the second component (82 KB) and then
stabilized at the sixth component (28 KB). The disparity of
component size can be inferred by creating components from
the same source code; many components shared the same
process in memory.

The memory size is acceptable for a distributed proxy in
GGIoT. For example, a regular PC with 8 GB of RAM can
offer memory for running at least 200,000 components if the
operation system uses 2 GB of memory. In GGIoT, a proxy
could run in a router, regular PC, private cloud or public
cloud. Required hardware specification of proxies depends
on many factors, such as number of the connected objects
and services at peak times, budget, QoS, user and application
needs.

In GGIoT, many primitive objects and services can be
combined to provide a composed service without protocol
conversion. The overall overhead of a composed service is
accumulated by the communication overhead between all the
primitive components, which depends on applications. The
test measured the communication overhead of two atomic
components. In the proxy, two components were deployed in
the proxy. Round-trip time (RTT) latencies between the two
components were measured, and socket communication was
tested for benchmarking. A Java method System.nanoTime
returned the local system time. In GGIoT, each sensor mes-
sage only contains an object ID and collected dynamic
property values. Considering the message size is typically
less than 100 bytes, this test used 100 bytes of data in themes-
sage. Two components A and B were wired to test the RTT
latency. Component A initially sent a message to component
B, and then, the message is returned to A. By comparing the
sending time and receiving time, the RTT latency was tested.

In GGIoT, it is unnecessary to invoke remote services in
other proxies in most applications. Service components can
be initialized in a proxy on demand. Comparing to the remote
procedure call (RPC) of Web Services, local invocation can
significantly reduce the latency when data go through many
networks on the Internet. In this test, the latencies between
two atomic components based on local and remote invocation
were both tested. The tests are repeated 100 times, and the
average values are used for comparison. Figure 9 illustrates
the latency test results based on the local invocation, socket
and RPC.

The results show the average RTT latency based on local
invocation is 0.356 ms; the average latency on the socket

Fig. 9 Latency between two primitive components

communication is 0.412 ms. The added 0.056 ms can be
inferred that the socket API operations, such as reading
and writing, can be blocked by the underlying operation
systems for context switch [51]. The average RTT latency
based on RPC communication is 0.483 ms. Compared to the
socket communication, the added 0.071 ms of latency can be
explained by the need to firstly relay the data to the Macro-
component [46]. The results show that the local invocation
has the smallest variation and the RPC has the largest varia-
tion in execution time.

InGGIoT, as O2O communication is coordinated and pro-
cessed by distributed proxies rather than centralized web
servers. The test results indicate a significantly low over-
head between the two primitive components, which enables
a composed service to consist of many primitive components
on a proxy. For RPC communication, as the middleware uses
the UDP protocol, the added overhead is less than 0.1 ms.
The purpose of this test is tomeasure theminimized overhead
between the two components in the specific proxy. In prac-
tice, the performance of a service will depend on the many
factors, such as the underlying systems, devices, networks
and applications.

5.4 Case studies

GGIoT aims to provide a generic IoT architecture across
domains. Due to the global scale, implementing a concrete
architecture needs a great deal of cooperation and efforts
from many parties. In this section, two case studies were
designed to demonstrate basic features of monitoring and
tracking services, and O2O communication in GGIoT. The
illustrated principles have generality to adapt to services in
different domains. XML was used as the data format for the
involved object and service templates in the ontologies.

5.4.1 Monitoring and tracking services

This section utilizes a service of Temperature monitor to
illustrate monitoring services. An object component was
deployed to receive and relay the dynamic property val-

123



SOCA

Fig. 10 Object template of the refrigerator

ues of a simulated refrigerator. By wiring to the refrigerator
component, a Temperature Monitor component can receive
and monitor the temperature values of the refrigerator. The
Temperature Monitor sends a notification to subscribers if
the temperature value is above a pre-defined threshold. The
threshold value can be customized for reusing the service.
In this test, the threshold was set as “5.” If the monitored
temperature value is above 5 ◦ C, the notification message is
“Your refrigerator is too hot.” Otherwise, the notification is
“Your refrigerator is normal.”

Figure 10 shows the object template used to describe
the refrigerator. The refrigerator template has six data
fields to describe static property values of the refrigera-
tor, such as <TemplateId> and <Weight>. The template
also has three dynamic properties including<Temperature>,
<Voltage> and <Date>. The fields of the dynamic proper-
ties are left blank for mapping values from the sensor mes-
sages. The values of<Unit> are linked to the Unit Ontology,
and the<DateFormat> fields describe various date formats.
It is unnecessary to parse all data fields of the template, which
depend on application needs. In this service, it is required to
interpret the values of <ObjectId> and <Temperature>.

The object component is restricted to interact with three
types of services. Template IDs of the supported service
types were pre-defined in the <Services> field. Figure 11
demonstrates a workflow of the Temperature Monitor. The
refrigerator component relays the device messages to the
service components of Temperature Monitor in real time.
By mapping the received messages with the associated tem-
plate, the Temperature Monitor interprets meaning of each
data field in themessages. A devicemessage does not contain
a template ID. The Temperature Monitor looks up the tem-
plate ID of the refrigerator in the Identifier Manager before
it parses the dynamic property values.

The module of Query Service parses the ontologies and
verifies if the service of Temperature Monitor is compatible
with the object component. If the verification is passed, the

Fig. 11 Workflow of the Temperature Monitor

module of Execute Services retrieves the current tempera-
ture value from the latest sensor message. By comparing the
retrieved temperature values with the pre-defined threshold
5, temperature of the refrigerator can be monitored in real
time. The test results show the notification messages were
displayed as expected. In this case, the triggered action is
sending notifications. Other actions can also be designed to
meet different application needs. In GGIoT, current location
of objects can also be parameterized as a dynamic property
value. As a result, the data processing of tracking services is
similar to the monitoring services.

5.5 Object-to-object (O2O) communication

Most IoT services are designed for O2O communication.
Compared to the monitoring and tracking services, some dif-
ferences exist. Monitoring services can be applied to a single
object; O2O communication needs participation of at least
twoobjects. Therefore, a third-party component is required to
coordinateO2Ocommunication.Moreover,mostmonitoring
and tracking services are provided to specified objects, while
objects in O2O communication are unpredictable. Objects
may move between networks, which causes interaction with
new objects nearby.

This section presents a service of Expiration Manager
to demonstrate O2O communication in GGIoT. In this test,
two object components were deployed to receive messages
from two sensors that describe a refrigerator and a bottle
of milk, respectively. The refrigerator uses the same object
template in Figure 10. In the middleware, outputs messages
of the refrigerator component contain a dynamic property
value of <Date>to describe local time of the refrigerator.
Another template was used to describe a bottle of milk.
The milk template has some static object properties, such
as <Manufacturer> and <Volume>, and a dynamic object

123



SOCA

Fig. 12 Workflow of the Expiration Manager

property <Expiration> describes the expiration date of the
milk. Although expiration date of a product is static after
the product is produced, the same types of milk may have
different property values of <Expiration>. It is inefficient
to duplicate many templates to describe the same product in
mass production. This case assumes that <Expiration> is a
dynamic property of the milk and formatted into messages
of the attached RFID tag.

A component of Expiration Manager was designed and
multithreaded to the two object components to receive the
messages. By comparing property values of <Date> of the
refrigerator to property values of<Expiration> of the milk,
the service of Expiration Manager can decide if the milk is
expired and send notifications to the subscribers. If the expi-
ration date of themilk is after the local date of the refrigerator,
amessage “Yourmilk has expired” is notified. Otherwise, the
notification message is “Your milk is still fresh.” Figure 12
illustrates the workflow.

In GGIoT, as third-parties may set different intervals to
send device messages, it needs to synchronize received mes-
sages of different objects before executing services. In this
case, the Expiration Manager adds a new module of Syn-
chronize Messages to retrieve the latest messages from the
two objects. A hashmap instance was created to cache device
messages of the twoobject components.When theExpiration
Manager receives a message from the milk or the refrigera-
tor, each data field of the message is separated and cached
into an array. The value of object ID is used to index the mes-
sage in the hash map. When two messages with two object
IDs are cached, the two messages provide the latest dynamic
property values of the two objects.

The two messages are retrieved from the hash map, and
then, the hash map is cleared to cache new coming mes-
sages from the two object components. The sources of
the two retrieved messages can be judged by object IDs.
Then Template IDs of the two objects are looked up in

the Identifier Manger. The module of Query Service ver-
ifies if both the two objects both support the service of
Expiration Manager by parsing the ontologies. Then, the
Execute Servicemodule can compare dynamic propriety val-
ues of <Expiration> and <date> of the two objects, and
decide if the milk is expired.

This method caches the latest sensor messages of the two
objects to synchronize dynamic property values of the two
objects. Compared to indirectly accessing stored messages
in web servers, the messages of the two objects are synchro-
nized in RAMof the distributed proxy. A fewmilliseconds of
latency are enough to meet requirements of most IoT appli-
cations. If O2O communication crosses many networks on
the Internet, two approaches can be applied to guarantee the
QoS. For sensorswith accurate timing capability, timestamps
are added into the device messages for comparison. Other-
wise, timestamps can be appended to device messages at a
local proxywhen the proxies receive the devicemessages. As
a result, service components can verify if received messages
are time-effective for specific services.

6 Conclusions and future work

The6AConnectivity of the future IoThas beenproposed for a
decade [3]. The IoT is still constrained to particular devices,
platforms, networks, applications and domains, and many
barriers may hinder development. In this paper, the proposed
IoT architecture provides potential solutions to overcome
these barriers. Due to limitations of device cost, object size
and energy consumption, it is difficult to embedWebServices
into all devices in the future IoT. GGIoT is independent of
device, platform, network and system, and aims to meet the
6A Connectivity in term of anytime, anyplace, anything and
any network/path.

As the modularized object and service components are
loosely coupled and the interfaces are globally consistent,
many object and service components can be combined to pro-
vide a composed service. Services can be customized, shared
and discovered by third-parties on a global public platform.
Cost and time in development can be reduced. These fea-
tures aim to fulfill the any service requirement. Third-parties
are allowed to look for an existing template to describe an
object or service. The off-the-shelf feature allows non-expert
users to provide and consume serviceswithout programming.
Other features, such as simplified deployment, personaliza-
tion and device independency, enable GGIoT to meet the
anyone requirement.

In GGIoT, a sensor message consists of an object ID and
dynamic property values collected from the object. Other
descriptions, such as data schema, unit of measure, static
property and static property values, are stripped from sen-
sor messages. This method can minimize message size to

123



SOCA

fit devices with minimal capabilities. In GGIoT, objects are
restricted to interact with pre-defined types of objects and
services. On a distributed proxy, a service composer veri-
fies the compatibility of all participating objects and services
before coordinating O2O communication. Thus, the unex-
pected interaction among multiple objects can be controlled
when objects are moving between spaces. Most O2O com-
munication occurs within specific networks or areas. To
reduce network traffic and access latency, GGIoT uses dis-
tributed proxies and binary protocols to coordinate the local
O2O communication without Internet traffic.

Building a global IoT architecture needs much effort
acrossmany domains. The development of the future IoTwill
be determined bymany factors, such as government policies,
academia andmarkets. This paper illustrates the initial design
concept of the proposed architecture GGIoT and mostly
focuses on device and data integration in the virtualization
system. Many concepts, such as GMS and backup mecha-
nism, can be extended in future work. This paper emphasizes
themiddleware tier designofGGIoT. If applying the architec-
ture in IoT applications, the design of application tier needs
to be completed. Future work will address service composi-
tion and service optimization, and discovery mechanisms in
GGIoT. It is the authors hope that the proposed architecture
in this paper will contribute to evolution of the future IoT.

References

1. Vermesan O, Friess P, Guillemin P, Gusmeroli S, Sundmaeker H,
Bassi A, Jubert IS,MazuraM,HarrisonM, EisenhauerM,Doody P
(2011) Internet of things strategic research roadmap. In: Vermesan
O, Friess P (eds) Internet of things—global technological societal
trends, vol 1. River Publishers, Aalborg, pp 9–52

2. Al-OfeishatHA,AlRababahMA(2012)Near field communication
(NFC). Int J Comput Sci Netw Secur 12(2):93–99

3. ITU (2005) ITU Internet Reports 2005: The internet of things.
International Telecommunication Union (ITU), Geneva

4. Poon EG, Keohane CA, Yoon CS, Ditmore M, Bane A, Levtzion-
Korach O, Moniz T, Rothschild JM, Kachalia AB, Hayes J (2010)
Effect of bar-code technology on the safety of medication admin-
istration. N Engl J Med 362(18):1698–1707

5. Akyildiz IF, Vuran MC (2010) Introduction. In: Akyildiz IF (ed)
Wireless sensor networks, series in communications and network-
ing, vol 4. Wiley, UK, pp 1–15

6. JiaX, FengQ,FanT,LeiQ (2012)RFID technology and its applica-
tions in Internet ofThings (IoT). In: 2nd international conference on
consumer electronics, communications and networks (CECNet),
IEEE

7. Lee K, Murray D, Hughes D, Joosen W (2010) Extending sen-
sor networks into the Cloud using Amazon Web Services. In:
IEEE international conference on networked embedded systems
for enterprise applications (NESEA)

8. Uckelmann D, Harrison M (2011) Architecting the internet of
things. Springer, Heidelberg

9. Evans D (2012) The internet of everything: how more relevant and
valuable connections will change the world. Cisco IBSG, pp 1–9

10. Trifa V, Wieland S, Guinard D, Bohnert TM (2009) Design and
implementation of a gateway for web-based interaction and man-

agement of embedded devices. In: 2nd international workshop on
sensor network engineering, CA, USA

11. Gyumyang L, Crespi N (2010) Shaping future service environ-
ments with the cloud and internet of things: networking challenges
and service evolution. Proceedings of the 4th international confer-
ence on Leveraging applications of formal methods, verification,
and validation—volume part I. Springer, Heraklion, pp 399–410

12. EPCglobal (2016) Standards Development. Cited 8th, December
2016. http://www.gs1.org/gsmp/kc

13. ISO/IEC (2014) list of ISO/IEC JTC 1/SC 31 standards
14. ZigBeeAlliance (2016) The ZigBee Alliance creates IoT standards

that help control your world. Cited 12th, October, 2016. http://
www.zigbee.org/zigbeealliance/

15. Saint-Exupery A (2009) Internet of things, strategic research
roadmap. Internet of Things Initiative, Surrey

16. TerziyanV,KaykovaO,ZhovtobryukhD (2010)Ubiroad: semantic
middleware for context-aware smart road environments. In: Fifth
international conference on internet and web applications and ser-
vices (ICIW), IEEE. pp 295–302

17. Moritz G, Zeeb E, Golatowski F, Timmermann D, Stoll R (2009)
Web services to improve interoperability of home healthcare
devices. In: 3rd International conference on pervasive computing
technologies for healthcare. PervasiveHealth, IEEE, pp 1–4

18. Guinard D, Trifa V, Mattern F, Wilde E (2011) From the inter-
net of things to the web of things: resource-oriented architecture
and best practices. In: Uckelmann D, Harrison M, Michahelles
F (eds) Architecting the internet of things. Springer, Berlin,
pp 97–129

19. Larizgoitia I, Muguira L, Vazquez JI (2010) Architecture for WSN
nodes integration in context aware systems using semantic mes-
sages. In: Ad hoc networks, Springer, pp 731–746

20. Paridel K, Bainomugisha E, Vanrompay Y, Berbers Y, De Meuter
W (2010) Middleware for the internet of things, design goals and
challenges. Electronic communications of the EASST, p 28

21. Lefort L, Henson C, Taylor K, Barnaghi P, Compton M, Corcho
O, Garcia-Castro R, Graybeal J, Herzog A, Janowicz K, Neuhaus
H (2011) Semantic sensor network xg final report. W3C Incubator
Group Report, p 28

22. Kim JH, Kwon H, Kim DH, Kwak HY, Lee SJ (2008) Building a
service-oriented ontology forwireless sensor networks. In: Seventh
IEEE/ACIS international conference on computer and information
science, pp 649–654

23. Walewski JW (2011) Initial architectural reference model for IoT.
EC FP7 IoT-A (257521), 1:2

24. Spiess P, Karnouskos S, Guinard D, Savio D, Baecker O, Souza
L, Trifa V (2009) SOA-based integration of the internet of things
in enterprise services. In: IEEE international conference on web
services, pp 968–975

25. Petritsch H (2006) Service-oriented architecture (SOA) vs. compo-
nent based architecture. Vienna University of Technology, Vienna

26. Milanovic N (2006) Service engineering design patterns. In:
Second IEEE international workshop on service-oriented system
engineering, pp 19–26

27. Bao F, Chen IR, Guo J (2013). Scalable, adaptive and survivable
trustmanagement for community of interest based internet of things
systems. In: Eleventh international symposium on autonomous
decentralized systems (ISADS), IEEE, pp 1–7

28. Petriu EM, Georganas ND, Petriu DC, Makrakis D, Groza VZ
(2000) Sensor-based information appliances. Instrum Meas Mag
IEEE 3(4):31–35

29. Valente B,Martins F (2011) Amiddleware framework for the inter-
net of things. In: The third international conference on advances in
future internet, pp 139–144

30. Nain G, Fouquet F, Morin B, Barais O, Jézéquel JM (2010) Inte-
grating iot and ios with a component-based approach. In: 36th

123

http://www.gs1.org/gsmp/kc
http://www.zigbee.org/zigbeealliance/
http://www.zigbee.org/zigbeealliance/


SOCA

EUROMICRO conference on software engineering and advanced
applications (SEAA), IEEE, pp 191–198

31. MaH (2011) Internet of things: objectives and scientific challenges.
J Comput Sci Technol 26(6):919–924

32. Xively (2016)Xively—public cloud for the internet of things. Cited
6th, December, 2016. https://xively.com/

33. ThingWorx (2016) Developer Portal. Cited 16th, December, 2016.
https://developer.thingworx.com/

34. AMRmbed (2016) Welcome to mbed. Cited 8th, December, 2016.
http://mbed.com/

35. Arrayent (2016) The Arrayent Connect Platform. Cited 6th,
December, 2016. http://www.arrayent.com/

36. Carriots (2016) Create amazing products and services with our
internet of things platform. Cited 6th, December, 2016. https://
www.carriots.com/

37. Bugswarm (2016) Bugswarm documentation. Cited 6th, Decem-
ber, 2015. http://developer.bugswarm.net/

38. DIGI (2016) Digi Device Cloud. Cited 6th, December, 2016. http://
www.digi.com/cloud/digi-device-cloud#docs

39. Evrythng (2016) Give your products a digital life. Cited 6th, Octo-
ber, 2016. https://www.evrythng.com/technology/

40. Thingspeak (2016) Getting Started. Cited 6th December, 2016.
https://thingspeak.com/docs

41. Nimbits (2016) Nimbits platform. Cited 6th December, 2016.
https://www.nimbits.com/

42. GroveStreams (2016) Developer center. Cited, 6th December,
2016. https://grovestreams.com/developers/developers.html

43. KAA (2016) The truly open-source Kaa IoT Platform. Cited 6th,
December, 2016. http://www.kaaproject.org/

44. Juric MB, Rozman I, Brumen B, Colnaric M, Hericko M (2006)
Comparison of performance of Web services, WS-Security, RMI,
and RMI-SSL. J Syst Softw 79(5):689–700

45. Arduino (2016) Arduino Uno Overview. Cited, 6th December,
2016. https://www.arduino.cc/

46. Hughes D, Thoelen K, Horré W, Matthys N, Cid JD, Michiels S,
Huygens C, JoosenW (2009) LooCI: a loosely-coupled component
infrastructure for networked embedded systems. In: Proceedings of
the 7th international conference on advances in mobile computing
and multimedia. ACM, pp 195–203

47. LooCI (2016) LooCI OSGi implementation. Cited, 6th December,
2016. https://code.google.com/p/looci/wiki/OSGiImpl

48. Coulson G, Blair G, Grace P, Taiani F, Joolia A, Lee K, Ueyama
J, Sivaharan T (2008) A generic component model for building
systems software. ACM Trans Comput Syst (TOCS) 26(1):1

49. LooCI (2016) LooCI: command overview. Cited, 6th December,
2016. http://code.google.com/p/looci/wiki/Commands

50. Wang W, Lee K, Murray D (2012) Integrating sensors with the
cloud using dynamic proxies. In: IEEE 23rd international sym-
posium on personal indoor and mobile radio communications
(PIMRC), pp 1466–1471

51. Hruby T, Crivat T, Bos H, Tanenbaum AS (2014) On sockets and
system calls: minimizing context switches for the socket API. In:
Conference on timely results in operating systems (TRIOS 14), p
8

123

https://xively.com/
https://developer.thingworx.com/
http://mbed.com/
http://www.arrayent.com/
https://www.carriots.com/
https://www.carriots.com/
http://developer.bugswarm.net/
http://www.digi.com/cloud/digi-device-cloud#docs
http://www.digi.com/cloud/digi-device-cloud#docs
https://www.evrythng.com/technology/
https://thingspeak.com/docs
https://www.nimbits.com/
https://grovestreams.com/developers/developers.html
http://www.kaaproject.org/
https://www.arduino.cc/
https://code.google.com/p/looci/wiki/OSGiImpl
http://code.google.com/p/looci/wiki/Commands

	A global generic architecture for the future Internet of Things
	Abstract
	1 Introduction
	2 Architectural requirements for the future IoT
	2.1 Interoperability
	2.2 The SOA principle
	2.3 Service modularization and loose coupling
	2.4 Multipoint communication
	2.5 Dynamicity and runtime reconfiguration
	2.6 Controlled interaction and decentralization
	2.7 Simplified deployment

	3 Existing IoT platforms
	4 Building a global generic architecture for the IoT
	4.1 Design principle
	4.2 Object description
	4.3 The overall architecture of GGIoT
	4.4 Object virtualization
	4.5 Building ontologies
	4.6 Virtualization system
	4.7 Service coordination

	5 Evaluation
	5.1 Implementation setup
	5.2 Virtualization process
	5.3 Memory footprint and overhead testing
	5.4 Case studies
	5.4.1 Monitoring and tracking services

	5.5 Object-to-object (O2O) communication

	6 Conclusions and future work
	References




