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Abstract: The future IoT is expected to connect trillions of objects across 
infrastructures and domains worldwide. Compared to traditional web 
applications, the context of objects, such as dynamic object property values, 
may rapidly change. Browsing web pages with hyperlinks is unsuitable for 
representing and discovering the dynamic state of objects and services in the 
IoT, as the dynamic context is less keyword-rich than the relatively static 
contents on traditional web pages. This paper reviews state-of-the-art in 
discovering objects and services in the current IoT, and analyses the 
constraints. This paper also proposes a discovery mechanism, which is 
extended from previous work GGIoT. The proposed discovery mechanism is 
aware of dynamic context change in the IoT, and can improve the discovery 
process using automation. 
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1 Introduction 

The 6A connectivity of the future internet of things (IoT) will enable people and objects 
to be connected anytime, anyplace, with anything and anyone, using any path/network 
and any service (ITU, 2005). These virtual objects have identities, attributes, and 
personalities and can communicate via intelligent interfaces. In the IoT, objects, services 
and devices can be unpredictably added, moved and terminated, and property values of 
objects, such as temperature and location, may also change in a few seconds. The 
spontaneous events will cause dynamic context changes in real-time and worldwide. A 
great number of heterogeneous devices, such as barcodes, RFID tags and wireless sensors 
will be attached to physical objects to collect the context distributed across different 
systems and networks (Gubbi et al., 2013). The future IoT should enable the discovery of 
the object status in real-time. If many objects or services are discovered, an object should 
only communicate with certain objects and services to avoid unpredictable interaction. It 
is beneficial for reducing device and network overhead. With context-awareness, service 
coordination, composition, optimisation and automation can be enabled in the IoT. 

Discovery in dynamic context environments in the IoT is significantly more difficult 
than searching static contents, such as text and images, on the internet. Browsing static 
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web pages with hyperlinks is unsuitable for searching objects in the future IoT, as the 
representation for dynamic state of objects and services is less keyword-rich than 
contents on traditional web pages (Guinard et al., 2010). In the IoT, collected context can 
be casual, variable, volatile, redundant, incomplete, inaccurate, and dependent on or 
conflict with other contexts (Wei and Jin, 2012). Traditional internet applications can use 
web Services to exchange slowly-changed and unstructured content which are provided 
and consumed by humans. The current IoT lacks a consistent and structured method of 
describing entities (Mayer et al., 2012). Discovery in the future IoT require the responses 
to real-time events and user requests with recently collected sensor data (Yang et al., 
2011). Web services can provide device integration and the SOA-based service 
discovery. However, web services are better for resource-rich devices (Wei and Jin, 
2012). The future IoT needs to integrate a great number of devices with limited battery 
power, processing ability, and memory size, such as passive RFID tags. 

In previous work, a global generic architecture (GGIoT) was proposed for the future 
IoT (Wang et al., 2013). This paper extends the previous work to present a discovery 
mechanism based on GGIoT. The discovery mechanism aims to enable discovering 
object, service and other entities in dynamic context environments in the future IoT. This 
paper is structured as follows: Section 2 discusses architectural requirements for 
discovering entities in the future IoT. Section 3 reviews related work, and analyses the 
constraints. Section 4 introduces the previous work GGIoT. Section 5 presents the 
proposed discovery mechanism in GGIoT. In Section 6, the discovery mechanism is 
evaluated via case studies. Finally, Section 7 concludes this paper. 

2 Architectural requirements 

Discovery in the future IoT should not only be used for people, but also for objects, 
services and applications (Saint-Exupery, 2009). Objects can intelligently search for the 
ambient objects, services and devices, and interact with them to meet application needs. 
This section discusses the architectural requirements. 

• Identification: The identification mechanism in the IoT should enable identifiers to 
be reconfigured easily (Saint-Exupery, 2009). As most physical objects have a 
limited lifetime, recycling identifiers is beneficial for reusing the limited identifiers. 
Because objects are often moved between spaces, identifiers of objects and services 
need to be independent of current networks (Saint-Exupery, 2009). 

• Decentralisation: Most objects often interact with other objects in their vicinity and 
the communication is limited network-wide. It is inefficient to manage trillions of 
objects and services in a central server due to access latency, processing capability, 
network traffic, security and privacy issues. To avoid global routing of excessive 
discovery requests and to reduce device overhead and network traffic, the future IoT 
should use decentralised discovery topology (Zhang et al., 2011). 

• Service-oriented architecture (SOA): The SOA can enable seamless interoperability 
among heterogeneous devices, service optimisation, composition and automation in 
the IoT. Independent service providers and consumers can publish, and discover 
services on globally public platforms. Requirements of SOA-based discovery in the 
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future IoT include minimal service overhead and registration effort, discovering 
entities in the dynamic context, and on-demand provisioning (Cuinard et al., 2010). 

• Syntactic and semantic coherence: People may use different languages to describe 
entities. The discovery mechanisms in the IoT need to interpret exchanged messages 
among systems. Syntactic coherence can be achieved by setting common data format 
in exchanged messages (Terziyan et al., 2010). To understand embedded 
vocabularies in the shared format, semantic coherence can be realised using 
customised adaptors to interpret the exchanged data, or by building ontologies to 
regularise semantic rules for describing entities (Terziyan et al., 2010). 

• Automation: The discovery mechanism in the future IoT should be automated 
(Mayer et al., 2012). This requires the ability of adjusting discovery strategy based 
on current context without a manual trigger. Objects can automatically discover and 
interact with nearby objects. Automated discovery can also facilitate automated 
service optimisation. Multiple objects and services can intelligently form a composed 
service on demand. 

• Class-level discovery: Connecting trillions of devices indicates massive search 
scope. With the class-level discovery, the scope can be narrowed down to specific 
types of entities to reduce network traffic for queries. The class-level discovery can 
be used for coordinating multiple objects in object-to-object (O2O) communication. 
One type of objects is restricted to interact with pre-defined types of objects and 
services. 

• Dynamic-context-level discovery: The future IoT should enable an ability to discover 
dynamic object property values in real-time. If many eligible objects or services are 
discovered, an optimal object should be recommended depend on the dynamic 
context. If no eligible object or services are discovered, on-demand provisioning can 
be offered by deploying a new service instance to meet application needs (Cuinard et 
al., 2010). 

3 Related work 

3.1 Discovery topology 

The discovery topologies in the IoT can be classified into four categories: centralised, 
federal, peer-to-peer and hierarchical. The centralised topology uses a service agent to 
register services in a local directory. Users can lookup registered services by sending 
queries to the directory (Zhu et al., 2005). The centralised topology is suitable for 
discovery in local project scenarios. As the future IoT will reach a global scale, a 
centralised solution is undesirable (Mayer et al., 2012). The discovery mechanism in a 
local system may use the private discovery protocols to discover the local devices and 
services. The federal topology allows multiple systems to create discovery entries for 
each other in their repositories (Stirbu, 2008). The federal topology is inefficient when 
many independent systems exist, as excessive adaptors are needed to bridge discovery 
requests and responds from and to different systems. 

A hierarchical topology uses a tree structure to index and discover entities. A system 
or sensor node has the ability to discover the local resources, and respond to discovery 
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requests from its parent-system. In the future IoT, objects may move across networks, 
which dynamically change the topology. The discovery on the tree topology needs to 
update the topology in real-time. A peer-to-peer topology is a distributed architecture that 
each system is equally privileged, and can discover each other without previous 
configuration and mutual agreement (Edwards, 2006). For example, multicast DNS 
(mDNS) enables devices to find each other and the hosted services network-wide by 
multicasting messages to the reserved address and UDP port without using third-party 
servers (Cheshire and Krochmal, 2013). This method is unsuitable for the large-scale 
scenarios of the future IoT, as it can cause large network-wide interactions. Moreover, 
embedding an IP stack cannot fit some resource-constrained devices. 

3.2 The device-level discovery 

Device-level discovery enables devices to register and advertise themselves in IoT 
networks (Cuinard et al., 2010). If two devices utilise the same Device Discovery 
Protocols (DDPs), such as the mDNS, they can find each other in networks. Enabling the 
device-level discovery is a prerequisite of discovering the described objects and services 
on devices. Service Discovery Protocols (SDPs) are based on DDPs, and are used to 
advise and discover the hosted services on devices. For example, Bonjour is the SDP of 
Apple’s devices, which uses the mDNS protocols as the underlying DDP (Lee et al., 
2007). As device manufacturers may use different SDPs in their products, it is difficult to 
guarantee that services will interoperate, even though all these devices can communicate 
with each other using IP protocols (Katasonov et al., 2008). 

In the voyager framework, a centralised local server is used to maintain an up-to-date 
registration of connected devices at the device address level (Savidis and Stephanidis, 
2005). When a device connects to networks, it multicasts a HELLO message via UDP. 
Other devices in a network can detect the device and retrieve metadata of the device from 
the message. An optimised method can reduce the discovery scope (Guinard et al., 2009). 
This approach uses device name, type and keyword as filters in a multicast message. 
Only devices in a network that match the criteria respond to the request. The filters need 
to be pre-configured on the web-enabled devices. 

3.3 Discovering objects and services based on identifiers 

In the future IoT, each connected object or service needs to be individually addressed. 
IPv6 can theoretically provide enough identifiers for connected devices worldwide 
(Mulligan, 2007). However, embedding IP stacks increases the device cost. Burning 
serial-numbers into device firmware can be used to identify object-attached devices. 
However, it is difficult to recycle serial numbers if the objects are abandoned. Both the 
two identification methods are device-centric, rather than object-centric. The third 
method is to temporarily allocate identifiers for virtual objects in middleware, which is 
used by most existing IoT platforms, such as the Xively (2015) platform. In the IoT, 
identifiers used in different systems can be translated into Uniform Resource Identifiers 
(URIs). For example, ONS can convert EPC numbers into URIs in EPC Information 
Services (Mealling, 2004). ID@URI can translate manufacturer-assigned identifiers, such 
as serial-numbers and barcodes, to URIs of product agents (Främling et al., 2006). Id-IP 
table is an IoT directory service that can map identifiers of objects, services and 
operations, into IP addresses (Fortino et al., 2013). 
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3.4 Discovering objects and services in static context environments 

In the IoT, static properties of virtual objects, such as length and name, are constant 
during the lifetime of a physical object. Interface descriptions of virtual services are 
static, but input and output of the services can be dynamically changed. Discovering 
objects and services in the static context environments is similar to service discovery in 
traditional web services. Static properties of objects and services can be defined as 
structured metadata, and self-described APIs of virtual objects and services can be 
published for discovery. As people may use different words to describe entities, it is 
difficult to standardise metadata to describe trillions of objects in the future IoT. 

Three models are used to map discovery requests into metadata from device 
messages. The top-to-bottom method emphasis on application needs, but does not address 
data representation in device messages. For instance, goal-based service framework 
(GSF) decomposes a discovery request into several sub-tasks for discovering the 
requested services (Santos et al., 2009). GSF does not address how to describe objects in 
sensor messages and how the message can be interpreted. The bottom-to-up model 
focuses on representation of objects and services in device messages, but does not 
consider how third-parties can discover required objects and services. For example, a 
service provider module on sensors can offer self-described metadata used for describing 
the attached objects (Fortino et al., 2013). This method requires pulling metadata from 
devices via web services, and users need to represent data in sensor messages by 
following required rules, which hinder the efficiency on a large scale of the future IoT. 

In the end-to-middle model, discovery requests in different applications are mapped 
into metadata of connected devices. For instance, in the aura framework, a service 
supplier abstracts services from devices, and an Environment Manager in gateways maps 
application requests into the abstracted services based on the collected context (Sousa and 
Garlan, 2002). Implementation of the framework is challenging, as mapping contexts 
between raw sensor data and application requests involves subjectivity. Another method 
uses human operators to map contexts of sensor data into application requests 
(Ostermaier et al., 2010), as people have much better context-awareness. This method 
would significantly increases cost, and hinder the automation. 

3.5 Discovering objects and services in dynamic context environments 

To enable discovery in dynamic context environments in the IoT, three requirements 
need to be fulfilled. First, the latest status of objects and services needs to be updated in 
real-time. Second, consistent methods are required for descripting entities. Finally, if 
multiple eligible objects or services are discovered, the future IoT should have the ability 
to select an optimal one depending on the dynamic contexts. Most existing IoT  
platforms require connected sensors to embed RESTful web services. The requests  
are initiated by the IoT platforms via HTTP operations, and sensors passively respond  
(Rodríguez-Domínguez et al., 2012). The pull-style communication allows the IoT 
platforms to retrieve messages from sensors on demand. As the dynamic status of an 
object may be requested by many applications simultaneously in the future IoT, the  
pull-style would exhaust energy of a sensor device if too many requests are processed. 
Furthermore, this method also adds hardware requirements for the connected devices. 

To save sensor energy, an optimised method can periodically retrieve messages from 
sensors using a time window (Ostermaier et al., 2010). However, if a window length is 
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defined improperly, dynamic object status cannot be updated in some time-sensitive 
applications. The APPUB technique utilises an adaptive time window to cache sensor 
messages via RESTful web services (Butt et al., 2013). An adaptive timer can vary the 
length of the time window to request data from sensors. If a sensor is frequently 
requested, the window length is decreased. This optimal method aims to balance the 
trade-off between device energy efficiency and request frequency, while real-time status 
of objects is not considered. Due to inconsistent description of entities across systems, 
reasoning technologies are used to convert sensor messages to the required representation 
via adaptors (Barbero et al., 2011). An adaptor is only used for limited types of data 
conversion and also failure-prone. 

To select an optimal object or service, all search results need to be compared based on 
specified criteria. Thus, dynamic context of all involved objects and services need to be 
analysed. However, multicasting discovery requests to all sensors in networks add 
network traffic and energy consumption of sensors. A compromised method compares 
historical sensor data in databases (Elahi et al., 2009). By estimating a probability that all 
involved sensors could output the sought property value at the discovery time, the 
involved sensors can be ranked in a descending order. The first sensor has the highest 
probability to match the discovery query. A search engine retrieves real-time messages 
from the first sensor. If the first sensor cannot match the request, the search engine 
retrieves messages from other sensors in the ranked order (Elahi et al., 2009). This 
method uses historical data in databases to estimate possible property values in sensor 
messages. It can find an eligible object based on specified dynamic property values. 
However, the discovered object may be suboptimal, as the probability ranking is ordered 
based on historical behaviour of objects, rather than real-time status of objects. 

3.6 Discovering entity classification in semantic models 

Building semantic models, such as ontologies, can describe classification of entities in the 
IoT. For example, sensor network ontology can describe types of sensors and sensor 
networks, and provide methods of using ontologies to develop applications (W3C, 2011). 
To classify objects and services in the IoT, a service ontology use three sub-ontologies to 
describe hosted services in sensors, sensor locations, and physical properties (Kim et al., 
2008). However, as data schemes and entity properties cannot be customised by  
third-parties, the ontology has limited description ability and lacks scalability to support 
emerging resources. In the IoT-A project, the class information model is used to classify 
fine-grained entities and build complex relations between the entities (Walewski, 2011). 
This model does not specify how entities are represented in sensor messages and how 
context is abstracted and interpreted. 

 

3.7 The SOA-based discovery 

In traditional internet applications, the implementation of SOA is mostly based on the 
WS-* specification. In the IoT, to reduce the overhead caused by SOAP and XML, 
device profile for web services (DPWS) is a subset of the WS-* specification that enable  
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wireless sensors to publish and discover web services by exchanging service description 
network-wide (Guinard et al., 2012). Compared to the WS-* specification, RESTful web 
services can reduce communication overhead. However, RESTful web services focus on 
operating sensor data via URIs, rather than providing off-the-shelf services to  
third-parties (Guinard et al., 2009). 

Component-based middleware can also use the SOA to publish and discover services. 
Flissi et al. (2005) propose a discovery mechanism for component-based middleware. 
Service registry (SR) is a component that can register, update and remove services on the 
server-side. On the client-side, such as wireless sensors, service activator (SA) is a 
component used to interact with the SR. The SA can discover registered services in the 
SR, and publish their services to the SR (Flissi et al., 2005). The SA component is bound 
to a service component, and plays a role of API for the service component. It is similar to 
the SOA principle in the WS-* specification. 

Web services have been given priority to be used in the current IoT, as standards  
have been widely accepted in internet applications. Using human-readable web  
protocols allows people to easily develop, discover, understand and access services. 
Component-based middleware, such as EJB and CORBA, outperform Web Services 
(Petritsch, 2005). Performance is enhanced by using binary protocols in communication, 
which reduce transmission size of messages. As most IoT services are based on O2O 
communication, using machine-readable binary protocols can improve performance, and 
reduce cost and size of object-attached devices. 

4 Previous work 

In this paper, the proposed discovery mechanism is based on the previous work which 
presented a GGIoT for the future IoT (Wang et al., 2013). GGIoT is binary-protocol-
enabled and component-based. It is independent of specific devices, platforms, systems 
and networks. GGIoT can efficiently integrate resources across domains and parties. 
Figure 1 shows the overall architecture of GGIoT, which includes: perception, routing, 
middleware and global management system (GSM) tier. The perception tier collects raw 
data from the physical world using different devices, such as sensors and RFID tags, to 
represent the data as dynamic property values for virtual objects in middleware. A sensor 
message consists of a system-allocated object ID and dynamic property values of the 
physical object. For example, in a sensor message ‘MFS003412 16’, ‘MFS003412’ is a 
system-allocated object ID and ‘16’ represents a dynamic object property value of 
‘temperature’. To reduce message size to fit resource-constrained devices, other elements 
such as data schema, description of object properties, measure of units and static property 
values, are pre-described in object templates in ontologies. By mapping sensor messages 
with the related object templates in proxies, message meaning can be interpreted. As 
objects are described in shared templates rather than in device messages, meaning of 
object description can be globally consistent. As barcode and passive RFID tags do not 
have sensing ability, a message only contains an object ID links to a static virtual object 
in middleware. 
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Figure 1 The overall architecture of GGIoT (see online version for colours) 

 

The routing tier builds communication channels between a variety of end devices and 
middleware in proxies. Intermediate devices, such as smart phones and laptops can be 
used to relay received messages from end devices to a gateway. The gateways route the 
aggregated messages to the middleware tier. At the middleware tier, a distributed proxy 
consists of: identification mechanism, ontologies, virtualisation system, lookup system, 
application system and database system. The identification mechanism can assign a 
global-unique ID for a connected object. The allocated object ID is formatted into output 
messages of an object-attached device. In middleware, the physical object is virtualised 
as an object component. The related services are virtualised as service components that 
can receive and process messages from the object component. When the object 
component is initialised in the virtualisation system, the component ID is identical to the 
pre-allocated object ID in the device messages. The aim of this design is to use 
introspection capability of component-based middleware to discover virtual objects based 
on system-allocated component IDs. These identifiers are temporarily allocated to virtual 
objects and services, and can be recycled and reused. 
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In the ontologies, a generic template is used to describe a primitive type of entities, 
such as object, service and unit of measure (Wang et al., 2013). Each template can be 
accessed by a URI. By adding new property elements into a generic object template, a 
new object template can be generated to describe a customised object, and a new URI is 
allocated for the customised template. In the service ontology, a service template is used 
to generate one type of virtual services. Similarly, existing service templates can also be 
customised by users. Other entities, such as device, time, location, can also be 
represented in the ontologies. To adapt to new entities, the ontologies can be updated. To 
maintain global consistency, all ontology data is managed by the GMS. Other distributed 
proxies periodically download updates from the GMS. The GMS assigns a range of 
identifiers to each distributed proxy. Then the distributed proxies can further allocate and 
recycle the identifiers to and from the hosted virtual objects and services. 

In the IoT, most O2O communications occur within specific scopes. Using distributed 
proxies to coordinate local O2O communication can reduce network traffic and access 
latency. The distributed proxies can run on a local network, metropolitan area network, or 
in the cloud. Location and specification of a proxy is determined by the connected objects 
and services, required resources and application requirements. All distributed proxies 
form a mesh network worldwide. If O2O communication is beyond the range of a 
distributed proxy, the GMS can coordinate the communication. 

An object component can receive real-time messages from an object-attached device, 
and relay the messages to the wired service components. By mapping the received 
messages with the associated object templates, the service components can interpret the 
dynamic status of the objects, and perform required data processing tasks, such as 
displaying, routing, aggregating, filtering, storing, monitoring and converting. A service 
component has an interface to output data, and more than one receptacle to receive 
messages from the wired object components. Thus, a service component can coordinate 
O2O communication of many objects. To avoid unpredictable interaction among objects, 
it is unnecessary to trigger O2O communication if no services can be provided to two 
objects. The constraints are defined in object and service templates. 

The application system can offer various application development tools for  
third-party users. For example, template editing tools can be plugged into web browsers. 
Thus, users are allowed to describe objects and services in templates rather than in device 
messages. To save development cost, tools can be used for composing many atomic 
services into a coarse-grained service. Tools can also be provided to non-expert users for 
automatically formatting output messages of devices as required. Thus, developers can 
focus on designing applications without concern for the underlying infrastructure and 
devices. Users are also allowed to consume IoT services in a straightforward way. 

5 The discovery mechanism in GGIoT 

The lookup system offers the proposed discovery mechanism in GGIoT. A distributed 
proxy is responsible for publishing, indexing and discovering local resources. When a 
proxy cannot find a requested resource, the query will be routed to a destination proxy via 
coordination of the GMS. The discovery mechanism includes five basic types of 
discovery which are not only used for people, but also for objects and services. 
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5.1 Discovery based on entity type 

GGIoT clearly separates service type and instance. A template in ontologies describes 
one type of virtual object or service. The associated components in middleware are 
virtualised instances to implement the virtual objects or services. Figure 2 shows the 
discovery based on entity type. To find an existing template to describe an object type, 
users can specify a template ID, or use keywords, such as object properties, to look for a 
suitable template. Then the lookup system discovers a list of template candidates which 
can be translated into different languages depending on users’ preferences. The 
translation is convenient for users to discover and view object templates in their own 
language. Then users select the most suitable template to fit the new connected object. If 
a ready-made template cannot be found, users can customise an object template by 
editing an existing template. When a component is generated in a distributed proxy, an 
Identifier Manager in the proxy registers the component with the related template ID. 
Thus, a virtual object or service does not need an interface component to describe the 
hosted service. Metadata of the virtual object or service can be discovered via looking up 
the template in the ontologies. 

Figure 2 Discovery based on entity type (see online version for colours) 

 

5.2 Discovery of entity states 

In GGIoT, an object component ID is identical to the object ID in the device messages. A 
component ID is used to address a virtual object in middleware. Component states, such 
as wired, activated, deactivated and deleted, represent states of the object, such as 
connected, available, suspended, and terminated. If an object component has not received 
messages from the associated object above a predefined period of time, the object 
component can be switched to suspended state. If the object is reconnected, the 
component is reactivated. The temporary disconnections may be caused by different 
reasons, such as turning off devices and network failures. If the inactive state lasts longer, 
the object component is removed in middleware to release system resources. 

Figure 3 illustrates discovery of entity state in GGIoT. The Reconfiguration Manager 
can register, inspect and reconfigure components in component-based middleware. When 
a component is generated in middleware, it is registered in the reconfiguration manager. 
By invoking a set of control commands, a component can be reconfigured on runtime, 
such as activated, suspended, terminated, wired and unwired with other components. The 
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reconfiguration manager has the inherent ability to lookup state of the registered 
components, such as component ID, wiring and activation. 

Figure 3 Discovery of entity state (see online version for colours) 

 

5.3 Discovering objects and services in static context environments 

In GGIoT, static object properties, such as ‘Length’, and the values are described in 
object templates. The association between an object component and the template is 
registered in the Identifier Manager of a proxy. Thus, the proxy has the ability to discover 
the static context of all registered objects and services. Figure 4 illustrates the discovery 
of object and service instances based on static properties. In a proxy, a search engine in 
the ontologies can analyse user-described keywords, and search for all eligible templates 
from the pre-registered templates in the Identifier Manager. The discovered templates 
represent types of eligible virtual objects hosted in the proxy. 

Figure 4 Discovering object and service instance based on static property values  
(see online version for colours) 

 

By looking up the associated object component ID, the Identifier Manager can find all 
eligible object components hosted in the proxy. Within all the discovered components, 
only the object components in activated state can meet the application requirements. The 
Reconfiguration Manager queries the states of all discovered eligible components, and 
then further filter out the activated object components. This process demonstrates the 
discovery of object and service instances based on static properties and property values. 
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As the static context of virtual objects is in the templates, the process does not need to 
interpret sensor messages. The discovery scope is narrowed down in an order of object 
type, object instance and object states. 

5.4 Discovering objects and services in dynamic context environments 

In GGIoT, dynamic object properties, such as ‘Location’ and ‘Temperature’ can also be 
statically represented in the associated templates. Discovering object and service 
instances based on the dynamic properties is also in the static context environments. 
However, dynamic object property values can only be retrieved from real-time sensor 
messages. Figure 5 shows the discovery of entities in dynamic context environments. 

Figure 5 Discovering object and service based on static property values (see online version  
for colours) 

 

Comparing to the discovery in static context environments, a component of Context 
Collector is added, which is used to collect dynamic context of all involved object 
components. The Context Collector is wired to all the object components to receive  
real-time messages of the objects. By mapping the messages of the virtual objects into the 
associated templates, dynamic property values of these objects can be abstracted and 
interpreted. By comparing the searched property value with the collected dynamic 
property values, the Context Collector is able to discover all eligible virtual objects in a 
proxy. The discovery scope is narrowed down in an order of object type, object instance, 
object state, and dynamic property value. 

5.5 Discovery in service composition 

In GGIoT, multiple object and service components can be automatically combined to 
deliver a composed service on demand. As dynamic property values of virtual objects and 
services keep changing, the discovery mechanism needs to find the most suitable objects 
and services to compose a service in dynamic context environments. Figure 6 illustrates 
an event-triggered discovery in a service composition. Discovery requests are initiated by 
events rather than queries from human users. 
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Figure 6 Discovery in service composition (see online version for colours) 

 

When a component is initialised, activated, suspended or removed, events are reported to 
the Event Manager. Thus, state changes of a virtual object or service are notified as  
real-time events in application workflows. Property value changes of a virtual object or 
service can also be used to trigger a predefined event. For example, in the previous work, 
if the monitored temperature values are above the threshold value, a notification is 
triggered (Wang et al., 2013). A triggered event is sent to Workflow Manager that checks 
if the event is registered in a workflow of a composed service. If a workflow exists, a 
Context Collector is generated to collect dynamic context from all involved components, 
and find all available components that can join the service composition. The discovered 
component IDs are sent to a component of Service Composer. The Service Composer 
implements the service composition by wiring and unwiring these object and service 
components on demand. If multiple eligible components exist, the Service Composer 
looks for an optimal one based on the dynamic context. An event can also trigger other 
actions, such as generating a service component in a workflow. 

6 Evaluation 

Previous work has evaluated the process of virtualising physical objects and services into 
middleware components, and O2O communication among the objects in GGIoT (Wang 
et al., 2013). This section further evaluates the proposed discovery mechanism. Two 
proof-of-concept case studies are presented to illustrate the discovery in dynamic context 
environments and discovery optimisation. In middleware, interactions among the virtual 
objects and services are represented as bindings between the components. All 
components can be reconfigured at runtime to adapt to context changes. 

6.1 Evaluation setup 

As GGIoT is independent of specific devices, systems, networks and applications, the 
proposed discovery mechanism are not confined to the setup and case studies in this 
section. In this test, an Arduino UNO and a Zigbee Xbee module were composed to 
simulate a generic sensor or RFID tag. Formats of device messages were written into an 
Arduino UNO (Arduino, 2014), and transmitted via a ZigbeeXbee (ZigBeeAlliance, 
2015). Figure 7 shows the evaluation setup. A dual-core PC acts a distributed proxy. The 
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simulated sensors transmit messages of involved objects to the proxy. A ZigBee Xbee 
Explorer aggregates messages of all sensors in a WSN, and send the messages to the 
proxy via a USB port. The proxy runs the designed virtualisation system based on the 
LooCI OSGI V1.0 (Hughes et al., 2009). Windows XP are used as underlying systems. 
XML was used as format to describe ontologies and templates in the proxy. The 
virtualisation system can interpret meaning of the device messages by mapping the 
messages into the relevant templates. To reduce processing load for a distributed proxy, 
only parts of object property values are interpreted in a specific service. For example, it is 
unnecessary to interpret ‘Length’ in a temperature monitoring service. 

Figure 7 The evaluation setup (see online version for colours) 

 

6.2 Discovery in dynamic context environments 

In Figure 8, this case study assumes that a bus company provides a service that allows 
users to lookup vacant seats of the buses via mobile phones. The Smith family tries to 
discover an available bus to a hotel in a foreign city. They send a discovery request to a 
near proxy by a mobile phone. The discover request includes the required number of 
vacant seats and specified hotel address. By analysing the request, a search engine in 
middleware generates a lookup service that can dynamically discover suitable buses with 
enough vacant seats for the Smith family. Then the discovered results are sent to the 
users’ mobile phone. A discovery result may contain multiple available buses. 

Figure 8 The lookup model in GGIoT (see online version for colours) 
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Each seat on a bus is equipped with a pressure sensor to sense if a seat is taken by a 
passenger. By accumulating a total number of vacant seats in the bus, the bus can 
generate a dynamic object property value ‘Vacant-seats’ in real-time. As passengers may 
get in and out of the buses without prediction, property values of ‘Vacant-seats’ are 
dynamically changed. Via mobile networks, the bus can route the messages to the object 
component in middleware of a distributed proxy. Each message contains two data fields 
‘ObjectID’ and ‘Vacant-seats’. Other static bus properties and the values are  
pre-described in the related object templates in ontologies. By wiring with all the 
involved bus components, the Context Collector can receive messages from these bus 
components, and interpret dynamic property values of ‘Vacant-seats’ of these buses. By 
comparing the values of ‘Vacant-seats’ to the user-requested number of vacant seats, all 
eligible buses with enough vacant seats can be discovered. A Bus Explorer on the users’ 
phone is used to input discovery requests and receive the search results. 

Figure 9 The workflow of object discovery (see online version for colours) 

 

Figure 9 illustrates the workflow of the object discovery. The module Discovery based on 
Static Property Values performs the discovery of an object instance based on object type. 
This test assumes that Bus Route Number is a static property of all the involved buses, 
and buses in two route numbers R0098 and R0564 pass the hotel. Multiple buses may run 
on the same route. By parsing the object templates in the ontologies, template IDs of all 
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bus components on the two bus routes can be found. In the proxy, as the Identifier 
Manager has pre-registered the mapping between the hosted virtual objects and the 
associated template IDs, object IDs of all bus components on the two bus routers can be 
queried. The module Discovery based on component states filters out all working buses 
that stop at the hotel. In middleware, a bus component has states, such as activated or 
suspended, to represent if the bus is in service. By querying states of the bus components, 
activated bus components on the two bus routes are selected. 

To collect dynamic context of the selected buses, the Context Collector is wired to the 
activated bus components to receive the real-time messages. The module Abstraction 
Service abstracts object IDs and dynamic values of ‘Vacant-seat’ from the messages. The 
mappings between the object IDs and values of ‘Vacant-seats’ are cached in a hash map, 
and the hash map is updated when new bus messages arrive. It provides a repository to 
cache the latest property values of ‘Vacant-seat’ of these buses in this discovery. If O2O 
communications across many networks, two methods can be used to verify the latest 
messages. For sensors with accurate timing capability, timestamps can be added into 
output messages. Otherwise, timestamps can be appended to sensor messages at a local 
proxy when the proxy receives the messages. 

The module of Discovery based on dynamic Property Values builds a Telnet server in 
the Context Collector to receive and to analyse user-inputted requirements. A Telnet 
client is running in the Bus Explorer comment. By wiring the Context Collector to the 
Bus Explorer, a user can send a required number of seats to the Context Collector. The 
Telnet server abstracts the required number of seats, and then stores the value into a 
variable requiredSeats. A service periodically retrieves the cached messages from the 
hash map every 5 seconds. By comparing the latest values of ‘Vacant-seats’ of the buses 
with the variable requiredSeats, all buses with enough seats are discovered in real-time. 
Search results are formatted into messages and then sent to the connected Telnet clients. 
In this test, by inputting different values of required number of seats, the Context 
Collector returned all available buses and the number of vacant seats. 

This test outputs search results via two methods: Telnet-based and middleware-based. 
As component-based middleware runs in closed environments, it cannot interact with 
other middleware or Web Services. To resolve this issue, the Telnet-based method 
enables isolated middleware components to output messages on sockets. Thus, users on 
other platforms can also interact with the discovery service by connecting to the  
socket. For example, the user interface can be designed as a RESTful API. For the 
component-based method, search results can be converted into required data formats, and 
published on the event bus of the middleware. Thus, other service components that 
subscribed to the Context Collector can receive and process the search results. 

6.3 Discovery optimisation 

In some situations, many eligible objects and services are discovered to respond to the 
same request. The discovery mechanism in GGIoT can recommend an optimal one from 
all searched results depending on the dynamic context. In Figure 10, the Smith family 
wants to add other search condition, discovering the nearest bus with enough vacant 
seats, to optimise discovery results. This scenario assumes that both bus A and B can 
provide enough vacant seats, and the Smith family starts to wait for bus A in a bus stop. 
They use a Bus Tracker service running on a mobile phone to track real-time position of 
bus A. When bus A stops at a near bus stop, bus B overtakes bus A and then bus B 
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becomes the nearest bus. The Context Collector is aware of the context change. It 
disconnects the coupling between bus A component and the mobile phone, and then 
connects bus B component with the phone. Consequently, the Bus Tracker component on 
the phone is switched to receive real-time messages from bus B. 

Figure 10 A case study based on the interaction model in GGIoT (see online version for colours) 

 

Figure 11 The workflow of service optimisation (see online version for colours) 

 

In the test, a Service Composer is wired to the Context Collector to receive real-time 
messages of all discovered bus with enough vacant seats. Thus, the Service Composer is 
aware of context change of all the eligible buses. When the event ‘Bus B overtakes bus A’ 
occurs, the Service Composer triggers a predefined action to discover an alternative bus 
component to replace of the bus A component. By analysing collected contexts, bus B 
component is discovered. Then the Service Composer coordinates the communication by 
unwiring the Bus Tracker and bus A component, and connecting the Bus Tracker to bus 
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B component. Figure 11 shows the relation between the two case studies, and a workflow 
of the service optimisation scenario. A component of Bus Selector was designed. The 
Bus Selector can dynamically determines the nearest bus with required number of seats, 
and then route the messages of the nearest bus to the Bus Tracker. 

By wiring to the Context Collector, the Bus Selector can receive real-time messages 
of all the discovered buses with required number of seats. Each received message 
contains multiple dynamic object property values, such as Vacant-seats and Location. By 
default, data type of all received messages is String. It is necessary to split all data 
elements of a message and convent these data elements to required data types. For 
example, in this case, to calculate the minimal distance between a bus and the user, 
property values of ‘location’ were tuned into Float. In GGIoT, data types of property 
values are described in the object and service templates. 

All the converted data elements of a message are stored in an object of busProperty 
which is cached in a hash map. When the Bus Selector receives a new message from the 
Context Collector, a method of findNearestBusId() calculates a real-time distance 
between the bus described in the message and the user. By comparing the distance to the 
previously-stored minimum distance, the method decides if it updates the stored object 
ID of the nearest bus and the minimal distance. In this case, the Bus Selector acts as a 
service optimiser to recommend a bus with the minimum distance from all available 
buses with enough number of seats. The Context Collector and Bus Selector offer a 
composed service to the Bus Tracker. Number of vacant seats and Bus location are two 
types of collected dynamic contexts. The two services can also be designed in one service 
component to reduce the communication overhead between them, with the cost of 
removing the loose-coupling between the two service components. 

7 Conclusions 

The current IoT is constrained to specific devices, platforms, domains and services. Many 
obstacles, such as incompatible existing standards, lack of applications, high cost and 
difficult deployment, hinder widespread use. Due to the inconsistent object representation 
in device messages worldwide, it is challenging to design a discovery mechanism across 
platforms, systems, domains and applications. WEB services can enable discovery based 
on the SOA principle, and has been given priority to be used in the current IoT, as the 
standards have been widely accepted in traditional internet applications. However, 
human-readable protocols add a non-negligible overhead for a mass of O2O 
communication and discovery queries in the future IoT. Moreover, using web services 
also increases cost and size of the embedded devices. 

For the RESTful web services, the pull-style discovery queries would exhaust energy 
of a sensor if the sensor is requested by too many applications. In a proxy, using time 
windows to request and cache messages of web-enabled devices can save energy used for 
frequent requests. However, this method may not discover the real-time state of a 
connected object. Moreover, multicasting discovery requests network-wide can cause 
random interaction among objects when no service is provided to the objects. As the 
current IoT cannot clearly separate service type and service instance, more data need to 
be transmitted and processed, and the discovery scope is significantly increased. 

This paper extends the previous work, and presents a discovery mechanism based on 
the architecture GGIoT. To reduce device overhead and network traffic, architecture of 
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GGIoT is de-centralised; a distributed proxy is only responsible for discovering the local 
objects and services. As GGIoT uses binary protocols for O2O communication, most 
resource-constrained devices, such as passive RFID tags, can be integrated. To avoid 
multicasting discovery queries to all devices network-wide, connected physical objects 
are virtualised as object components in middleware. Thus, discovery requests are sent to 
the Context Collector which can collect dynamic context from the involved object 
components as required. 

The proposed discovery mechanism enables discovery of entities in dynamic context 
environments in the future IoT. The discovery scope is gradually narrowed down in order 
of object type, object instance, object state, and dynamic property values. Thus, only 
messages of involved objects and services are collected and interpreted in a discovery 
request. A local proxy coordinates interaction among multiple objects and services based 
on object and service type. Thus, random interaction between objects can be avoided. If 
many eligible objects or services are discovered in a request, the discovery mechanism 
can intelligently select an optimal object or service to meet user requirements. The 
Service Composer looks for the most suitable objects and services to build a composed 
service to deduce development cost. The constituent objects and services in the composed 
service can be dynamically replaced by other virtual objects and services, due to the 
dynamic context change in a specific application. 
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