

 326 Int. J. Services Technology and Management, Vol. 25, Nos. 3/4, 2019

 Copyright © 2019 Inderscience Enterprises Ltd.

Discovering objects and services in context-aware
IoT environments

Wei Wang*
School of Engineering and Information Technology,
Murdoch University,
8 Lubberdina Count, Gosnells, WA 6110, Australia
Email: jeffustc@hotmail.com
*Corresponding author

Kevin Lee
College of Arts and Science, School of Science and Technology,
Nottingham Trent University, UK
Email: kevin.lee@ntu.ac.uk

David Murray
School of Engineering and Information Technology,
Murdoch University, Australia
Email: d.murray@murdoch.edu.au

Jian Guo
College of Engineering and Computer Science,
Australian National University, Australia
Email: edison.guo@anu.edu.au

Abstract: The future IoT is expected to connect trillions of objects across
infrastructures and domains worldwide. Compared to traditional web
applications, the context of objects, such as dynamic object property values,
may rapidly change. Browsing web pages with hyperlinks is unsuitable for
representing and discovering the dynamic state of objects and services in the
IoT, as the dynamic context is less keyword-rich than the relatively static
contents on traditional web pages. This paper reviews state-of-the-art in
discovering objects and services in the current IoT, and analyses the
constraints. This paper also proposes a discovery mechanism, which is
extended from previous work GGIoT. The proposed discovery mechanism is
aware of dynamic context change in the IoT, and can improve the discovery
process using automation.

Keywords: internet of things; IoT; discovery; dynamic property; ontology.

Reference to this paper should be made as follows: Wang, W., Lee, K.,
Murray, D. and Guo, J. (2019) ‘Discovering objects and services in
context-aware IoT environments’, Int. J. Services Technology and
Management, Vol. 25, Nos. 3/4, pp.326–347.

 Discovering objects and services in context-aware IoT environments 327

Biographical notes: Wei Wang was conferred a Doctor of Information
Technology (DIT) degree at Murdoch University, Australia in 2015, a Master
of e-Commerce degree at University of South Australia in 2008, and a Bachelor
of Computer Science and Technology at University of Science and Technology
of China in 2005. In the last five years, he was engaged in some research
projects in device integration, data integration, and IoT architecture design.

Kevin Lee is a Senior Lecturer at Nottingham Trent University, UK. He
received his BSc, MSc, and PhD from Lancaster University. He was previously
a Research Associate at the University of Manchester in the UK, post-graduate
Research Fellow at University of Mannheim in Germany and a Senior Lecturer
at Murdoch University, Australia. He has published over 60 papers in the areas
of distributed systems and adaptive systems.

David Murray is a Lecturer and Academic Chair at the School of Engineering
and Information Technology, Murdoch University, Australia. He received his
PhD from Murdoch University. He teaches in the areas of data communications
and wireless networks. His research is in distributed systems with a focus on
data communications. His approaches are usually applied and experimental. He
has published over 20 papers in the area of data communications and wireless
networks.

Jian Guo is a PhD student in Computer Science at the College of Engineering
and Computer Science, Australian National University (ANU). His research
interests include machine learning, computer vision. His is also interested in the
enabling technologies for the architecture of big data and internet of things.

This paper is a revised and expanded version of a paper entitled ‘Building a
generic architecture for the internet of things’ presented at IEEE Eighth
International Conference on the Intelligent Sensors, Sensor Networks and
Information Processing, Melbourne, Australia, 2–5 April 2013.

1 Introduction

The 6A connectivity of the future internet of things (IoT) will enable people and objects
to be connected anytime, anyplace, with anything and anyone, using any path/network
and any service (ITU, 2005). These virtual objects have identities, attributes, and
personalities and can communicate via intelligent interfaces. In the IoT, objects, services
and devices can be unpredictably added, moved and terminated, and property values of
objects, such as temperature and location, may also change in a few seconds. The
spontaneous events will cause dynamic context changes in real-time and worldwide. A
great number of heterogeneous devices, such as barcodes, RFID tags and wireless sensors
will be attached to physical objects to collect the context distributed across different
systems and networks (Gubbi et al., 2013). The future IoT should enable the discovery of
the object status in real-time. If many objects or services are discovered, an object should
only communicate with certain objects and services to avoid unpredictable interaction. It
is beneficial for reducing device and network overhead. With context-awareness, service
coordination, composition, optimisation and automation can be enabled in the IoT.

Discovery in dynamic context environments in the IoT is significantly more difficult
than searching static contents, such as text and images, on the internet. Browsing static

 328 W. Wang et al.

web pages with hyperlinks is unsuitable for searching objects in the future IoT, as the
representation for dynamic state of objects and services is less keyword-rich than
contents on traditional web pages (Guinard et al., 2010). In the IoT, collected context can
be casual, variable, volatile, redundant, incomplete, inaccurate, and dependent on or
conflict with other contexts (Wei and Jin, 2012). Traditional internet applications can use
web Services to exchange slowly-changed and unstructured content which are provided
and consumed by humans. The current IoT lacks a consistent and structured method of
describing entities (Mayer et al., 2012). Discovery in the future IoT require the responses
to real-time events and user requests with recently collected sensor data (Yang et al.,
2011). Web services can provide device integration and the SOA-based service
discovery. However, web services are better for resource-rich devices (Wei and Jin,
2012). The future IoT needs to integrate a great number of devices with limited battery
power, processing ability, and memory size, such as passive RFID tags.

In previous work, a global generic architecture (GGIoT) was proposed for the future
IoT (Wang et al., 2013). This paper extends the previous work to present a discovery
mechanism based on GGIoT. The discovery mechanism aims to enable discovering
object, service and other entities in dynamic context environments in the future IoT. This
paper is structured as follows: Section 2 discusses architectural requirements for
discovering entities in the future IoT. Section 3 reviews related work, and analyses the
constraints. Section 4 introduces the previous work GGIoT. Section 5 presents the
proposed discovery mechanism in GGIoT. In Section 6, the discovery mechanism is
evaluated via case studies. Finally, Section 7 concludes this paper.

2 Architectural requirements

Discovery in the future IoT should not only be used for people, but also for objects,
services and applications (Saint-Exupery, 2009). Objects can intelligently search for the
ambient objects, services and devices, and interact with them to meet application needs.
This section discusses the architectural requirements.

• Identification: The identification mechanism in the IoT should enable identifiers to
be reconfigured easily (Saint-Exupery, 2009). As most physical objects have a
limited lifetime, recycling identifiers is beneficial for reusing the limited identifiers.
Because objects are often moved between spaces, identifiers of objects and services
need to be independent of current networks (Saint-Exupery, 2009).

• Decentralisation: Most objects often interact with other objects in their vicinity and
the communication is limited network-wide. It is inefficient to manage trillions of
objects and services in a central server due to access latency, processing capability,
network traffic, security and privacy issues. To avoid global routing of excessive
discovery requests and to reduce device overhead and network traffic, the future IoT
should use decentralised discovery topology (Zhang et al., 2011).

• Service-oriented architecture (SOA): The SOA can enable seamless interoperability
among heterogeneous devices, service optimisation, composition and automation in
the IoT. Independent service providers and consumers can publish, and discover
services on globally public platforms. Requirements of SOA-based discovery in the

 Discovering objects and services in context-aware IoT environments 329

future IoT include minimal service overhead and registration effort, discovering
entities in the dynamic context, and on-demand provisioning (Cuinard et al., 2010).

• Syntactic and semantic coherence: People may use different languages to describe
entities. The discovery mechanisms in the IoT need to interpret exchanged messages
among systems. Syntactic coherence can be achieved by setting common data format
in exchanged messages (Terziyan et al., 2010). To understand embedded
vocabularies in the shared format, semantic coherence can be realised using
customised adaptors to interpret the exchanged data, or by building ontologies to
regularise semantic rules for describing entities (Terziyan et al., 2010).

• Automation: The discovery mechanism in the future IoT should be automated
(Mayer et al., 2012). This requires the ability of adjusting discovery strategy based
on current context without a manual trigger. Objects can automatically discover and
interact with nearby objects. Automated discovery can also facilitate automated
service optimisation. Multiple objects and services can intelligently form a composed
service on demand.

• Class-level discovery: Connecting trillions of devices indicates massive search
scope. With the class-level discovery, the scope can be narrowed down to specific
types of entities to reduce network traffic for queries. The class-level discovery can
be used for coordinating multiple objects in object-to-object (O2O) communication.
One type of objects is restricted to interact with pre-defined types of objects and
services.

• Dynamic-context-level discovery: The future IoT should enable an ability to discover
dynamic object property values in real-time. If many eligible objects or services are
discovered, an optimal object should be recommended depend on the dynamic
context. If no eligible object or services are discovered, on-demand provisioning can
be offered by deploying a new service instance to meet application needs (Cuinard et
al., 2010).

3 Related work

3.1 Discovery topology

The discovery topologies in the IoT can be classified into four categories: centralised,
federal, peer-to-peer and hierarchical. The centralised topology uses a service agent to
register services in a local directory. Users can lookup registered services by sending
queries to the directory (Zhu et al., 2005). The centralised topology is suitable for
discovery in local project scenarios. As the future IoT will reach a global scale, a
centralised solution is undesirable (Mayer et al., 2012). The discovery mechanism in a
local system may use the private discovery protocols to discover the local devices and
services. The federal topology allows multiple systems to create discovery entries for
each other in their repositories (Stirbu, 2008). The federal topology is inefficient when
many independent systems exist, as excessive adaptors are needed to bridge discovery
requests and responds from and to different systems.

A hierarchical topology uses a tree structure to index and discover entities. A system
or sensor node has the ability to discover the local resources, and respond to discovery

 330 W. Wang et al.

requests from its parent-system. In the future IoT, objects may move across networks,
which dynamically change the topology. The discovery on the tree topology needs to
update the topology in real-time. A peer-to-peer topology is a distributed architecture that
each system is equally privileged, and can discover each other without previous
configuration and mutual agreement (Edwards, 2006). For example, multicast DNS
(mDNS) enables devices to find each other and the hosted services network-wide by
multicasting messages to the reserved address and UDP port without using third-party
servers (Cheshire and Krochmal, 2013). This method is unsuitable for the large-scale
scenarios of the future IoT, as it can cause large network-wide interactions. Moreover,
embedding an IP stack cannot fit some resource-constrained devices.

3.2 The device-level discovery

Device-level discovery enables devices to register and advertise themselves in IoT
networks (Cuinard et al., 2010). If two devices utilise the same Device Discovery
Protocols (DDPs), such as the mDNS, they can find each other in networks. Enabling the
device-level discovery is a prerequisite of discovering the described objects and services
on devices. Service Discovery Protocols (SDPs) are based on DDPs, and are used to
advise and discover the hosted services on devices. For example, Bonjour is the SDP of
Apple’s devices, which uses the mDNS protocols as the underlying DDP (Lee et al.,
2007). As device manufacturers may use different SDPs in their products, it is difficult to
guarantee that services will interoperate, even though all these devices can communicate
with each other using IP protocols (Katasonov et al., 2008).

In the voyager framework, a centralised local server is used to maintain an up-to-date
registration of connected devices at the device address level (Savidis and Stephanidis,
2005). When a device connects to networks, it multicasts a HELLO message via UDP.
Other devices in a network can detect the device and retrieve metadata of the device from
the message. An optimised method can reduce the discovery scope (Guinard et al., 2009).
This approach uses device name, type and keyword as filters in a multicast message.
Only devices in a network that match the criteria respond to the request. The filters need
to be pre-configured on the web-enabled devices.

3.3 Discovering objects and services based on identifiers

In the future IoT, each connected object or service needs to be individually addressed.
IPv6 can theoretically provide enough identifiers for connected devices worldwide
(Mulligan, 2007). However, embedding IP stacks increases the device cost. Burning
serial-numbers into device firmware can be used to identify object-attached devices.
However, it is difficult to recycle serial numbers if the objects are abandoned. Both the
two identification methods are device-centric, rather than object-centric. The third
method is to temporarily allocate identifiers for virtual objects in middleware, which is
used by most existing IoT platforms, such as the Xively (2015) platform. In the IoT,
identifiers used in different systems can be translated into Uniform Resource Identifiers
(URIs). For example, ONS can convert EPC numbers into URIs in EPC Information
Services (Mealling, 2004). ID@URI can translate manufacturer-assigned identifiers, such
as serial-numbers and barcodes, to URIs of product agents (Främling et al., 2006). Id-IP
table is an IoT directory service that can map identifiers of objects, services and
operations, into IP addresses (Fortino et al., 2013).

 Discovering objects and services in context-aware IoT environments 331

3.4 Discovering objects and services in static context environments

In the IoT, static properties of virtual objects, such as length and name, are constant
during the lifetime of a physical object. Interface descriptions of virtual services are
static, but input and output of the services can be dynamically changed. Discovering
objects and services in the static context environments is similar to service discovery in
traditional web services. Static properties of objects and services can be defined as
structured metadata, and self-described APIs of virtual objects and services can be
published for discovery. As people may use different words to describe entities, it is
difficult to standardise metadata to describe trillions of objects in the future IoT.

Three models are used to map discovery requests into metadata from device
messages. The top-to-bottom method emphasis on application needs, but does not address
data representation in device messages. For instance, goal-based service framework
(GSF) decomposes a discovery request into several sub-tasks for discovering the
requested services (Santos et al., 2009). GSF does not address how to describe objects in
sensor messages and how the message can be interpreted. The bottom-to-up model
focuses on representation of objects and services in device messages, but does not
consider how third-parties can discover required objects and services. For example, a
service provider module on sensors can offer self-described metadata used for describing
the attached objects (Fortino et al., 2013). This method requires pulling metadata from
devices via web services, and users need to represent data in sensor messages by
following required rules, which hinder the efficiency on a large scale of the future IoT.

In the end-to-middle model, discovery requests in different applications are mapped
into metadata of connected devices. For instance, in the aura framework, a service
supplier abstracts services from devices, and an Environment Manager in gateways maps
application requests into the abstracted services based on the collected context (Sousa and
Garlan, 2002). Implementation of the framework is challenging, as mapping contexts
between raw sensor data and application requests involves subjectivity. Another method
uses human operators to map contexts of sensor data into application requests
(Ostermaier et al., 2010), as people have much better context-awareness. This method
would significantly increases cost, and hinder the automation.

3.5 Discovering objects and services in dynamic context environments

To enable discovery in dynamic context environments in the IoT, three requirements
need to be fulfilled. First, the latest status of objects and services needs to be updated in
real-time. Second, consistent methods are required for descripting entities. Finally, if
multiple eligible objects or services are discovered, the future IoT should have the ability
to select an optimal one depending on the dynamic contexts. Most existing IoT
platforms require connected sensors to embed RESTful web services. The requests
are initiated by the IoT platforms via HTTP operations, and sensors passively respond
(Rodríguez-Domínguez et al., 2012). The pull-style communication allows the IoT
platforms to retrieve messages from sensors on demand. As the dynamic status of an
object may be requested by many applications simultaneously in the future IoT, the
pull-style would exhaust energy of a sensor device if too many requests are processed.
Furthermore, this method also adds hardware requirements for the connected devices.

To save sensor energy, an optimised method can periodically retrieve messages from
sensors using a time window (Ostermaier et al., 2010). However, if a window length is

 332 W. Wang et al.

defined improperly, dynamic object status cannot be updated in some time-sensitive
applications. The APPUB technique utilises an adaptive time window to cache sensor
messages via RESTful web services (Butt et al., 2013). An adaptive timer can vary the
length of the time window to request data from sensors. If a sensor is frequently
requested, the window length is decreased. This optimal method aims to balance the
trade-off between device energy efficiency and request frequency, while real-time status
of objects is not considered. Due to inconsistent description of entities across systems,
reasoning technologies are used to convert sensor messages to the required representation
via adaptors (Barbero et al., 2011). An adaptor is only used for limited types of data
conversion and also failure-prone.

To select an optimal object or service, all search results need to be compared based on
specified criteria. Thus, dynamic context of all involved objects and services need to be
analysed. However, multicasting discovery requests to all sensors in networks add
network traffic and energy consumption of sensors. A compromised method compares
historical sensor data in databases (Elahi et al., 2009). By estimating a probability that all
involved sensors could output the sought property value at the discovery time, the
involved sensors can be ranked in a descending order. The first sensor has the highest
probability to match the discovery query. A search engine retrieves real-time messages
from the first sensor. If the first sensor cannot match the request, the search engine
retrieves messages from other sensors in the ranked order (Elahi et al., 2009). This
method uses historical data in databases to estimate possible property values in sensor
messages. It can find an eligible object based on specified dynamic property values.
However, the discovered object may be suboptimal, as the probability ranking is ordered
based on historical behaviour of objects, rather than real-time status of objects.

3.6 Discovering entity classification in semantic models

Building semantic models, such as ontologies, can describe classification of entities in the
IoT. For example, sensor network ontology can describe types of sensors and sensor
networks, and provide methods of using ontologies to develop applications (W3C, 2011).
To classify objects and services in the IoT, a service ontology use three sub-ontologies to
describe hosted services in sensors, sensor locations, and physical properties (Kim et al.,
2008). However, as data schemes and entity properties cannot be customised by
third-parties, the ontology has limited description ability and lacks scalability to support
emerging resources. In the IoT-A project, the class information model is used to classify
fine-grained entities and build complex relations between the entities (Walewski, 2011).
This model does not specify how entities are represented in sensor messages and how
context is abstracted and interpreted.

3.7 The SOA-based discovery

In traditional internet applications, the implementation of SOA is mostly based on the
WS-* specification. In the IoT, to reduce the overhead caused by SOAP and XML,
device profile for web services (DPWS) is a subset of the WS-* specification that enable

 Discovering objects and services in context-aware IoT environments 333

wireless sensors to publish and discover web services by exchanging service description
network-wide (Guinard et al., 2012). Compared to the WS-* specification, RESTful web
services can reduce communication overhead. However, RESTful web services focus on
operating sensor data via URIs, rather than providing off-the-shelf services to
third-parties (Guinard et al., 2009).

Component-based middleware can also use the SOA to publish and discover services.
Flissi et al. (2005) propose a discovery mechanism for component-based middleware.
Service registry (SR) is a component that can register, update and remove services on the
server-side. On the client-side, such as wireless sensors, service activator (SA) is a
component used to interact with the SR. The SA can discover registered services in the
SR, and publish their services to the SR (Flissi et al., 2005). The SA component is bound
to a service component, and plays a role of API for the service component. It is similar to
the SOA principle in the WS-* specification.

Web services have been given priority to be used in the current IoT, as standards
have been widely accepted in internet applications. Using human-readable web
protocols allows people to easily develop, discover, understand and access services.
Component-based middleware, such as EJB and CORBA, outperform Web Services
(Petritsch, 2005). Performance is enhanced by using binary protocols in communication,
which reduce transmission size of messages. As most IoT services are based on O2O
communication, using machine-readable binary protocols can improve performance, and
reduce cost and size of object-attached devices.

4 Previous work

In this paper, the proposed discovery mechanism is based on the previous work which
presented a GGIoT for the future IoT (Wang et al., 2013). GGIoT is binary-protocol-
enabled and component-based. It is independent of specific devices, platforms, systems
and networks. GGIoT can efficiently integrate resources across domains and parties.
Figure 1 shows the overall architecture of GGIoT, which includes: perception, routing,
middleware and global management system (GSM) tier. The perception tier collects raw
data from the physical world using different devices, such as sensors and RFID tags, to
represent the data as dynamic property values for virtual objects in middleware. A sensor
message consists of a system-allocated object ID and dynamic property values of the
physical object. For example, in a sensor message ‘MFS003412 16’, ‘MFS003412’ is a
system-allocated object ID and ‘16’ represents a dynamic object property value of
‘temperature’. To reduce message size to fit resource-constrained devices, other elements
such as data schema, description of object properties, measure of units and static property
values, are pre-described in object templates in ontologies. By mapping sensor messages
with the related object templates in proxies, message meaning can be interpreted. As
objects are described in shared templates rather than in device messages, meaning of
object description can be globally consistent. As barcode and passive RFID tags do not
have sensing ability, a message only contains an object ID links to a static virtual object
in middleware.

 334 W. Wang et al.

Figure 1 The overall architecture of GGIoT (see online version for colours)

The routing tier builds communication channels between a variety of end devices and
middleware in proxies. Intermediate devices, such as smart phones and laptops can be
used to relay received messages from end devices to a gateway. The gateways route the
aggregated messages to the middleware tier. At the middleware tier, a distributed proxy
consists of: identification mechanism, ontologies, virtualisation system, lookup system,
application system and database system. The identification mechanism can assign a
global-unique ID for a connected object. The allocated object ID is formatted into output
messages of an object-attached device. In middleware, the physical object is virtualised
as an object component. The related services are virtualised as service components that
can receive and process messages from the object component. When the object
component is initialised in the virtualisation system, the component ID is identical to the
pre-allocated object ID in the device messages. The aim of this design is to use
introspection capability of component-based middleware to discover virtual objects based
on system-allocated component IDs. These identifiers are temporarily allocated to virtual
objects and services, and can be recycled and reused.

 Discovering objects and services in context-aware IoT environments 335

In the ontologies, a generic template is used to describe a primitive type of entities,
such as object, service and unit of measure (Wang et al., 2013). Each template can be
accessed by a URI. By adding new property elements into a generic object template, a
new object template can be generated to describe a customised object, and a new URI is
allocated for the customised template. In the service ontology, a service template is used
to generate one type of virtual services. Similarly, existing service templates can also be
customised by users. Other entities, such as device, time, location, can also be
represented in the ontologies. To adapt to new entities, the ontologies can be updated. To
maintain global consistency, all ontology data is managed by the GMS. Other distributed
proxies periodically download updates from the GMS. The GMS assigns a range of
identifiers to each distributed proxy. Then the distributed proxies can further allocate and
recycle the identifiers to and from the hosted virtual objects and services.

In the IoT, most O2O communications occur within specific scopes. Using distributed
proxies to coordinate local O2O communication can reduce network traffic and access
latency. The distributed proxies can run on a local network, metropolitan area network, or
in the cloud. Location and specification of a proxy is determined by the connected objects
and services, required resources and application requirements. All distributed proxies
form a mesh network worldwide. If O2O communication is beyond the range of a
distributed proxy, the GMS can coordinate the communication.

An object component can receive real-time messages from an object-attached device,
and relay the messages to the wired service components. By mapping the received
messages with the associated object templates, the service components can interpret the
dynamic status of the objects, and perform required data processing tasks, such as
displaying, routing, aggregating, filtering, storing, monitoring and converting. A service
component has an interface to output data, and more than one receptacle to receive
messages from the wired object components. Thus, a service component can coordinate
O2O communication of many objects. To avoid unpredictable interaction among objects,
it is unnecessary to trigger O2O communication if no services can be provided to two
objects. The constraints are defined in object and service templates.

The application system can offer various application development tools for
third-party users. For example, template editing tools can be plugged into web browsers.
Thus, users are allowed to describe objects and services in templates rather than in device
messages. To save development cost, tools can be used for composing many atomic
services into a coarse-grained service. Tools can also be provided to non-expert users for
automatically formatting output messages of devices as required. Thus, developers can
focus on designing applications without concern for the underlying infrastructure and
devices. Users are also allowed to consume IoT services in a straightforward way.

5 The discovery mechanism in GGIoT

The lookup system offers the proposed discovery mechanism in GGIoT. A distributed
proxy is responsible for publishing, indexing and discovering local resources. When a
proxy cannot find a requested resource, the query will be routed to a destination proxy via
coordination of the GMS. The discovery mechanism includes five basic types of
discovery which are not only used for people, but also for objects and services.

 336 W. Wang et al.

5.1 Discovery based on entity type

GGIoT clearly separates service type and instance. A template in ontologies describes
one type of virtual object or service. The associated components in middleware are
virtualised instances to implement the virtual objects or services. Figure 2 shows the
discovery based on entity type. To find an existing template to describe an object type,
users can specify a template ID, or use keywords, such as object properties, to look for a
suitable template. Then the lookup system discovers a list of template candidates which
can be translated into different languages depending on users’ preferences. The
translation is convenient for users to discover and view object templates in their own
language. Then users select the most suitable template to fit the new connected object. If
a ready-made template cannot be found, users can customise an object template by
editing an existing template. When a component is generated in a distributed proxy, an
Identifier Manager in the proxy registers the component with the related template ID.
Thus, a virtual object or service does not need an interface component to describe the
hosted service. Metadata of the virtual object or service can be discovered via looking up
the template in the ontologies.

Figure 2 Discovery based on entity type (see online version for colours)

5.2 Discovery of entity states

In GGIoT, an object component ID is identical to the object ID in the device messages. A
component ID is used to address a virtual object in middleware. Component states, such
as wired, activated, deactivated and deleted, represent states of the object, such as
connected, available, suspended, and terminated. If an object component has not received
messages from the associated object above a predefined period of time, the object
component can be switched to suspended state. If the object is reconnected, the
component is reactivated. The temporary disconnections may be caused by different
reasons, such as turning off devices and network failures. If the inactive state lasts longer,
the object component is removed in middleware to release system resources.

Figure 3 illustrates discovery of entity state in GGIoT. The Reconfiguration Manager
can register, inspect and reconfigure components in component-based middleware. When
a component is generated in middleware, it is registered in the reconfiguration manager.
By invoking a set of control commands, a component can be reconfigured on runtime,
such as activated, suspended, terminated, wired and unwired with other components. The

 Discovering objects and services in context-aware IoT environments 337

reconfiguration manager has the inherent ability to lookup state of the registered
components, such as component ID, wiring and activation.

Figure 3 Discovery of entity state (see online version for colours)

5.3 Discovering objects and services in static context environments

In GGIoT, static object properties, such as ‘Length’, and the values are described in
object templates. The association between an object component and the template is
registered in the Identifier Manager of a proxy. Thus, the proxy has the ability to discover
the static context of all registered objects and services. Figure 4 illustrates the discovery
of object and service instances based on static properties. In a proxy, a search engine in
the ontologies can analyse user-described keywords, and search for all eligible templates
from the pre-registered templates in the Identifier Manager. The discovered templates
represent types of eligible virtual objects hosted in the proxy.

Figure 4 Discovering object and service instance based on static property values
(see online version for colours)

By looking up the associated object component ID, the Identifier Manager can find all
eligible object components hosted in the proxy. Within all the discovered components,
only the object components in activated state can meet the application requirements. The
Reconfiguration Manager queries the states of all discovered eligible components, and
then further filter out the activated object components. This process demonstrates the
discovery of object and service instances based on static properties and property values.

 338 W. Wang et al.

As the static context of virtual objects is in the templates, the process does not need to
interpret sensor messages. The discovery scope is narrowed down in an order of object
type, object instance and object states.

5.4 Discovering objects and services in dynamic context environments

In GGIoT, dynamic object properties, such as ‘Location’ and ‘Temperature’ can also be
statically represented in the associated templates. Discovering object and service
instances based on the dynamic properties is also in the static context environments.
However, dynamic object property values can only be retrieved from real-time sensor
messages. Figure 5 shows the discovery of entities in dynamic context environments.

Figure 5 Discovering object and service based on static property values (see online version
for colours)

Comparing to the discovery in static context environments, a component of Context
Collector is added, which is used to collect dynamic context of all involved object
components. The Context Collector is wired to all the object components to receive
real-time messages of the objects. By mapping the messages of the virtual objects into the
associated templates, dynamic property values of these objects can be abstracted and
interpreted. By comparing the searched property value with the collected dynamic
property values, the Context Collector is able to discover all eligible virtual objects in a
proxy. The discovery scope is narrowed down in an order of object type, object instance,
object state, and dynamic property value.

5.5 Discovery in service composition

In GGIoT, multiple object and service components can be automatically combined to
deliver a composed service on demand. As dynamic property values of virtual objects and
services keep changing, the discovery mechanism needs to find the most suitable objects
and services to compose a service in dynamic context environments. Figure 6 illustrates
an event-triggered discovery in a service composition. Discovery requests are initiated by
events rather than queries from human users.

 Discovering objects and services in context-aware IoT environments 339

Figure 6 Discovery in service composition (see online version for colours)

When a component is initialised, activated, suspended or removed, events are reported to
the Event Manager. Thus, state changes of a virtual object or service are notified as
real-time events in application workflows. Property value changes of a virtual object or
service can also be used to trigger a predefined event. For example, in the previous work,
if the monitored temperature values are above the threshold value, a notification is
triggered (Wang et al., 2013). A triggered event is sent to Workflow Manager that checks
if the event is registered in a workflow of a composed service. If a workflow exists, a
Context Collector is generated to collect dynamic context from all involved components,
and find all available components that can join the service composition. The discovered
component IDs are sent to a component of Service Composer. The Service Composer
implements the service composition by wiring and unwiring these object and service
components on demand. If multiple eligible components exist, the Service Composer
looks for an optimal one based on the dynamic context. An event can also trigger other
actions, such as generating a service component in a workflow.

6 Evaluation

Previous work has evaluated the process of virtualising physical objects and services into
middleware components, and O2O communication among the objects in GGIoT (Wang
et al., 2013). This section further evaluates the proposed discovery mechanism. Two
proof-of-concept case studies are presented to illustrate the discovery in dynamic context
environments and discovery optimisation. In middleware, interactions among the virtual
objects and services are represented as bindings between the components. All
components can be reconfigured at runtime to adapt to context changes.

6.1 Evaluation setup

As GGIoT is independent of specific devices, systems, networks and applications, the
proposed discovery mechanism are not confined to the setup and case studies in this
section. In this test, an Arduino UNO and a Zigbee Xbee module were composed to
simulate a generic sensor or RFID tag. Formats of device messages were written into an
Arduino UNO (Arduino, 2014), and transmitted via a ZigbeeXbee (ZigBeeAlliance,
2015). Figure 7 shows the evaluation setup. A dual-core PC acts a distributed proxy. The

 340 W. Wang et al.

simulated sensors transmit messages of involved objects to the proxy. A ZigBee Xbee
Explorer aggregates messages of all sensors in a WSN, and send the messages to the
proxy via a USB port. The proxy runs the designed virtualisation system based on the
LooCI OSGI V1.0 (Hughes et al., 2009). Windows XP are used as underlying systems.
XML was used as format to describe ontologies and templates in the proxy. The
virtualisation system can interpret meaning of the device messages by mapping the
messages into the relevant templates. To reduce processing load for a distributed proxy,
only parts of object property values are interpreted in a specific service. For example, it is
unnecessary to interpret ‘Length’ in a temperature monitoring service.

Figure 7 The evaluation setup (see online version for colours)

6.2 Discovery in dynamic context environments

In Figure 8, this case study assumes that a bus company provides a service that allows
users to lookup vacant seats of the buses via mobile phones. The Smith family tries to
discover an available bus to a hotel in a foreign city. They send a discovery request to a
near proxy by a mobile phone. The discover request includes the required number of
vacant seats and specified hotel address. By analysing the request, a search engine in
middleware generates a lookup service that can dynamically discover suitable buses with
enough vacant seats for the Smith family. Then the discovered results are sent to the
users’ mobile phone. A discovery result may contain multiple available buses.

Figure 8 The lookup model in GGIoT (see online version for colours)

 Discovering objects and services in context-aware IoT environments 341

Each seat on a bus is equipped with a pressure sensor to sense if a seat is taken by a
passenger. By accumulating a total number of vacant seats in the bus, the bus can
generate a dynamic object property value ‘Vacant-seats’ in real-time. As passengers may
get in and out of the buses without prediction, property values of ‘Vacant-seats’ are
dynamically changed. Via mobile networks, the bus can route the messages to the object
component in middleware of a distributed proxy. Each message contains two data fields
‘ObjectID’ and ‘Vacant-seats’. Other static bus properties and the values are
pre-described in the related object templates in ontologies. By wiring with all the
involved bus components, the Context Collector can receive messages from these bus
components, and interpret dynamic property values of ‘Vacant-seats’ of these buses. By
comparing the values of ‘Vacant-seats’ to the user-requested number of vacant seats, all
eligible buses with enough vacant seats can be discovered. A Bus Explorer on the users’
phone is used to input discovery requests and receive the search results.

Figure 9 The workflow of object discovery (see online version for colours)

Figure 9 illustrates the workflow of the object discovery. The module Discovery based on
Static Property Values performs the discovery of an object instance based on object type.
This test assumes that Bus Route Number is a static property of all the involved buses,
and buses in two route numbers R0098 and R0564 pass the hotel. Multiple buses may run
on the same route. By parsing the object templates in the ontologies, template IDs of all

 342 W. Wang et al.

bus components on the two bus routes can be found. In the proxy, as the Identifier
Manager has pre-registered the mapping between the hosted virtual objects and the
associated template IDs, object IDs of all bus components on the two bus routers can be
queried. The module Discovery based on component states filters out all working buses
that stop at the hotel. In middleware, a bus component has states, such as activated or
suspended, to represent if the bus is in service. By querying states of the bus components,
activated bus components on the two bus routes are selected.

To collect dynamic context of the selected buses, the Context Collector is wired to the
activated bus components to receive the real-time messages. The module Abstraction
Service abstracts object IDs and dynamic values of ‘Vacant-seat’ from the messages. The
mappings between the object IDs and values of ‘Vacant-seats’ are cached in a hash map,
and the hash map is updated when new bus messages arrive. It provides a repository to
cache the latest property values of ‘Vacant-seat’ of these buses in this discovery. If O2O
communications across many networks, two methods can be used to verify the latest
messages. For sensors with accurate timing capability, timestamps can be added into
output messages. Otherwise, timestamps can be appended to sensor messages at a local
proxy when the proxy receives the messages.

The module of Discovery based on dynamic Property Values builds a Telnet server in
the Context Collector to receive and to analyse user-inputted requirements. A Telnet
client is running in the Bus Explorer comment. By wiring the Context Collector to the
Bus Explorer, a user can send a required number of seats to the Context Collector. The
Telnet server abstracts the required number of seats, and then stores the value into a
variable requiredSeats. A service periodically retrieves the cached messages from the
hash map every 5 seconds. By comparing the latest values of ‘Vacant-seats’ of the buses
with the variable requiredSeats, all buses with enough seats are discovered in real-time.
Search results are formatted into messages and then sent to the connected Telnet clients.
In this test, by inputting different values of required number of seats, the Context
Collector returned all available buses and the number of vacant seats.

This test outputs search results via two methods: Telnet-based and middleware-based.
As component-based middleware runs in closed environments, it cannot interact with
other middleware or Web Services. To resolve this issue, the Telnet-based method
enables isolated middleware components to output messages on sockets. Thus, users on
other platforms can also interact with the discovery service by connecting to the
socket. For example, the user interface can be designed as a RESTful API. For the
component-based method, search results can be converted into required data formats, and
published on the event bus of the middleware. Thus, other service components that
subscribed to the Context Collector can receive and process the search results.

6.3 Discovery optimisation

In some situations, many eligible objects and services are discovered to respond to the
same request. The discovery mechanism in GGIoT can recommend an optimal one from
all searched results depending on the dynamic context. In Figure 10, the Smith family
wants to add other search condition, discovering the nearest bus with enough vacant
seats, to optimise discovery results. This scenario assumes that both bus A and B can
provide enough vacant seats, and the Smith family starts to wait for bus A in a bus stop.
They use a Bus Tracker service running on a mobile phone to track real-time position of
bus A. When bus A stops at a near bus stop, bus B overtakes bus A and then bus B

 Discovering objects and services in context-aware IoT environments 343

becomes the nearest bus. The Context Collector is aware of the context change. It
disconnects the coupling between bus A component and the mobile phone, and then
connects bus B component with the phone. Consequently, the Bus Tracker component on
the phone is switched to receive real-time messages from bus B.

Figure 10 A case study based on the interaction model in GGIoT (see online version for colours)

Figure 11 The workflow of service optimisation (see online version for colours)

In the test, a Service Composer is wired to the Context Collector to receive real-time
messages of all discovered bus with enough vacant seats. Thus, the Service Composer is
aware of context change of all the eligible buses. When the event ‘Bus B overtakes bus A’
occurs, the Service Composer triggers a predefined action to discover an alternative bus
component to replace of the bus A component. By analysing collected contexts, bus B
component is discovered. Then the Service Composer coordinates the communication by
unwiring the Bus Tracker and bus A component, and connecting the Bus Tracker to bus

 344 W. Wang et al.

B component. Figure 11 shows the relation between the two case studies, and a workflow
of the service optimisation scenario. A component of Bus Selector was designed. The
Bus Selector can dynamically determines the nearest bus with required number of seats,
and then route the messages of the nearest bus to the Bus Tracker.

By wiring to the Context Collector, the Bus Selector can receive real-time messages
of all the discovered buses with required number of seats. Each received message
contains multiple dynamic object property values, such as Vacant-seats and Location. By
default, data type of all received messages is String. It is necessary to split all data
elements of a message and convent these data elements to required data types. For
example, in this case, to calculate the minimal distance between a bus and the user,
property values of ‘location’ were tuned into Float. In GGIoT, data types of property
values are described in the object and service templates.

All the converted data elements of a message are stored in an object of busProperty
which is cached in a hash map. When the Bus Selector receives a new message from the
Context Collector, a method of findNearestBusId() calculates a real-time distance
between the bus described in the message and the user. By comparing the distance to the
previously-stored minimum distance, the method decides if it updates the stored object
ID of the nearest bus and the minimal distance. In this case, the Bus Selector acts as a
service optimiser to recommend a bus with the minimum distance from all available
buses with enough number of seats. The Context Collector and Bus Selector offer a
composed service to the Bus Tracker. Number of vacant seats and Bus location are two
types of collected dynamic contexts. The two services can also be designed in one service
component to reduce the communication overhead between them, with the cost of
removing the loose-coupling between the two service components.

7 Conclusions

The current IoT is constrained to specific devices, platforms, domains and services. Many
obstacles, such as incompatible existing standards, lack of applications, high cost and
difficult deployment, hinder widespread use. Due to the inconsistent object representation
in device messages worldwide, it is challenging to design a discovery mechanism across
platforms, systems, domains and applications. WEB services can enable discovery based
on the SOA principle, and has been given priority to be used in the current IoT, as the
standards have been widely accepted in traditional internet applications. However,
human-readable protocols add a non-negligible overhead for a mass of O2O
communication and discovery queries in the future IoT. Moreover, using web services
also increases cost and size of the embedded devices.

For the RESTful web services, the pull-style discovery queries would exhaust energy
of a sensor if the sensor is requested by too many applications. In a proxy, using time
windows to request and cache messages of web-enabled devices can save energy used for
frequent requests. However, this method may not discover the real-time state of a
connected object. Moreover, multicasting discovery requests network-wide can cause
random interaction among objects when no service is provided to the objects. As the
current IoT cannot clearly separate service type and service instance, more data need to
be transmitted and processed, and the discovery scope is significantly increased.

This paper extends the previous work, and presents a discovery mechanism based on
the architecture GGIoT. To reduce device overhead and network traffic, architecture of

 Discovering objects and services in context-aware IoT environments 345

GGIoT is de-centralised; a distributed proxy is only responsible for discovering the local
objects and services. As GGIoT uses binary protocols for O2O communication, most
resource-constrained devices, such as passive RFID tags, can be integrated. To avoid
multicasting discovery queries to all devices network-wide, connected physical objects
are virtualised as object components in middleware. Thus, discovery requests are sent to
the Context Collector which can collect dynamic context from the involved object
components as required.

The proposed discovery mechanism enables discovery of entities in dynamic context
environments in the future IoT. The discovery scope is gradually narrowed down in order
of object type, object instance, object state, and dynamic property values. Thus, only
messages of involved objects and services are collected and interpreted in a discovery
request. A local proxy coordinates interaction among multiple objects and services based
on object and service type. Thus, random interaction between objects can be avoided. If
many eligible objects or services are discovered in a request, the discovery mechanism
can intelligently select an optimal object or service to meet user requirements. The
Service Composer looks for the most suitable objects and services to build a composed
service to deduce development cost. The constituent objects and services in the composed
service can be dynamically replaced by other virtual objects and services, due to the
dynamic context change in a specific application.

References
Arduino (2014) Arduino Uno Overview [online] http://arduino.cc/en/Main/arduinoBoardUno

(accessed 10 December 2014).
Barbero, C., Dal Zovo, P. and Gobbi, B. (2011) ‘A flexible context aware reasoning approach for

iot applications’, 12th IEEE International Conference on Mobile Data Management (MDM),
Vol. 1, pp.266–275, doi: 10.1109/MDM.2011.55.

Butt, T.A., Phillips, I., Guan, L. and Oikonomou, G. (2013) ‘Adaptive and context-aware service
discovery for the internet of things’, Internet of Things, Smart Spaces, and Next Generation
Networking, pp.36–47, DOI: 10.1007/978-3-642-40316-3_4, Springer.

Cheshire, S. and Krochmal, M. (2013) ‘RFC 6762: multicast DNS’, Internet Engineering Task
Force (IETF) Standard, DOI: 10.17487/RFC6762.

Cuinard, D., Trifa, V., Karnouskos, S., Spiess, P. and Savio, D. (2010) ‘Interacting with the
SOA-based internet of things: discovery, query, selection, and on-demand provisioning of web
services’, IEEE Transactions on Services Computing, Vol. 3, No. 3, pp.223–235,
DOI: 10.1109/TSC.2010.3.

Edwards, W.K. (2006) ‘Discovery systems in ubiquitous computing’, Pervasive Computing, Vol. 5,
No. 2, pp.70–77, DOI:10.1109/MPRV.2006.28, IEEE.

Elahi, B.M., Romer, K., Ostermaier, B., Fahrmair, M. and Kellerer, W. (2009) ‘Sensor ranking: a
primitive for efficient content-based sensor search’, Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, pp.217–228.

Flissi, A., Gransart, C. and Merle, P. (2005) ‘A service discovery and automatic deployment
component-based software infrastructure for ubiquitous computing’, Ubiquitous Mobile
Information and Collaboration Systems (UMICS 2005), pp.601–615.

Fortino, G., Lackovic, M., Russo, W. and Trunfio, P. (2013) ‘A discovery service for smart objects
over an agent-based middleware internet and distributed computing systems’, International
Conference on Internet and Distributed Computing Systems, pp.281–293, DOI:10.1007/
978-3-642-41428-2_23, Springer, Berlin Heidelberg.

 346 W. Wang et al.

Främling, K., Harrison, M. and Brusey, J. (2006) ‘Globally unique product identifiers-requirements
and solutions to product lifecycle management’, Proceedings of 12th IFAC Symposium on
INCOM, Vol. 39, No. 3, pp.855–860, DOI:10.3182/20060517-3-FR-2903.00399.

Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013) ‘Internet of things (IoT): a vision,
architectural elements, and future directions’, Future Generation Computer Systems, Vol. 29,
No. 7, pp.1645–1660, DOI:10.1016/j.future.2013.01.010.

Guinard, D., Ion, I. and Mayer, S. (2012) ‘In search of an internet of things service architecture:
REST or WS-*? A developers’ perspective’, International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services, pp.326–337, Springer, Berlin
Heidelberg.

Guinard, D., Trifa, V, and Wilde, E. (2010) ‘A resource oriented architecture for the web of things’,
The Internet of Things (IOT), pp.1–8, DOI: 10.1109/IOT.2010.5678452.

Guinard, D., Trifa, V., Spiess, P., Dober, B. and Karnouskos, S. (2009) ‘Discovery and on-demand
provisioning of real-world web services’, IEEE International Conference on Web Services,
DOI: 10.1109/ICWS.2009.94.

Hughes, D., Thoelen, K., Horré, W., Matthys, N., Cid, J.D., Michiels, S., Huygens, C. and
Joosen, W. (2009) ‘LooCI: a loosely-coupled component infrastructure for networked
embedded systems’, Proceedings of the 7th International Conference on Advances in Mobile
Computing and Multimedia, pp.195–203, DOI: 10.1145/1821748.1821787.

ITU (2005) ITU Internet Reports 2005: The Internet of Things, International Telecommunication
Union (ITU), Geneva.

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S. and Terziyan, V.Y. (2008) ‘Smart semantic
middleware for the internet of things’, 5th International Conference on Informatics in Control,
Automation and Robotics, pp.169–178.

Kim, J.H., Kwon, H., Kim, D.H., Kwak, H.Y. and Lee, S.J. (2008) ‘Building a service-oriented
ontology for wireless sensor networks’, Seventh IEEE/ACIS International Conference on
Computer and Information Science, pp.649–654, DOI: 10.1109/ICIS.2008.100.

Lee, J.W., Schulzrinne, H., Kellerer, W. and Despotovic, Z. (2007) ‘z2z: ‘discovering Zeroconf
services beyond local link’, Globecom Workshops, pp.1–7, DOI: 10.1109/
GLOCOMW.2007.4437805.

Mayer, S., Guinard, D. and Trifa, V. (2012) ‘Searching in a web-based infrastructure for smart
things’, Paper presented at the Internet of Things (IOT)’, 3rd International Conference on the
In Internet of Things (IOT), pp.119–126, DOI: 10.1109/IOT.2012.6402313, IEEE.

Mealling, M. (2004) EPCglobal Object Name Service (ONS) 1.0, EPCglobal Working Draft.
Mulligan, G. (2007) ‘The 6LoWPAN architecture’, Proceedings of the 4th Workshop on Embedded

Networked Sensors, pp.78–82, DOI: 10.1145/1278972.1278992, ACM.
Ostermaier, B., Römer, K., Mattern, F., Fahrmair, M. and Kellerer, W. (2010) ‘A real-time search

engine for the web of things’, The Internet of Things (IOT), pp.1–8, DOI: 10.1109/
IOT.2010.5678450.

Petritsch, H. (2005) Service-Oriented Architecture (SOA) vs. Component Based Architecture,
University of Technology, Vienna.

Rodríguez-Domínguez, C., Benghazi, K., Noguera, M., Garrido, J.L., Rodríguez, M.L. and
Ruiz-López, T. (2012) ‘A communication model to integrate the request-response and the
publish-subscribe paradigms into ubiquitous systems’, Sensors, Vol. 12, No. 6, pp.7648–7668,
doi: 10.3390/s120607648.

Saint-Exupery, A. (2009) Internet of Things, Strategic Research Roadmap, Internet of Things
Initiative, Surrey.

Santos, L.O.B.D.S., Guizzardi, G., Guizzardi, R.S.S., Da Silva, E.G., Pires, L.F. and
Van Sinderen, M. (2009) ‘GSO: designing a well-founded service ontology to support
dynamic service discovery and composition’, The Enterprise Distributed Object Computing
Conference Workshops, DOI: 10.1109/EDOCW.2009.5332016.

 Discovering objects and services in context-aware IoT environments 347

Savidis, A. and Stephanidis, C. (2005) ‘Distributed interface bits: dynamic dialogue composition
from ambient computing resources’, Personal and Ubiquitous Computing, Vol. 9, No. 3,
pp.142–168, DOI: 10.1007/s00779-004-0327-2.

Sousa, J.P. and Garlan, D. (2002) ‘Aura: an architectural framework for user mobility in ubiquitous
computing environments’, Software Architecture, pp.29–43, DOI: 10.1007/978-0-387-35607-
5_2, Springer.

Stirbu, V. (2008) ‘Towards a restful plug and play experience in the web of things’, IEEE
International Conference on the Semantic Computing, pp.512–517, DOI: 10.1109/
ICSC.2008.51.

Terziyan, V., Kaykova, O. and Zhovtobryukh, D. (2010) ‘Ubiroad: semantic middleware for
context-aware smart road environments’, Fifth International Conference on the Internet and
Web Applications and Services (ICIW), pp.295–302, DOI: 10.1109/ICIW.2010.50.

W3C (2011) Semantic Sensor Network XG Final Report, W3C Incubator Group Report, p.28.
Walewski, J.W. (2011) Initial Architectural Reference Model for IoT, EC FP7 IoT-A (257521) D.
Wang, W., Lee, K. and Murray, D. (2013) ‘Building a generic architecture for the internet of

things’, IEEE Eighth International Conference on the Intelligent Sensors, Sensor Networks
and Information Processing, pp.333–338, DOI: 10.1109/ISSNIP.2013.6529812.

Wei, Q. and Jin, Z. (2012) ‘Service discovery for internet of things: a context-awareness
perspective’, Proceedings of the Fourth Asia-Pacific Symposium on Internetware, p.25, ACM,
DOI: 10.1145/2430475.2430500.

Xively (2015) Xively – Public Cloud for the Internet of Things [online] https://xively.com/
(accessed 16 December 2015).

Yang, S., Xu, Y. and He, Q. (2011) ‘Ontology based service discovery method for internet of
things’, The Internet of Things (iThings/CPSCom), 4th International Conference on Cyber,
Physical and Social Computing, DOI:10.1109/iThings/CPSCom.2011.104.

Zhang, D., Yang, L.T. and Huang, H. (2011) ‘Searching in internet of things: vision and
challenges’, IEEE 9th International Symposium on the Parallel and Distributed Processing
with Applications (ISPA), pp.201–206, DOI:10.1109/ISPA.2011.53. 201.

Zhu, F., Mutka, M.W. and Ni, L.M. (2005) ‘Service discovery in pervasive computing
environments’, IEEE Pervasive Computing, Vol. 4, No. 4, pp.81–90, DOI: 10.1109/
MPRV.2005.87.

ZigBeeAlliance (2015) The ZigBee Alliance Creates IoT Standards That Help Control Your World
[online] http://www.zigbee.org/zigbeealliance/ (accessed 12 December 2015).

