
Workflow Adaptation as an Autonomic Computing Problem

Kevin Lee, Rizos Sakellariou, Norman W. Paton and Alvaro A. A. Fernandes
School of Computer Science, University of Manchester

Oxford Road, Manchester M13 9PL, U.K
{klee, rizos, norm, alvaro}@cs.man.ac.uk

ABSTRACT
The performance of long running scientific workflows stands
to benefit from adapting to changes in their environment.
Autonomic Computing provides methodologies for manag-
ing run-time adaptations in managed systems. In this paper,
we apply the monitoring, analysis, planning and execution
(MAPE) model from autonomic computing to support the
runtime modification of workflows with the aim of improv-
ing their performance. We systematically identify run-time
adaptations and indicate how such behaviours can be cap-
tured using the MAPE model from the Autonomic Com-
puting community. By characterising these as autonomic
computing problems we make a proposal about how work-
flow adaptation can be achieved.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; F.2.2 [Non-
numerical Algorithms and Problems]: Scheduling

General Terms
Management, Performance, Design, Experimentation

Keywords
Workflows, Autonomic Computing, Adaptation, Scheduling

1. INTRODUCTION
The autonomic computing community focuses on provid-

ing techniques for enabling autonomic behaviour for sys-
tems. The vision of the autonomic computing community [13]
is to free up system administrators from the tasks of low-
level system administration and optimisation. This applies
equally to high-level management of system-wide policies
and to the execution parameters of single programs on ex-
ecution nodes. One of the main contributions of the auto-
nomic computing community is a model that identifies how
to capture autonomic behaviour for a given managed re-
source. This takes the form of a functional decomposition,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORKS’07, June 25, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-715-5/07/0006 ...$5.00.

known as MAPE, which consists of four stages in a pipeline,
namely Monitoring, Analysis, Planning and Execution [12].
This provides a structure and methodology for developing
adaptive systems.

There are many situations in workflow execution where
adaptation could be of benefit to performance. Scientific
workflows in particular introduce a challenge in execution
due to their long-running and distributed nature. Here,
adapting to environmental conditions can be of huge benefit,
decreasing execution times by reacting to problems and op-
portunities positively. Besides adaptation to environmental
conditions, there are other flavours of evolution for work-
flows. For example, business workflows represent business
processes that evolve as the business changes [5]. However,
such changes tend to be in response to external forces or
changes in the policies of the business, rather than changes
in the execution environment and as such they are out of
scope in this paper.

To date, research aiming to improve workflow performance
based on adaptive execution has relied mostly on bespoke
techniques that are tied to particular workflow environments
[9, 11], or appeals to a generic architectural model without
characterising specific adaptations or the contexts in which
they are likely to be effective [4]. This is detrimental to the
creation and study of a corpus of environment-independent
adaptive techniques that are suitable for workflow execution.
Furthermore, casting workflow adaptation as an autonomic
computing problem, allows us to take advantage of experi-
ences in formulating adaptation in a systematic way.

In this paper, we use the MAPE framework to characterise
performance-related adaptations in scientific workflows. We
identify a range of possible adaptations for scientific work-
flows and show how MAPE can be used to clarify important
issues and identify recurring themes.

The remainder of this paper is structured as follows. In
Section 2, we provide some background on autonomic com-
puting and outline the MAPE model. Section 3 presents our
understanding of workflows and provides a concrete view
with which to discuss them. Section 4 then presents a char-
acterisation of possible adaptations in workflows. In Sec-
tion 5, we discuss how the MAPE functional decomposi-
tion can be used to support the decision making process for
workflow adaptation. Finally, we present our conclusions in
Section 6.

2. AUTONOMIC COMPUTING
Autonomic computing is concerned with automating sys-

tem management and optimising tasks that have tradition-

ally been done by hand by human managers or else by com-
plex bespoke applications. Autonomic computing attempts
to deal with this problem by using structured models that
support run-time adaptation at all levels of system manage-
ment [3, 12, 14, 15].

Perhaps the most widely adopted architecture for auto-
nomic computing views adaptation of a system as being
manageable by the use of autonomic managers [12]. These
are effectively control loops that monitor the execution char-
acteristics of the system and decide on necessary adapta-
tions. An autonomic manager can be functionally decom-
posed into multiple stages of a control loop called the MAPE
model, as illustrated in Figure 1 (taken from [12]).

Figure 1: MAPE Autonomic Manager

The MAPE model is structured into two main software
components, the Managed Resource and the Autonomic Man-
ager. The Managed Resource is simply the system that is
to be adapted, the assumption being that it is not initially
adaptive and that it can be modified/extended to support
run-time adaptation. The MAPE model requires two types
of touch-points into and out of the Managed Resource, called
Sensors and Effectors. Sensors allow the manager to collect
data from the Managed Resource, and Effectors allow the
manager to perform adaptations to the Managed Resource.

The second component of the MAPE model is the Auto-
nomic Manager, which is partitioned into four distinct func-
tions: Monitor, Analyse, Plan and Execute. These are the
functions that make up the decision process needed to adapt
a system. Monitoring uses the Sensors to produce monitor-
ing events for consumption by Analysis. Analysis processes
monitoring events to look for potential problems and oppor-
tunities. Planning decides, based on the system state and
analysis messages, if it is appropriate to perform an adapta-
tion. Execution utilises the Effectors to perform the adapta-
tions requested by Planning. In addition, the MAPE model
assumes some Knowledge of the system to be adapted.

Functionally decomposing the infrastructure required to
manage adaptation allows the separation of concerns within
the autonomic manager. This yields opportunities in the
way adaptation infrastructures can be built. For example,

in query processing (QP) in distributed settings [10], the
separation of monitoring from the rest of the adaptation
infrastructure allows multiple monitoring components to be
instantiated.

3. WORKFLOWS
As a workflow that is ready to execute contains many

concrete details, with each node being a concrete, executable
addressing concrete files, this level of detail does not make it
a helpful representation for use by the scientists that have to
define their workflows. Therefore, workflows may be defined
at different levels of abstraction. The well-known scientific
workflow execution environments Pegasus [8], Triana [7] and
Kepler [1] all describe workflows at a more abstract or logical
level, which is then compiled to a lower-level workflow for
execution.

In this paper, an abstract workflow describes the work-
flow at the level of tasks that perform transformations on
data. By contrast, a concrete workflow describes the work-
flow at the level of actual services, file-based inputs and
outputs. Abstract workflows have to be mapped to concrete
workflows, which can then be scheduled onto the available
resources and executed. This process is illustrated in Fig-
ure 2.

Figure 2: Workflow Compilation

An abstract workflow has nodes of the form < n, i, o >,
where n is the id of a task, i is a set of input names and o
is a set of output names. A task is a logical transformation
of the input data to the output data; an input or output
name denotes the data to be operated on. An edge in an
abstract workflow is of the form < t1, o, t2, i >, and expresses
a dependency between an output o of a task t1 and an input
i of a task t2.

A concrete workflow has nodes of the form
< s, l, m, if, of >, where s is the name of an service, l is
the location of the service, m denotes whether or not it is
a movable service, if is a set of input files and of is a set
of output files. A service is available at location l; this can
be either fixed (with respect to a resource that can run it)
or movable. An input file is the location of the data to be
fed to the service; an output file is the location where an
output of the service is to be directed. An edge in a con-
crete workflow is of the form < s1, l1, ofi, s2, l2, ifj > and
expresses a dependency between an output ofi of a service
s1 at location l1 and an input ifj of a service s2 at location
l2.

Mapping an abstract workflow to a concrete workflow in-
volves choosing appropriate services for tasks and finding
data sources and output files. A task t is mapped to one
or more concrete workflow nodes n1, . . . , nk depending on
whether or not it is more efficient to split it across multiple
nodes. At this stage, it may be appropriate to insert non-
computational concrete nodes, such as those that perform
stage-in and stage-out of data [8].

Scheduling a concrete workflow involves assigning each of

the services in the concrete workflow to execution nodes.
Some services are fixed to their location and just need to be
scheduled with respect to execution time at that location;
other movable services may be moved to any available ex-
ecution node and scheduled. A schedule is created of the
form time t, service s, if files, of files, and execution node
m for each concrete node. The schedule is used to execute
each task on the resources at the appropriate time.

4. EXAMPLE WORKFLOW ADAPTATIONS
Workflow adaptations typically react to changes in the

execution environment. Such changes may have a directly
identifiable cause (for example, the addition or removal of
nodes) or may be the result of more dynamic processes which
affect the expected behaviour of the system (for example, an
increase in the load of a resource that may cause a task
to take longer than expected to complete). In addition,
adaptations can be performed for different reasons, includ-
ing prospective (to improve future performance), reactive (to
react to previous results), and altruistic (to aid other areas
of the system). Adaptations can also affect the workflow at
different levels of granularity. They may apply to a single
node, some nodes, or all of the workflow.

In general, adaptations can usefully be thought of as a
revision of decisions made previously. Thus, based on the
previous section, workflow adaptations can be classified as
either mapping or scheduling adaptations.

4.1 Mapping Adaptations
Mapping adaptations are adaptations where the mapping

from the abstract workflow to the concrete workflow changes
depending on the environment. Based on the definitions in
Section 3, possible mapping adaptations are to:

• Change abstract node to concrete node map-
ping. This changes the current abstract/concrete map-
ping to use different targets for s and l in the concrete
node. In other words, this replaces the service(s) used
to implement an abstract task with a different service
s′ or one from a different location l′.

• Reduce the number of concrete nodes for an ab-
stract task (task-reducing). This is where a task t
is mapped to fewer services s′1, . . . , s

′
n than before, with

a view to, e.g., reducing network traffic and lag. This
may be appropriate when, e.g., overheads per service
instance are high and the execution resources in certain
nodes have increased to the point that the task need
no longer be split across as many service instances.

• Increase the number of concrete nodes for an
abstract task (task-splitting). In this case, the
number of services s′1, . . . , s

′
n onto which a task t is

mapped is increased. This may be useful, e.g., if more
resources are now available and overheads per service
instance are low.

• Remove an abstract node A node < n, i, o > can
be removed if its removal does not compromise the
correctness of the workflow. Removing an abstract
node is possible, e.g., if its output o already exists,
negating the need to perform the required processing
to generate it.

• Change data source/sink for a service. This in-
volves changing the concrete if and of files used as
targets for mapping the abstract i and o. Changing if
may be appropriate in the presence of replication if a
change of data source/sink is judged to be beneficial
given the current loads on resources.

4.2 Scheduling Adaptations
Adaptive scheduling involves the alteration of the schedul-

ing policy in response to changes in the environment. Based
on the definition in Section 3, possible scheduling adapta-
tions are as follows:

• Increase the level of parallelism of a service.
For a service s that is parallelisable, a potentially use-
ful adaptation is to increase its parallelism level by
scheduling it on more execution nodes at the same
time. This may be possible depending on the avail-
ability of resources and the cost to increase the paral-
lelism.

• Decrease the level of parallelism of a service. It
may otherwise be appropriate to decrease the paral-
lelism level of a service s by reducing the number of
execution nodes the service is scheduled to execute on.
This may be appropriate if, e.g., the resources for the
service instance have to be reduced (e.g., because they
must be reallocated to same other service with higher
priority).

• Restart service. This may be appropriate if changes
have been made to the configuration of a service s at
a location l, and the service needs to be restarted to
activate the changes (e.g., the amount of memory it
can use is to be reduced).

• Pause service. This involves temporarily stopping
the execution of a service s at a location l. The execu-
tion node can then be used to execute other service(s)
with the released resources. Pausing services may be
useful to control the overall performance of workflow
execution in order to, e.g., enable other services to
catch up.

• Move service between execution nodes. For ser-
vices that can be executed on different nodes, it may
be useful to move a service at a location l to location
l′. This may be desirable if node resources fail, become
scarce or become more expensive, or if it is beneficial in
order to optimise the overall allocation of tasks onto
resources. Such an adaptation will have a knock-on
effect on concrete workflows with nodes that use s on
l, requiring a mapping adaptation to change abstract
node to concrete node mapping.

5. WORKFLOW ADAPTATIONS AS MAPE-
BASED DECISION MAKING

The previous section illustrates the range of potential adap-
tations in workflow compilation and execution. This section
shows how the autonomic computing approach briefly in-
troduced in Section 2 provides a conceptual framework to
structure and specify those adaptations, thereby providing
help in dealing with the underlying performance manage-
ment issues.

The Autonomic Manager in the MAPE model embodies
a functional decomposition that is useful for structuring the
decision making processes involved in supporting adapta-
tions. The Monitoring, Analysis, Planning and Execution
functional phases can be used to investigate the adaptive
opportunities. Together, they provide a consistent, abstract
viewpoint with which to express adaptation strategies for
a given kind of Managed Resource. The remainder of this
section takes each of the above functional phases in turn
and shows how they can be used to characterise workflow
adaptations.

5.1 Monitoring
In a scientific workflow of the type defined in Section 3,

there is a set of generic data that can be monitored that will
be of use in determining the state of the system, and some
work has been undertaken to monitor workflow progress [17].
These monitoring data cab be characterised as relating to
task state, execution environment state, service availability,
etc.

The following is a list of task state data that it may be
possible to monitor:

M.1 Progress of a service. Generally, this could rely on
check points within the service, or a service may be
able to provide an estimate of its progress (e.g., [6]).

M.2 Completion of a service. This could be a simple
event that indicates that s has produced all of its of .

M.3 Data consumption rate of a service. This is a
measure of the rate at which s is consuming data from
if .

M.4 Data production rate of a service. This is a mea-
sure of the rate at which s is generating data for of .

A list of the useful data that it may be possible to monitor
about the state of the environment is:

M.5 Available execution nodes. This could be a list of
changes in the available execution nodes in the envi-
ronment.

M.6 Load on an execution node. This is a measure of
the load in a execution node. It could be one, or a tu-
ple, or a composite of, e.g., the CPU load, the number
of processes, and the free resources of the execution
node.

M.7 Load on a network link. This is a measure of the
usage of a network link, e.g., in terms of the available
bandwidth.

M.8 Memory usage on an execution node. This is a
measure of the usage of memory in a execution node.

Besides information about the state of the execution envi-
ronment, data on the available services is also needed. The
following is a list of useful data that it may be possible to
monitor about service availability:

M.9 Available services. This could be a list of the ser-
vices available as mapping targets for tasks in a work-
flow. The data could also include, e.g., the status of
services currently deployed. Such data can be sup-
plied by a service such as the Globus Replica Location
Service [18].

M.10 Available data resources. This could be a list
of the data resources available as mapping targets for
inputs and outputs in a workflow. Note that if data
resources expose service interfaces (as is the case with,
e.g., [10]), service availability information may sub-
sume data resource availability information.

Monitoring the available services is desirable to determine
what services can best be used by the mapping stage of
workflow execution. Likewise, by monitoring the available
data sources the most appropriate source can be selected,
e.g., the one with the fastest data rate.

Monitoring data is provided by the Monitoring compo-
nent inside the Autonomic Manager by appeal to Sensors
that need to be made available for instantiation in the Man-
aged Resource. The Monitoring component has to decide
the most appropriate interval for data retrieval in order that
monitored data is recent enough to be useful while minimis-
ing performance overheads.

5.2 Analysis
It is the purpose of the Analysis component to use the

available monitoring data to detect issues that may help
decide whether some adaptation is desirable. Analyses are
aimed at detecting either problems or opportunities (or both).
The following is a list of potential problems that can be
looked for using the monitoring data discussed in Section 5.1.

A.1 There is load imbalance. Load imbalance will occur
if appropriate tasks are not scheduled to appropriate
execution resources and the overall load fails to be suf-
ficiently evenly distributed. This may be detectable by
Analysis by using M.1, M.2, M.3 or M.6 data.

A.2 There is a bottleneck. This is where a node in the
concrete workflow becomes a bottleneck that is po-
tentially holding up its dependent nodes. Bottlenecks
may be detectable by M.1, M.3 or M.4 data.

A.3 A workflow is likely to miss its expected com-
pletion time. To determine if an expected comple-
tion time is likely to be missed, the progress of each
of the executing services can underpin an estimation
of the overall completion time. For this, M.1 and M.2
data can be used and compared against the original
schedule.

A.4 An execution node has failed. Detecting whether
or not an execution node has failed may not be straight-
forward, but an indication may arise from temporal
analyses over M.5-M.8 data. Alternatively, one could
analyze M.3 and M.4 data to identify whether a ser-
vice has consumed or produced any data over a given
period of interest.

As well as detecting problems, Analysis also aims at de-
tecting opportunities. A list of possible opportunities is as
follows:

A.5 There is additional free capacity. This may be
detectable by looking at changes in M.5-M.8 data.

A.6 There is a new service instance available. This
may be done by analysis of M.9 data.

A.7 There is a new data resource available. This
is the corresponding case, now on data resources and
hence based upon M.10 data.

A.8 There are underutilised execution nodes. By
looking at M.1, M.3, M.4, and M.5 data, it may be
possible to detect that an execution nodes has spare
capacity.

5.3 Planning
The purpose of Planning is to decide whether there are

adaptations whose outcome is likely to be the beneficial re-
moval of one or more problems (e.g., in A.1-A.4) or the ben-
eficial capitalisation on an opportunity (e.g., in A.5-A.8).
Based on the analyses in Section 5.2 and the adaptations
identified in Section 4, a list of possible plans and the anal-
yses they aim to address could be:

P.1 To make a workflow complete more quickly by
increasing service parallelism. In response to prob-
lems detected by A.2 and A.3.

P.2 To make a workflow complete more quickly by
rescheduling a service to a different execution
node. In response to problems/opportunities detected
by A.1, A.2, A.3, A.4 or A.6.

P.3 To make a workflow complete more quickly by
replacing a service. In response to problems de-
tected by A.2 and A.3.

P.4 To schedule a service to an alternative execution
node. In response to problems detected by A.4.

P.5 To assign free execution nodes to a service. In
response to problems/opportunities detected by A.1,
A.2, A.3, A.4 or A.6.

P.6 To move services and take advantage of free net-
work resources. In response to problems/opportunities
detected by A.1, A.2, A.3, A.4 if supported by M.7
data.

P.7 To resort to faster data sources. In response to
problems detected by A.1, A.2, A.3 if opportunity A.7
has also been detected.

Given the problems and opportunities detected by differ-
ent analyses, the available capabilities reflected in the set
of Effectors in Managed Resource and the contents of the
Knowledge base in the Autonomic Manager, the Planning
component has to decide what to do. It has to calculate the
consequences of performing any adaptations, including the
possible benefits, any negative effects and the cost of car-
rying out the candidate adaptation, for each adaptation it
contemplates. In most cases, the outcome of Planning is an
agenda of actions that the Execution component can carry
out.

For example, in distributed QP (say, [10]), if a hash join
is partitioned to run in parallel in several nodes and load
imbalance is detected, then the Planning component would
not only compute a new distribution policy, but it would
also have to stipulate the sequence, source and target of
movements of state (in this case, the partial contents of the
hash tables being used) that may be required.

5.4 Execution
In the MAPE model, carrying out the plan is the respon-

sibility of the Execution component. This may involve, e.g.,
the implementation of protocols for suspending workflow
execution in preparation for potentially intrusive changes,
invoking the available Effectors (whose existence and ca-
pabilities the actions available to the Planning component
presume), and then resuming workflow execution.

5.5 Example Application
To illustrate how using the MAPE model to support adap-

tation can work in practice, we use an example from the
DAG scheduling domain. Scheduling DAGs completely and
statically fails to take into account any environmental changes
during execution. Such changes may give rise to both prob-
lems and opportunities with respect to the statically com-
puted schedule. Rescheduling while the DAG is executing
provides an opportunity to contend with some of problems
and to pounce on some of the opportunities. However, it is
important to have control on the frequency of such attempts,
as (re)scheduling is computationally expensive. A dynamic
rescheduling approach is taken in [16]. Task slack is used to
limit the frequency of reschedules. Task slack is the amount
the execution of a task can slip without affecting the overall
execution time for the DAG.

This approach can be seen in the context of this paper
as a scheduling adaptation. We can cast the problem as an
autonomic computing one by deriving the requirements at
each stage of the MAPE model. Task slack is determined
by calculating the amount of time a task can slip before the
overall DAG schedule is delayed. The required monitoring
information to calculate task slack is one or more of M.1,
M.2, M.3 and M.4 as well as the original schedule.

The Monitoring component delivers this information as
a data stream (alternatively, as a stream of measurement
events). The Analysis components processes this data stream
to detect the condition in which the delay in the execution of
a task is greater than its slack (i.e., the delay in the execution
of the task is likely to lead to a delay in the completion of the
workflow). The requirement is therefore for an A.3-type of
analysis. We have expressed this analysis using the CQL [2]
query language, i.e., as a continuous query of a data stream.
If a potentially disruptive delay is detected in the executing
schedule S, the query emits a result characterising the prob-
lem. In this case, the Analysis component submits to the
Planning component a request to attempt rescheduling (so,
in this case, planning reduces to the run of an algorithm
and a comparison, to check whether the new schedule S′

eliminates (or alleviates) the problem detected). If it does,
then the pair (S, S′) allow the actions to be computed that
effect the transition within the environment from S to S′.
The Execution component deploys the changes, suspending,
intruding and resuming as appropriate. The process of au-
tonomically managing DAG execution can continue while
beneficial outcomes can be expected from adapting.

5.6 Discussion
Section 5 shows how it is possible to use the MAPE model

to structure the decision process for performing workflow
adaptations. The Monitoring, Analysis, Planning, Execu-
tion decomposition focuses on the important aspects of adap-
tation and aids the decision making process. Furthermore,
Section 5.5 discusses how MAPE can be used to support a

type of DAG rescheduling. In comparison to the approach
discussed in [16] it also offers the potential for a decision-
making process that is more capable of contending with the
inherent complexities of workflow execution.

Using the MAPE model has a number of requirements for
both the Autonomic Manager and the Managed Resource.
All of the functions of MAPE discussed in this section re-
quire some domain knowledge of the Managed Resource to
be available in the Autonomic Manager. For example, anal-
ysis detecting bottlenecks must know the concrete workflow
dependencies of each node. In addition, the Managed Re-
source needs to provide the support of Sensors and Effec-
tors.

However, this level of support would be necessary no mat-
ter the structure of the Autonomic Manager. The advan-
tages of using the MAPE approach are that it provides a
consistent and logical model to support adaptive systems
and also provides a unifying framework to integrate systems
with adaptive functionality.

6. CONCLUSIONS
In this paper we have argued that the autonomic comput-

ing approach to designing and specifying adaptive systems
is suitable for adaptive workflow execution. We have sug-
gested how workflow adaptations can be described in terms
of the functional decomposition of autonomic managers into
monitoring, analysis, planning and execution components.
This provided a structure to discuss the decision-making
process for deciding on and deploying adaptations, from the
data needed, to the analyses required to detect problems and
opportunities, to the construction and consideration of can-
didate plans, to the carrying out of the latter in the context
of protocols that impose a discipline on potentially intrusive
adaptations. Early indications suggest that workflow adap-
tation can be supported in a systematic and consistent way
through the use of autonomic managers. In future work,
we intend to further formalise our approach, design and im-
plement software tools for developing MAPE-based adaptive
systems, and evaluate the usefulness and performance of this
framework using real-world scientific workflows.

7. REFERENCES
[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones,

B. Ludscher, and S. Mock. Kepler: An extensible
system for design and execution of scientific
workflows, 2004.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: semantic foundations and query
execution. The VLDB Journal, 15(2):121–142, 2006.

[3] D. Balasubramaniam, R. Morrison, G. Kirby,
K. Mickan, B. Warboys, I. Robertson, B. Snowdon,
R. M. Greenwood, and W. Seet. A software
architecture approach for structuring autonomic
systems. In DEAS ’05: Proc 2005 Workshop on
Design and Evolution of Autonomic Application
Software, pages 1–7. ACM Press, 2005.

[4] P. Buhler, J. M. Vidal, and H. Verhagen. Adaptive
workflow = web services + agents. In Proceedings of
the International Conference on Web Services, pages
131–137. CSREA Press, 2003.

[5] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow
evolution. In International Conference on Conceptual

Modeling / the Entity Relationship Approach, pages
438–455, 1996.

[6] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy.
Estimating progress of long running sql queries. In
SIGMOD Conference, pages 803–814, 2004.

[7] D. Churches, G. Gombas, A. Harrison, J. Maassen,
C. Robinson, M. Shields, I. Taylor, and I. Wang.
Programming scientific and distributed workflow with
triana services. Concurrency and Computation:
Practice & Experience, 18(10):1021–1037, 2006.

[8] E. Deelman, J. Blythe, Y. Gil, C. Kesselman,
G. Metha, K. Vahi, K. Blackburn, A. Lazzarini,
A. Arbree, R. Cavanaugh, and S. Koranda. Mapping
abstract complex workflows onto grid environments.
Journal of Grid Computing, 1(1):25–39, 2003.

[9] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and
H. Tangmunarunkit. Artificial intelligence and grids:
Workflow planning and beyond. IEEE Intelligent
Systems, 19(1):26–33, 2004.

[10] A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou,
A. A. A. Fernandes, and P. Watson. Adapting to
changing resource performance in grid query
processing. In Data Management in Grids, pages
30–44. Springer, 2005.

[11] T. Heinis, C. Pautasso, and G. Alonso. Design and
evaluation of an autonomic workflow engine. In Proc.
ICAC, pages 27–38. IEEE Press, 2005.

[12] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F.
Yassin. A Practical Guide to the IBM Autonomic
Computing Toolkit. IBM Redbooks, 2004.

[13] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[14] M. Litoiu, M. Woodside, and T. Zheng. Hierarchical
model-based autonomic control of software systems. In
DEAS ’05: Proc 2005 Workshop on Design and
Evolution of Autonomic Application Software, pages
27–33. ACM Press, 2005.

[15] S. M. Sadjadi, P. K. McKinley, and B. H. C. Cheng.
Transparent shaping of existing software to support
pervasive and autonomic computing. In DEAS ’05:
Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, pages
1–7, New York, NY, USA, 2005. ACM Press.

[16] R. Sakellariou and H. Zhao. A low-cost rescheduling
policy for efficient mapping of workflows on grid
systems. Scientific Programming, 12(4):253–262,
December 2004.

[17] H.-L. Truong, P. Brunner, T. Fahringer, F. Nerieri,
R. Samborski, B. Balis, M. Bubak, and
K. Rozkwitalski. K-wfgrid distributed monitoring and
performance analysis services for workflows in the
grid. In Proc. 2nd Intl Conf on e-Science and Grid
Computing. IEEE Computer Society, 2006.

[18] S. Vazhkudai, S. Tuecke, and I. Foster. Replica
selection in the globus data grid. In CCGRID ’01:
Proc 1st International Symposium on Cluster
Computing and the Grid, page 106. IEEE Computer
Society, 2001.

