
FEPAC: A Framework for Evaluating Parallel Algorithms on
Cluster Architectures

Mehul Vikas Warade
School of Information Technology

Deakin University
Geelong, Victoria, Australia
mwarade@deakin.edu.au

Jean-Guy Schneider
School of Information Technology

Deakin University
Geelong, Victoria, Australia

jeanguy.schneider@deakin.edu.au

Kevin Lee
School of Information Technology

Deakin University
Geelong, Victoria, Australia
kevin.lee@deakin.edu.au

ABSTRACT
For many years, computer scientists have explored the comput-
ing power of so-called computing clusters to address performance
requirements of computationally intensive tasks. Historically, com-
puting clusters have been optimized with run-time performance in
mind, but increasingly energy consumption has emerged as a sec-
ond dimension that needs to be considered when optimizing cluster
configurations. However, there is a lack of generally available tool
support to experiment with cluster and algorithm configurations
in order to identify “sweet-spots” with regards to both, run-time
performance and energy consumption, respectively. In this work,
we are introducing FEPAC, a framework for the automated evalu-
ation of parallel algorithms on different cluster architectures and
different deployments of software processes to hardware nodes,
allowing users to explore the impact of different configurations on
run-time properties of their computations. As proof of concept, the
utility of the framework is demonstrated on a custom-built Rasp-
berry Pi 3B+ cluster using different types of parallel algorithms
as benchmarks. The experiments evaluate matrix multiplication,
kmeans, and OpenCV on varying sizes of cluster, and showed that
although a larger cluster improves performance, there is often a
trade-off between energy and computation time.

CCS CONCEPTS
• Computing methodologies → Parallel computing methodolo-
gies; • General and reference→ Evaluation.

KEYWORDS
Cluster Computing, Evaluation Framework, Energy-Aware, Parallel
Algorithms, Single Board Computers

ACM Reference Format:
Mehul Vikas Warade, Jean-Guy Schneider, and Kevin Lee. 2021. FEPAC: A
Framework for Evaluating Parallel Algorithms on Cluster Architectures. In
Australasian Computer Science Week Multiconference (ACSW ’21), February
1–5, 2021, Dunedin, New Zealand. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3437378.3444363

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSW ’21, February 1–5, 2021, Dunedin, New Zealand
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8956-3/21/02. . . $15.00
https://doi.org/10.1145/3437378.3444363

1 INTRODUCTION
Data driven technologies are demanding increasingly complex anal-
ysis and management to produce effective results. As predicted by
Moore’s law [19], advances in processors and technology has led to
increased performance of modern hardware. Algorithms are used
to reduce the manual work and effectively utilise the ever-growing
computer technologies to their full extent. Newer technologies and
advancements led to exponential growth in the amount of data that
needed processing [3].

Parallel processing allows computation to be performed faster
by utilising a number of processors concurrently [10]. Parallel com-
puting provides us with the technology and means to achieve the
ever-increasing demands of computing. Clusters are designed with
performance in mind which has led to the creation of huge data
centres that have heightened the energy demand [12]. Energy con-
sumption is one of the top challenges for the next generation of
super-computing [11], but it is difficult for a researcher to deter-
mine the optimal configuration of cluster in terms of performance
and energy, respectively. A challenge in the field of parallel com-
puting is the lack of an evaluation method which focuses on energy
consumption and the factors influencing it.

Clusters are expensive and difficult to experiment with and thus
it remains difficult to optimise for energy-efficiency. Single board
computers (SBCs) are complete computers developed on a minia-
turised single circuit board. Low cost clusters of SBCs can help
solve this challenge by allowing experimentation and wide range
of configurations. They also have the ability to perform reasonably
well when compared to contemporary devices in terms of cost and
power consumption [7]. Due to their multi-core nature, they can
be optimised to achieve computation faster by using their inherent
parallel capabilities.

The main motivation of this work is to support researchers in
investigating the factors affecting the performance and energy con-
sumption of parallel computations. It does this by proposing a
framework which evaluates the execution of parallel algorithms on
varying cluster configurations with a focus on performance and en-
ergy consumption of the computation. It will allow researchers who
use parallel computation to test the performance of their algorithm
in a variety of cluster configurations in order to determine the best
configuration for their needs. The framework is evaluated with
three distinct parallel algorithms and a cluster composed of Rasp-
berry Pi 3B+ SBCs which have been proven to be useful proxies for
large-scale cluster computing [28]. The framework will likely lead
to cost reduction of computations as well as empowering research
in energy efficient computation methods.

https://doi.org/10.1145/3437378.3444363
https://doi.org/10.1145/3437378.3444363

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Mehul Vikas Warade, Jean-Guy Schneider, and Kevin Lee

The remainder of this paper is organized as follows. Related
work is reviewed in Section 2. Section 3 introduces a framework
to support evaluation of parallel algorithms on different cluster
architectures. Section 4 presents an experimental evaluation of the
framework using a cluster of SBCs. Section 5 provides a discussion
of the experimental evaluation. Finally, Section 6 summarizes key
observations and describes planned future work.

2 RELATEDWORK
Computing power available for researchers have been increasing
exponentially [27]. Parallel computing have been used to harness
the computational power from individual computing units using
clusters. As well as maximising performance, there is a need to
design clusters which can perform under a given power budget [7].
Clusters consume a large amount of electrical power and require
sufficient cooling for optimal performance. (𝐺𝐹𝐿𝑂𝑃𝑆/𝑊) is used
to measure the power and energy consumption of clusters whereas
(𝐺𝐹𝐿𝑂𝑃𝑆/$) is used measure the effectiveness of the cluster in
terms of performance and cost. This section reviews literature in
experimental cluster computing, energy aware clusters, and bench-
marking clusters.

2.1 Experimental Cluster Computing
Cluster computing is used heavily in scientific computation and big
data processing. Scientific workflows are executed on cluster com-
puting infrastructure using workflow engines [15, 17]. Using clus-
ters for computation requires solutions to issues such as data stor-
age, data retrieval and file handling for cluster computing. Apache
Hadoop [30] aims to solve this problem through technologies such
as the Hadoop Distributed File System (HDFS) [4]. Generally, full
clusters such as those using Apache Hadoop are very expensive
and requires a lot of energy, real estate and custom cooling. SBC
clusters have been proposed as an effective alternative for mobile
Hadoop clusters and robust computing performances [25, 29, 30].

Novel cluster architectures were introduced to tackle the prob-
lems of Edge computing and Big Data. PiStack [2] focuses on power
efficiency and thermal output while providing an optimal perfor-
mance in edge computing conditions. It reduces hardware footprint
by powering nodes through the cluster case and saving power by
introducing heartbeat functionalities for each node. Deployment
approaches include 1U rack mounting of SBC clusters in data cen-
tres to achieve maximum accessibility and easier replacement [29].
This demonstrates that SBC clusters can be a feasible approach to
edge computing clusters for on-site big data processing.

Using SBC clusters to perform cloud simulations and provide
virtualisation of resources have been proposed by [13, 32]. Cloud
infrastructure has been simulated using clusters in iCanCloud [20]
and CloudSim [6]. The Glasgow Raspberry PiCloud [32] has used
SBCs to create a cluster for simulation processing. PiCloud [32]
simulates every layer of cloud computing infrastructure.

SBC clusters are particularly useful for edge computing such as
those performing on-site image processing. Image processing is
one of the applications which can make use of in-built parallelism
during processing. Algorithms in OpenCV [30] libraries exploit
parallelism to process each image faster. Clusters executing algo-
rithms which use the OpenCV library significantly outperformed

single computers in frame processing of a live stream video [24].
The accuracy of SBC clusters in image learning was studied by
using the Scikit Image library and by executing two parallel algo-
rithms - Watershed and Edge detection on number of images [18].
A comparative study of performance of different image processing
libraries using OpenMP [28] on clusters is presented in [23, 26].

2.2 Energy Aware Cluster Computing
The Apache Hadoop [30] framework is commonly used for analysis
of data intensive operations such as Big Data analysis where large
volumes of data need to be analysed effectively [25]. Hadoop’s
Map/Reduce model is a useful benchmarking tool for comparing
performance and energy consumption of clusters [9]. Comparative
studies of energy consumption in Hadoop clusters show that SBC
clusters can be an effective alternative [8, 14, 25, 31].

Data mining algorithms are used to extract information from big
data-sets [28]. [28] compared two data-mining algorithms (Apri-
ori and K-means) on a SBC cluster and an HPC platform. They
concluded that even though SBC cluster provided lower perfor-
mance than HPC platform, they can be an effective energy-efficient
alternate. Cloud computing is used to process a large number of
computations remotely in data centres [25]. Due to energy costs,
𝐺𝐹𝐿𝑂𝑃𝑆/𝑊 is an important consideration for cloud computing
infrastructure [2]. A predictive optimisation model for balance be-
tween performance and energy consumption in cloud computing
is presented in [5]. SBC clusters have been compared to find the
best architecture to provide maximum performance in terms of low
network latency, communication overhead, low power and energy
consumption [2, 25].

2.3 Benchmarking Cluster Computing
Evaluating and benchmarking a cluster provides a value of its max-
imum performance. There are many benchmarking libraries and
frameworks developed to test different aspects of a cluster. Pa-
pakyriakou et al. [22] used High Performance Linpack (HPL) as a
benchmark to test the performance of high performance Beowulf
cluster comprising of 12 node Raspberry Pi 2B SBC. Balakrishnan
et al. [1] benchmarked SBC clusters comprising of Pandaboard ES
boards and Raspberry Pi boards using 4 different benchmarks (Core-
Mark [16], STREAM [16], Linpack [16], HPL [16], Ping Pong [16]
and Nas Parallel [16]). Benchmarking can also reveal characteris-
tics other than raw performance; Balakrishnan et al. [1] concluded
that raw performance of Pandaboard ES was 2.5 times greater than
Raspberry Pi SBCs but with closely related in terms of performance
per watt.

To support researchers, benchmarks have been created for work-
loads. Tso et al. [33] developed a framework to benchmark two state
of the art workloads in assessing elasticity in graph analytics. The
framework helps in benchmarking and understanding the benefits,
costs and resource management efficiency of workloads. Zhu et
al. [34] developed the BigOP framework to benchmark workloads
on big data systems (Hadoop and Spark). Panda and John [21] con-
ducts proxy benchmarks on databases used in big data systems
(MySQL, Cassandra, MongoDB). These evaluate the performance
of workloads and provide comparative results.

FEPAC: A Framework for Evaluating Parallel Algorithms on Cluster Architectures ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

The work discussed here shows that cluster computing is mainly
focused on implementing parallel and cluster computing to solve
specific problems but not on improving the efficiency of already
implemented systems. This is mainly due to lack of models that
identify and address the factors that can help in improvement of the
efficiency. Our approach fills that gap by proposing a generic frame-
work to evaluate different algorithms on varying cluster configura-
tions while focusing on their effects on the energy consumption of
the cluster.

3 FRAMEWORK DESIGN
In this section, we describe a generic high-level design of the “Frame-
work for Evaluation of Parallel Algorithms on Clusters” (FEPAC), a
light-weight and flexible framework for the evaluation of parallel
algorithms on different cluster configurations. The framework has
been designed using the bash scripting language, and is program-
ming language agnostic, supporting any computation that can be
expressed as MPI jobs. The framework must fulfill several require-
ments that can be derived from its objective as a suite to evaluate
the performance of parallel programming models. These criteria
will function as guidelines for the selection of benchmarks as well
as benchmarking practice.

3.1 Framework Requirements
The design of the framework was guided by the following require-
ments:

R1 The framework shall help researchers in comparing run-
time performance with energy consumption.

R2 The framework shall support the identification of bottle-
necks for a given computation.

R3 The framework shall allow the specification of a range of
repeated and repeatable experiments with varying algorithm
parameters and cluster configurations.

R4 The framework shall configure the target cluster for the
computation needs as defined in the experiment’s configura-
tion.

R5 The framework shall automatically execute different algo-
rithms on different cluster configurations.

R6 The framework shall support algorithms from different
programming languages.

R7 The framework shall provide a comparative output (within
suitable time) of energy consumption for different cluster
configurations and algorithms.

R8 The framework shall support exporting experimental data
for further analysis.

Designing a parallel computing system is a multifaceted process.
It involves individual designing of hardware and software compo-
nents. Following the requirements provided above, the design of
the proposed framework is given below.

3.2 FEPAC: A Framework for Evaluating
Parallel Algorithms on Cluster
Architectures

Figure 1 illustrates a generic cluster architecture as used in the
design of the framework presented here. It comprises a number of

inter-connected computing nodes. The master-slave model used in
the design includes asymmetric communication in which a device
(master) controls one or more other devices (slaves or nodes). Each
node has its own operating system, memory and power source.

Figure 1: Generic Cluster

A high-level view of the framework is illustrated in Figure 2.
Based on the requirements outlined in Section 3.1, the functionality
of the framework can be identified and implemented accordingly
to full-fill the requirements completely. The functionality that is
important and is compulsorily needed to be implemented is in-
cluded in the generic design of the framework. The framework
provides researchers with a configuration file that includes all the
information needed to execute computations on a variety of cluster
configurations. The functionality implemented in the framework is
outlined below.

Figure 2: Proposed Design of the Framework

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Mehul Vikas Warade, Jean-Guy Schneider, and Kevin Lee

Figure 3: Proposed set-up of nodes in the cluster

Cluster Setup. The framework can automatically set up the cluster
and its nodes for computation (R4). This can be achieved by using
the MPI protocols during run-time (refer to Figure 3). The user
provides the framework with the preferred configuration using
the configuration file. Once executed, the framework will iterate
through the framework as configured, send computation to the
cluster nodes and collect data.

Figure 4: Splitting of data for cluster computing

Problem Splitting. The framework provides each node with their
individual slice of data to compute on (R5 and R6). This can also
be achieved through MPI protocols. The data on the master node
is sliced into smaller chunks so that each node has a small part to
compute and return the results to master. This is the main essence of
parallel computing – to reduce the computation time and increase
performance by reducing the work load on individual nodes by
distributing the overall computing work across number of nodes.

Algorithm Execution. The framework needs to provide the nodes
with the actual set of instructions to perform the required compu-
tation (R5 and R6). The user needs to provide the algorithm file
and declare its usage in the configuration file. The configuration
can include specifications such as location of the file, parameters
needed for algorithm, the dependencies, the output format, and
other needed factors which are important in executing the exper-
iments. The framework communicates the algorithm file to each
node and the nodes execute the algorithm as per the specifications
provided by the framework (refer to Figure 5).

Data collection. R7 can be achieved through implementing func-
tionality to monitor and log the energy consumption of each node.

Figure 5: Execution of an algorithm in a cluster

Figure 6: Collecting energy consumption values

Measuring the energy consumption of a particular node is difficult
to achieve using purely software methods. For accurate measure-
ments there needs to be a hardware interface installed at the power
source which can monitor and send the energy consumption data
to the framework. This can be achieved through a number of steps.
A digital power source with sensors can help in collection of the
energy data (refer to Figure 6).

Figure 7: Collecting and storing algorithm output data

Data storage. Collecting data from program execution is an impor-
tant aspect of any framework. Algorithms can have many different
outputs ranging from log entries to results of the computation.
The framework cannot and should not restrict users on the output

FEPAC: A Framework for Evaluating Parallel Algorithms on Cluster Architectures ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

their algorithm provides and hence, a framework should be able to
accommodate whatever output the algorithms generates. This func-
tionality will help in achieving R1, R3 and R8. The data collected
through this medium is the raw data generated by a particular al-
gorithm and can help the researcher in monitoring, evaluating or
debugging the algorithm when needed.

Figure 8: Exporting collected data to a file

Data Exporting. Data exporting is needed for further processing of
experimental results and/or archiving these. Exported data may also
lead to future improvements by implementing new functionality to
use this data. The framework exports the data from computations
into a local database. Users can then export that data into a com-
patible file format which can be used to analyse the data further or
add new functionality to the framework. This functionality allows
researchers more control over the data and freedom to analyse the
data in number of ways. R8 can be full-filled through this design
and this can help in achieving R2.

4 EXPERIMENTAL EVALUATION
FEPAC is a platform-independent framework that allows a paral-
lelisable algorithm to be executed repeatedly on increasing sizes
of cluster. It allows the collection of experiment data including
energy consumption (both the cluster and individual nodes), run-
time and algorithm output. Raw data can be exported to be used
for further analysis of the experiments. This section presents an
experimental evaluation of the framework as evidence of how it
achieves the goals of this paper. The following experiments attempt
to cover a range of scenarios by using 3 distinct algorithms, used in
a wide range of domains. Table 1 briefly summarises the algorithms
evaluated and their parameters.

Table 1: List of Algorithms Evaluated and their Parameters

Name Computation Details
Matrix Multiplication Dot product of 3000x3000

and 240x240 matrices
k-means Clustering of 288000 data

points into 48 clusters
OpenCV Filtering 5 Images (1920x1080 pixels)

Applied filters on each image:
blur, sepia, emboss, warm,
cold and increased brightness.

4.1 Experiment Setup
The implementation of the cluster for this experimental evaluation
involved eight individual Raspberry Pi 3B+ SBCs connected to a
managed switch as illustrated in Figure 1. Seven of the eight RPi3B+
are computing nodes while one RPi3B+ acts as a networking config-
uration node which provides the required network configurations
necessary to manage the cluster.

Operating System. For the purposes of this experimental evaluation,
the operating system used on the cluster nodes will mainly facilitate
the use of the platform for computation. To minimise overhead, a
lightweight and highly optimised Operating System is needed to
allowmost resources for computation. DietPi, a Debian-based Linux
distribution was chosen, as it is primarily developed for single board
computers and highly optimised to enable maximum performance.

Networking. RPi’s are usually bootstrapped by flashing an Operat-
ing System image onto a SD card and then inserting the SD card
into the RPi. Due to the light-weight nature of DietPi, each node
can instead be network booted which requires no local drive for
easier experiment configuration. A server node handles all network
booting and provides a base file system using NFS.

Energy Monitoring. To power all the nodes in the cluster, Power-
over-Ethernet (POE) from the managed switch was used. Energy
consumption was monitored by performing queries to the switch
via a Telnet connection. Energy readings provided by the switch
give the instantaneous power consumption in Watts for each net-
work power, therefore giving the power consumption for all the
nodes in the cluster. The experiments and the energy measurements
presented here are repeatable. All experiments have been repeated
10 times and the results are reliable and consistent. This data was
retrieved as a string, sliced, and then stored in a MySQL database.

Physical Setup. The experimental cluster setup can be seen in Fig-
ure 9. Six RPi3B+ were mounted on top of each other. Two RPi3B+
were mounted together to distinguish them from the cluster. The
top RPi is the one providing the network boot and file-system to
other nodes (Denoted by B) whereas the bottom one is the master
node (Denoted by M). The six RPiś were purely used for computing
purposes (labelled as S1-S6).

Figure 10 shows an extract of the output file generated by the
framework. It is exported in JSON format for easier use and cross-
compatibility. The first object identifies the name of the algorithm.
The second and third level objects represent the number of nodes
and threads the algorithm is being executed on, respectively. The

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Mehul Vikas Warade, Jean-Guy Schneider, and Kevin Lee

Figure 9: Photo of the Project Cluster Setup

fourth level object is a tuple data structure comprising of the times-
tamps of that particular experiment and the average power con-
sumption during the experiment.

"opencv": {
"1": {
"2": {

"timestamp": {
"start": "1598965940040",
"end": "1598966009730"

},
"pwr_avg": {

"p1": 4.239130403684533
}

}
},
"6": {

"3": {
"timestamp": {

"start": "1598966016296",
"end": "1598966149690"

},
"pwr_avg": {

"p1": 4.513533785827178,
"p2": 3.0887217467888854,
"p3": 3.0127819534531213,
"p4": 3.0721804253140785,
"p5": 3.0338345864661656,
"p6": 3.0563909344207074,

}
}

}
}

Figure 10: Exported data in a JSON format

4.2 Stability and Validity of Experimental
Setup

To validate the experimental setup and verify the stability of run-
ning experiments, an evaluation of the framework by repeatedly
executing the function np.dot for matrix multiplication on matrices
with 240 x 240 elements was performed. The experiment used the
following Python libraries: (i) numpy, a library supporting com-
putation with large arrays, and (ii) mpi4py, a Python binding for
the Message Passing Interface (MPI) standard. The matrix multipli-
cation was repeated 10 times for each configuration: 1 to 6 nodes
(unused nodes were powered off) with each node executing 1 to 12
threads. The first thread on node #1 was configured as master and
did not execute any matrix computations.

Figures 11 and 12 illustrate the distribution of the numerical
energy consumption and run-time data of the matrix multiplication
obtained from the repeated experiments. The x-axis represents
the node configurations, varying from 1 node and 2 threads to 6
nodes and 12 threads, respectively. The two box plots illustrate the
stability of the data collected from the experimental set-up used –
the largest variation is from using 1 thread on each node as well as
running the computation on a single node. The results illustrate the
stability of the data collection and allow us to report experiments
based on the average of the data from repeated experiments.

4.3 Algorithm Evaluation: Matrix
Multiplication

Matrix multiplication is an operation used in a range of fields, from
mechanics in physics, graph theory in mathematics to gene expres-
sion in biology. Matrix multiplication was chosen as it is heavily
optimised to work with parallel computers. The experimental setup
is no different from the one in previous section. The framework is
provided with a parallel implementation of a matrix multiplication
and parameters in order to execute the function np.dot for matrix
multiplication on matrices with 3, 000 x 3, 000 elements.

Figure 13 illustrates the energy consumption of the algorithm.
Matrix multiplication produces the results expected from a parallel
computing algorithm. Increase in the number of computing nodes
leads to decrease in the computing time and increase in performance.
It was seen that the time to compute slowly starts flattening out
at the end of 6 nodes. The power consumption is expected to go
up as more nodes are added but in this case, the decrease in power
consumption can be explained by the speedup obtained during the
computation. As seen in Figure 14, the computation time of the
algorithm reduces considerably when more computation power is
provided. For this reason, even though energy consumption of the
cluster increases due to increase in a computing node, the resulting
speedup can help compensate for it.

Figure 15 shows the energy and run-time performance data
collected by the framework for matrix multiplications. A double
axis graph is shown for easy co-relation of both data-sets. The left
Y-axis represents energy consumption values of the whole cluster
and the right hand Y-axis represents run-time.

A researcher can calculate theoretically or experimentally the
lowest computation time achievable for the give data set and algo-
rithm using the results. This is useful in predictive analysis where
the algorithm output can be predicted based on its past performance.

FEPAC: A Framework for Evaluating Parallel Algorithms on Cluster Architectures ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

0
.1

.2
.3

.4
En

er
gy

 (W
at

t H
ou

rs
)

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Cluster Size

Figure 11: Energy Consumption for Matrix Multiplication 240 x 240matrix (10 repetitions)

0
50

10
0

15
0

Ti
m

e
(S

ec
on

ds
)

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Cluster Size

Figure 12: Time Consumption for Matrix Multiplication 240 x 240 matrix (10 repetitions)

Researchers can also identify bottlenecks by observing that each
additional node degrades the performance. The bottleneck is likely
caching of the array the first time any node is added to the cluster.

4.4 Algorithm Evaluation: OpenCV
OpenCV is a development library of aimed at real-time computer
vision [18]. It is mainly used in image and video processing where
a large amount of data needs to be processed in real time. The main
aim of the experiment is to find the effects of image processing
libraries and its different methods on the energy consumption of
a cluster and to identify its bottlenecks. As shown in Table 1 six
different types of filtering methods were used on 5 high-res images
recursively. The algorithm was developed in Python language. Ex-
perimental setup was similar to that of matrix multiplication with
different supporting libraries installed (opencv (3.2.0+dfsg-6)).

Figure 16 illustrates the results of using the FEPAC framework
to evaluate the OpenCV algorithm on increasing sizes of cluster. It
illustrates the Energy Consumption of the cluster and the time taken

by the algorithm to finish the computation, respectively. Figure 16
shows the energy and the run-time performance data collected
by the framework executing OpenCV algorithm. The left Y-axis
consists of energy consumption values of the whole cluster and
the right hand axis comprises of run-time. Using the graph a clear
crossover point between the energy and run-time can be concluded.

As expected, the energy consumption increases with an increase
in nodes and resources being used. There is no significant trend
in the time required by the algorithm, but a clear bottom limit of
the speed can be seen, after which the algorithm starts to degrade
performance. The framework executed the algorithmwith the given
configuration and provided the results shown in the graphs. From
the graphs bottleneck for the algorithm can be hypothesized - data
set being too small for computation. No clear trend in the data
can also suggest researchers to find better ways to optimise the
algorithm or motivate them to find the reason behind it.

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Mehul Vikas Warade, Jean-Guy Schneider, and Kevin Lee

Figure 13: Energy Consumption of Matrix Multiplication (3000x3000 matrix)

Figure 14: Time Consumption of Matrix Multiplication (3000x3000 matrix)

4.5 Algorithm Evaluation: k-means
The k-means algorithm aims to partition 𝑛 observations into 𝑘

clusters in which each observation belongs to the cluster with the
nearest mean [28]. This algorithm was chosen as the algorithm
heavily relies on the communication between master and slave
nodes for computing. The parallel algorithm used is highly opti-
mised [28]. k-means have less independent work units which leads
to more synchronization when the parallel work finishes. A C im-
plementation of k-means is used to show the portability of our
framework as well as its compatibility with FORTRAN libraries.

For this experiment, the framework was provided with an algo-
rithm file which in turn was provided a set of 288, 000 data points to
sort into 48 clusters. The algorithm ran iteratively until the cluster
centers did not change their position.

Figure 17 illustrates the results of using the FEPAC framework
to evaluate the k-means algorithm on increasing sizes of cluster.
Figure 17 shows the energy and the run-time performance data

collected by the framework executing k-means clustering algorithm.
The left and right Y axis comprises of energy consumption and
run-time of algorithm respectively. The close relation between the
run-time and the energy consumption can be used to conclude
different limitations and functionalities of the algorithm.

The results can be used to conclude a number of things. It clearly
showcases the bottleneck in the k-means algorithm: communication
and synchronisation. Also, it shows that adding new nodes to a
cluster degrades the performance of the algorithm. The algorithm
does not improve or in some cases worsens the performance as well
as energy consumption when adding nodes. This result can help
researchers in choosing another algorithm or working to improve
their current algorithm.

5 DISCUSSION
The framework allows scientists to evaluate the performance of
distinct parallelisable algorithms on an range of cluster computing

FEPAC: A Framework for Evaluating Parallel Algorithms on Cluster Architectures ACSW ’21, February 1–5, 2021, Dunedin, New Zealand

Figure 15: Matrix Multiplication and Combined Consumption (3000x3000 matrix)

Figure 16: Energy Consumption and Execution Time for
OpenCV Algorithm (5 Images, 6 Filters)

configurations. The experimental evaluation has demonstrated that
the FEPAC framework can be used for evaluating the performance
of distinct algorithms and different scales of cluster.

Three different algorithms have been evaluated using the frame-
work to show its functionality. These algorithms have been taken
from distinct research domains and comprises different program-
ming languages to demonstrate the compatibility and reliability of
the framework. Each experiment presented in Section 2.1 demon-
strated the framework’s ability to meet the requirements in Sec-
tion 3 - to produce data that exposes the impact of a cluster config-
uration on performance or performance per watt for an algorithm.

The framework can identify that no significant improvement
was achieved in the performance over a number of threads on each
node (Figure 15). It can also be used to predict the computation time

20
40

60
80

10
0

Ti
m

e
(S

ec
on

ds
)

0
.2

.4
.6

.8
En

er
gy

 (W
at

t H
ou

rs
)

1
N

 -
2

T
3

T
4

T
2

N
 -

1
T

2
T

3
T

4
T

3
N

 -
1

T
2

T
3

T
4

T
4

N
 -

1
T

2
T

3
T

4
T

5
N

 -
1

T
2

T
3

T
4

T
6

N
 -

1
T

2
T

3
T

4
T

Cluster Size
Energy (Watt Hours) Time (Seconds)

Figure 17: Energy Consumption and Execution Time for k-
means Algorithm (288, 000 points, 48 clusters)

and energy consumption for algorithms as the number of cluster
nodes is increased (Figures 14, 17 and 16).

In addition to this core aim, the framework also supports the
identification of significant features of a computationworkload. The
framework enables identification of bottlenecks in a computation.
The framework identifies the cache memory interference (Figure 14)
in matrix multiplication and communication and synchronisation
as a bottleneck in k-means (Figure 17). The framework show that
OpenCV is not optimised for small data-sets (Figure 16).

ACSW ’21, February 1–5, 2021, Dunedin, New Zealand Mehul Vikas Warade, Jean-Guy Schneider, and Kevin Lee

6 CONCLUSIONS AND FUTUREWORK
This paper has argued that the lack of a generic programming sup-
port for the evaluation of clusters based on their energy consump-
tion is harming the motivation for research and development in the
field of Energy aware computing. It has demonstrated the design
and implementation of a framework for supporting the evaluation
of parallel computation based on a number of factors including its
energy consumption and performance. A 6-node SBC-based cluster
was used allowing configuration by the number of threads each
node is using for the computation. Three different algorithms have
been evaluated using the framework on different cluster config-
urations. The framework presented in this paper can be used to
evaluate clusters with any number of nodes and configurations.

The work presented in this paper can be expanded in a number
of different ways. This paper has focused on the core algorithms
of parallel computation, however, the majority of scientific work
utilises higher-level engines. Workflows allow scientists to build a
computation graph of interdependent tasks tasks that can be used
for complex computation. The work presented in this paper can
be expanded to include support for workflow engines. Contain-
ers, such as Docker, allow pseudo virtualisation and application
packaging for workload deployment. Containers are packages that
include a run-time environment, executable code and library de-
pendencies. The work presented in this paper can be expanded to
include evaluation of container-based executions. To support more
computing resources, the framework could be adapted to support
heterogeneous cluster configurations. The process of interpreting
data could also be automated by using machine learning to train
the framework to provide a predictive response based on user need.

REFERENCES
[1] Nikilesh Balakrishnan. 2012. Building and benchmarking a low power ARM cluster.

Master’s thesis. University of Edinburgh.
[2] Philip J. Basford, Steven J. Johnston, Colin S. Perkins, Tony Garnock-Jones,

Fung Po Tso, Dimitrios Pezaros, Robert D. Mullins, Eiko Yoneki, Jeremy Singer,
and Simon J. Cox. 2020. Performance Analysis of Single Board Computer Clusters.
Future Generation Computer Systems 102 (Jan. 2020), 278–291.

[3] Ken A. Berman and Jerome Paul. 1996. Fundamentals of Sequential and Parallel
Algorithms. PWS Publishing Co.

[4] Dhruba Borthakur. 2007. The hadoop distributed file system: Architecture and
design. Hadoop Project Website 11, 2007 (2007), 21.

[5] Dinh-Mao Bui, YongIk Yoon, Eui-NamHuh, SungIk Jun, and Sungyoung Lee. 2017.
Energy efficiency for cloud computing system based on predictive optimization.
J. Parallel and Distrib. Comput. 102 (2017), 103–114.

[6] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and experience 41, 1 (2011), 23–50.

[7] Michael F Cloutier, Chad Paradis, and Vincent M Weaver. 2016. A raspberry pi
cluster instrumented for fine-grained power measurement. Electronics 5, 4 (2016),
61.

[8] Javier Conejero, Omer Rana, Peter Burnap, Jeffrey Morgan, Blanca Caminero,
and Carmen Carrión. 2016. Analyzing Hadoop power consumption and impact
on application QoS. Future Generation Computer Systems 55 (2016), 213–223.

[9] Eugen Feller, Lavanya Ramakrishnan, and Christine Morin. 2015. Performance
and energy efficiency of big data applications in cloud environments: A Hadoop
case study. J. Parallel and Distrib. Comput. 79 (2015), 80–89.

[10] Joseph JéJé. 1992. An Introduction to Parallel Algorithms. Reading, MA: Addison-
Wesley.

[11] Chao Jin, Bronis R de Supinski, David Abramson, Heidi Poxon, Luiz DeRose,
Minh Ngoc Dinh, Mark Endrei, and Elizabeth R Jessup. 2017. A survey on software
methods to improve the energy efficiency of parallel computing. The International
Journal of High Performance Computing Applications 31, 6 (2017), 517–549.

[12] Tarandeep Kaur and Inderveer Chana. 2015. Energy efficiency techniques in
cloud computing: A survey and taxonomy. ACM computing surveys (CSUR) 48, 2
(2015), 1–46.

[13] Gabor Kecskemeti, Wajdi Hajji, and Fung Po Tso. 2017. Modelling low power com-
pute clusters for cloud simulation. In 2017 25th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP). IEEE, 39–45.

[14] KR Krish, M Safdar Iqbal, M Mustafa Rafique, and Ali R Butt. 2014. Towards
energy awareness in hadoop. In 2014 Fourth International Workshop on Network-
Aware Data Management. IEEE, 16–22.

[15] Kevin Lee, Norman W Paton, Rizos Sakellariou, Ewa Deelman, Alvaro AA Fer-
nandes, and Gaurang Mehta. 2009. Adaptive workflow processing and execution
in pegasus. Concurrency and Computation: Practice and Experience 21, 16 (2009),
1965–1981.

[16] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi. 2005.
Introduction to the HPC Challenge Benchmark Suite. (2005).

[17] Ketan Maheshwari, Eun-Sung Jung, Jiayuan Meng, Vitali Morozov, Venkatram
Vishwanath, and Rajkumar Kettimuthu. 2016. Workflow performance improve-
ment using model-based scheduling over multiple clusters and clouds. Future
Generation Computer Systems 54 (2016), 206–218.

[18] DušanMarković, Dejan Vujičić, DraganaMitrović, and Siniša Ranđić. 2018. Image
Processing on Raspberry Pi Cluster. International Journal of Electrical Engineering
and Computing 2, 2 (2018), 83–90.

[19] G. E. Moore. 2006. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE
Solid-State Circuits Society Newsletter 11 (2006).

[20] Alberto Nunez, Jose Luis Vazquez-Poletti, Agustin C Caminero, Jesus Carretero,
and Ignacio Martin Llorente. 2011. Design of a new cloud computing simulation
platform. In International Conference on Computational Science and Its Applications.
Springer, 582–593.

[21] Reena Panda and Lizy Kurian John. 2017. Proxy benchmarks for emerging big-
data workloads. In 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT). 105–116.

[22] Dimitrios Papakyriakou, Dimitra Kottou, and Ioannis Kostouros. 2018. Bench-
marking Raspberry Pi 2 Beowulf Cluster. International Journal of Computer
Applications 179, 32 (Apr 2018), 21–27. https://doi.org/10.5120/ijca2018916728

[23] Sumit Patel, MB Potdar, and BhadreshsinhGohil. 2015. A survey on image process-
ing techniques with OpenMP. International Journal of Engineering Development
and Research 3, 4 (2015), 837–839.

[24] G Pomaska. 2019. Stereo VisionApplyingOpenCV and Raspberry Pi. International
Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
XLII-2/W17 (2019), 265–269.

[25] Basit Qureshi and Anis Koubaa. 2017. Power efficiency of a SBC based Hadoop
cluster. In International Conference on Smart Cities, Infrastructure, Technologies
and Applications. Springer, 52–60.

[26] Romi Fadillah Rahmat, Triyan Saputra, Ainul Hizriadi, Tifani Zata Lini, and
Mahyuddin KM Nasution. 2019. Performance Test of Parallel Image Processing
Using Open MPI on Raspberry PI Cluster Board. In 2019 3rd International Con-
ference on Electrical, Telecommunication and Computer Engineering (ELTICOM).
IEEE, 32–35.

[27] Max Roser and Hannah Ritchie. 2013. Technological Progress. Our World in Data
(2013).

[28] João Saffran, Gabriel Garcia, Matheus A Souza, Pedro H Penna, Márcio Castro,
Luís FW Góes, and Henrique C Freitas. 2016. A low-cost energy-efficient Rasp-
berry Pi cluster for data mining algorithms. In European Conference on Parallel
Processing. Springer, 788–799.

[29] Nick Schot. 2015. Feasibility of raspberry pi 2 based micro data centers in big data
applications. In Proceedings of the 23th University of Twente Student Conference
on IT, Enschede, The Netherlands, Vol. 22.

[30] Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang,
Anant Sharma, and Avinash Ankur. 2018. An Efficient Implementation of Mobile
Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Perfor-
mance. Journal of Information Processing Systems 14, 4 (2018), 989–1009.

[31] Nidhi Tiwari, Umesh Bellur, Santonu Sarkar, and Maria Indrawan. 2016. Identifi-
cation of critical parameters for MapReduce energy efficiency using statistical
Design of Experiments. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). IEEE, 1170–1179.

[32] Fung Po Tso, David RWhite, Simon Jouet, Jeremy Singer, and Dimitrios P Pezaros.
2013. The glasgow raspberry pi cloud: A scale model for cloud computing infras-
tructures. In 2013 IEEE 33rd International Conference on Distributed Computing
Systems Workshops. IEEE, 108–112.

[33] Alexandru Uta, Sietse Au, Alexey Ilyushkin, and Alexandru Iosup. 2018. Elasticity
in graph analytics? a benchmarking framework for elastic graph processing. In
2018 IEEE International Conference on Cluster Computing (CLUSTER). 381–391.

[34] Yuqing Zhu, Jianfeng Zhan, Chuliang Weng, Raghunath Nambiar, Jinchao Zhang,
Xingzhen Chen, and Lei Wang. 2014. BigOP: Generating Comprehensive Big Data
Workloads as a Benchmarking Framework. In Database Systems for Advanced
Applications, Sourav S. Bhowmick, Curtis E. Dyreson, Christian S. Jensen, Mong Li
Lee, Agus Muliantara, and Bernhard Thalheim (Eds.). Springer International
Publishing, Cham, 483–492.

https://doi.org/10.5120/ijca2018916728

	Abstract
	1 Introduction
	2 Related Work
	2.1 Experimental Cluster Computing
	2.2 Energy Aware Cluster Computing
	2.3 Benchmarking Cluster Computing

	3 Framework Design
	3.1 Framework Requirements
	3.2 FEPAC: A Framework for Evaluating Parallel Algorithms on Cluster Architectures

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Stability and Validity of Experimental Setup
	4.3 Algorithm Evaluation: Matrix Multiplication
	4.4 Algorithm Evaluation: OpenCV
	4.5 Algorithm Evaluation: k-means

	5 Discussion
	6 Conclusions and Future Work
	References

