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 A B S T R A C T

Drone swarms operate as decentralized systems where multiple autonomous nodes coordinate their actions 
through inter-drone communication. A network is a collection of interconnected nodes that communicate to 
share resources, with its topology representing the physical or logical arrangement of these nodes. For drone 
swarms, network topology plays a key role in enabling coordinated actions through effective communication 
links. Understanding the behavior of drone swarms requires analyzing their network topology, as it provides 
valuable insights into the links and nodes that define their communication patterns. The research in this 
paper presents a computer vision-based approach to extract and analyze the network topology of such swarms, 
focusing on the logical communication links rather than physical formations. Using 3D coordinates obtained via 
stereo vision, the method identifies communication patterns corresponding to star, ring and mesh topologies. 
The experimental results demonstrate that the proposed method can accurately distinguish between different 
communication patterns within the swarm, allowing for effective mapping of the network structure. This 
analysis provides practical insights into how swarm coordination emerges from communication topology and 
offers a foundation for optimizing swarm behavior in real-world applications.
1. Introduction

The communication topology of a drone swarm is the organiza-
tion among a small group of drones working together to achieve a 
specific objective or operation. These swarms, comprised of multiple 
drones operating collaboratively, represent a transformative technolog-
ical paradigm with applications spanning a multitude of sectors [1]. 
From surveillance operations and environmental monitoring to disaster 
response and search and rescue missions, drone swarms offer a versatile 
and dynamic approach to addressing complex challenges. The net-
work’s topology can be visualized as the arrangement of these drones, 
with each drone representing an individual node within the network. In 
such scenarios, effective communication among the drones becomes of 
utmost importance. Therefore, gaining a understanding of the diverse 
aspects of communication among UAV’s is necessary [2].

The unique strength of drone swarms lies in their collective capabili-
ties, where a group of drones functions as a cohesive unit to accomplish 
tasks that would be challenging or impossible for individual drones. 
This collective coordination is particularly evident in their ability to 
execute complex and multifaceted missions, demonstrating a level of 
efficiency and adaptability that surpasses what can be achieved by 
stand-alone drones [3].

Communication has been often seen as the ‘‘heart of the swarm’’ 
by interacting with others and changing their states, each node in-
fluences the swarm. The effectiveness of communication, which is 
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greatly affected by the swarm network topology, consequently defines 
the robustness of the swarm. Unlike isolated drone operations, where 
communication is minimal, the success of drone swarms lies in the 
intricate exchange of information among their members. This com-
munication allows drones to coordinate their actions, share data and 
respond collectively to dynamic and unpredictable environments [4].

Drone swarm formation control is a key aspect of multi-agent 
systems, where multiple drones must coordinate their movements to 
maintain a specific formation such as star, ring and mesh formation 
while executing a mission [5]. The efficiency and effectiveness of 
drone swarm depend heavily on the ability of individual drones to 
communicate seamlessly with each other. Communication within the 
drone swarm is useful because it allows drones to share information 
such as position, velocity and mission status, enabling the drone swarm 
to function as a cohesive unit [6].

Understanding the patterns and mechanisms of communication is 
essential for improving the robustness of drone swarm, especially in 
scenarios where they are vulnerable to targeted eliminations or external 
interference. The topologies determine how the drones interact with 
one another, how they share information and how they behave as a 
group [7]. Analyzing the communication topologies that govern how 
drones interact with each other helps to identify ways to enhance the 
overall robustness of the swarm.
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In swarm robotics, the underlying communication topology signif-
icantly influences collective behavior, yet is often difficult to access 
directly especially in black-box or adversarial scenarios. This work 
proposes a novel vision-based framework that infers swarm topology 
by observing how drones move in synchrony. The key idea is that 
coordinated motion, particularly synchronous turning behavior, reflects 
implicit connectivity among agents. By leveraging this synchroniza-
tion as a proxy for communication, the system identifies structural 
formations, role-based interactions, and topology transitions passively, 
using only stereo-vision and trajectory analysis. This approach offers a 
scalable and non-intrusive solution for understanding swarm behavior 
without relying on internal logs or direct network access.

This research uses computer vision and AI algorithms to extract 
the network topology of drone swarms specifically on three main 
structures: star, ring and mesh, with a particular emphasis on the 
communication patterns that underpin their collaborative behavior. 
Through simulated environments, the study aims to unravel the in-
tricate dynamics of drone swarm communication, shedding light on 
the spatial relationships, coordination strategies and information flow 
among the individual drones.

The main contributions of this paper are (i) Development of a 
simulated environment that models drone swarms operating under 
different network topologies, including ring, mesh, star to facilitate 
controlled analysis of swarm behavior. (ii) Implementation of a visual 
inference framework that passively extracts communication patterns 
and inter-drone links using stereo vision, object detection and 3D 
trajectory tracking. (iii) Experimental evaluation of the proposed frame-
work, demonstrating its effectiveness in reconstructing swarm network 
structures and identifying potential communication patterns without 
direct access to communication data.

The remainder of the paper is organized as follows. Section 2 
is describing the background that justifies the creation of details of 
the previous work on the different formations of swarms of drones. 
Section 3 depicts challenges and techniques that can be faced dur-
ing implementation and tracking of different formations and extract 
communication structure of drone swarm. Section 4 presents proposed 
approach to extract communication pattern of drone swarm. Section 5 
describe the implementation and simulation with experiment. Section 6 
describes the implications of the findings, addresses the limitations 
of the proposed approach Finally, Sections 7 and 8 presents some 
conclusions and future work.

2. Background

2.1. Network topology

A network consists of nodes and the communications between them. 
The topology of the network is the architecture or network architec-
ture [8]. Network topology refers to the structural arrangement of 
various elements in a computer network, encompassing the drones 
and the communication links between them. Understanding network 
topology is important for designing efficient, reliable and scalable 
drone swarm systems. The topology dictates how drones communicate, 
coordinate and share information, significantly impacting the overall 
performance and robustness of the swarm.

In a drone swarm, the network topology can be dynamic due to 
the mobility of drones, which continuously change their relative posi-
tions [9]. The primary goal is to maintain robust communication links 
among drones while optimizing resource use such as power and band-
width [10]. The choice of topology affects several performance metrics, 
including latency, throughput, fault tolerance and scalability [11].

A star topology [12] where one central drone (master) communi-
cates with all other drones (slaves) is simple to implement and manage 
but suffers from a single point of failure. A mesh topology [13] in 
which each drone can communicate with any other drone directly 
or indirectly is highly robust and fault-tolerant providing multiple 
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paths for data transmission but is complex to implement and main-
tain. Ring topology [14] arranges drones in a circular fashion with 
each drone communicating with its two nearest neighbors making it 
efficient for sequential data processing but less flexible if one drone 
fails. Tree topology [15] featuring a hierarchical structure with parent–
child relationships among drones balances simplicity and reliability 
allowing easy scaling by adding branches but can create bottlenecks 
and affect communication if higher-level nodes fail. Each topology 
offers distinct advantages tailored to different operational needs from 
small-scale centralized control to large-scale, redundant and dynamic 
operations [16].

The operational dynamics of network topologies in a drone swarm 
involve continuous adaptation to changes in the environment and the 
positions of drones [17]. Key components include:

Dynamic Routing: Protocols must accommodate frequent topol-
ogy changes due to drone mobility. Algorithms like OLSR [18] and 
GPSR [19] are designed for such environments.

Link Maintenance: Mechanisms to detect and repair broken links 
are necessary. For instance, drones can use beaconing (periodic hello 
messages) to confirm the presence of neighbors [20].

Load Balancing: Efficient distribution of communication tasks en-
sures no single drone is overloaded, which is fundamental in mesh and 
tree topologies [21].

Fault Tolerance: Redundancy in communication paths (especially 
in mesh topologies) helps maintain network integrity despite node 
failures [22].

Two network topologies exist within a drone swarm — the phys-
ical topology which reflects the relative positions of nodes and the 
logical topology which represents the underlying information transfer 
network [23]. The research presented in this paper will explore logical 
topology.

2.2. Network tomography

Tomography is the process of constructing cross-sectional images of 
items via transmission or reflection data and is carried out by illumi-
nating items from several directions. When the item is a network this 
is referred to as Network Tomography. The process is often carried out 
via active or passive end-to-end path measures [24]. In swarm robotics, 
network tomography can uncover the Command and Control (C2) 
topologies that govern communication within the swarm. Command 
and Control topologies that hold swarms together and thereby expose 
weaknesses facilitating effective targeted elimination.

Network tomography [23] is a technique used to infer the internal 
communication structure of a network by analyzing measurements 
collected from its edges or end nodes. In the context of drone swarms, 
it enables the analysis of the swarm’s internal communication dynam-
ics using data obtained from individual drones or boundary observa-
tions [23]. This method is valuable for assessing network performance, 
identifying communication bottlenecks, diagnosing faults and optimiz-
ing the overall communication architecture. Two network tomography 
exist within a drone swarm — passive tomography and the active 
tomography [25].

• Passive Tomography: Passive tomography involves monitoring 
the existing traffic within the network without injecting addi-
tional data making it useful for real-time analysis and continuous 
monitoring of the swarm’s communication performance. While 
non-intrusive and does not affect normal operation, passive to-
mography is limited by existing traffic patterns and may not 
capture all network characteristics [26].

• Active Tomography: Active tomography involves sending test 
packets through the network to measure performance metrics 
like latency, packet loss, throughput, providing data on network 
performance, suitable for detailed performance analysis and trou-
bleshooting. But active tomography is intrusive and may affect 
normal network operations due to additional test traffic [27].
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• Hybrid Tomography: Hybrid tomography combines the
strengths of both passive and active approaches providing a more 
holistic view of the network while balancing non-intrusiveness 
and data comprehensiveness. Despite its complexity hybrid to-
mography is optimal for achieving continuous monitoring and 
detailed performance analysis [28].

Extracting network topologies using tomography involves several steps. 
Network tomography for analyzing the drone swarm involves several 
steps and considerations:

Data Collection: This involves gathering end-to-end performance 
data through both passive monitoring and active probing. The collected 
data provides critical insights into the current state of the network, 
including latency, connectivity patterns and potential bottlenecks [29]. 
Such information forms the basis for accurately inferring the underlying 
network structure and for assessing the behavior and coordination 
within the swarm.

Inference Algorithms: Using statistical and machine learning tech-
niques to infer the internal network characteristics from the collected 
data. Algorithms such as Maximum Likelihood Estimation (MLE) and 
Bayesian inference are commonly used [30].

Real-time Analysis: In dynamic environments such as drone
swarms, real-time analysis enables immediate processing of collected 
data to detect changes or anomalies as they occur [31]. This capa-
bility is particularly important for maintaining situational awareness, 
ensuring timely decision-making and enabling adaptive responses to 
disruptions in swarm coordination or communication.

Adaptation and Optimization: Based on the insights gained, the 
network can be dynamically reconfigured to optimize performance. 
This may involve re-routing traffic, adjusting transmission power or 
reassigning communication roles among drones [32,33].

Network tomography in drone swarms plays an important role 
in maintaining and improving the network’s performance and reli-
ability. One of the primary applications is fault detection and lo-
calization, which involves identifying and locating faults within the 
network to ensure continuous operation. This process works by de-
tecting anomalies through tomography data, such as an unexpected 
increase in packet loss, which might signal a failing communication 
link. The ability to promptly identify these faults enables swift correc-
tive actions, minimizing downtime and ensuring the effectiveness of the 
swarm’s mission [34].

Another significant application of network tomography is perfor-
mance optimization. This involves enhancing network performance by 
optimizing routing protocols and network configurations. Through the 
analysis of tomography data, inefficiencies and bottlenecks within the 
network can be identified. Once these issues are pinpointed, adjust-
ments can be made to routing strategies or communication parameters 
to improve overall performance. This optimization ensures efficient 
use of resources, reduces latency and increases throughput, thereby 
enhancing the operational efficiency of the drone swarm [35,36].

2.3. Communication extraction strategies in drone swarms

Research on the correlation among cosmopolitan-provincial topol-
ogy and network efficacy was conducted by Everton. This study [37] 
indicated that an inverse curve signifies that a cosmopolitan-provincial 
balance should be maintained by efficient networks shown in [38]. It 
suggests that it could be a feasible intervention strategy to shift the 
topology of the swarming network to either side of the curve to deform 
the cosmopolitan-provincial equilibrium. Due to the importance of in-
ferring logical network topologies for targeted elimination purposes the 
authors recommend that the above work is progressed. The aim should 
be to formulate a general-purpose network [37] inference technique 
capable of:

• Detecting communications links in swarms of varying sizes.
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• Handling real-time addition or subtraction of nodes.
Apart from that to identify an accurate graph it is essential to determine 
the sensing range and the field of view of each drone swarm node. 
A good starting point would be to construct a broad set of drone 
swarm controllers with known topologies and attempt to infer these 
via simulation.

Everton [39], building on earlier work [40], proposed a graph-
based model to analyze the relationship between network topology 
and efficiency. In this model, the term ‘‘hierarchical’’ is closely aligned 
with ‘‘centralized’’ structures, indicating that certain nodes play domi-
nant roles in information flow. The study suggests that disrupting the 
balance between centralized and decentralized (or cosmopolitan and 
provincial) topologies is an effective strategy for reducing the overall 
efficiency and resilience of a network. This insight is particularly 
relevant when targeting critical nodes in adversarial networks such as 
drone swarms.

A study [38] discusses how swarm robotics applications can be 
made more robust by modifying the swarm’s network topology. The 
findings indicate that, during the central phase of operation, drone 
swarm networks benefit from being both centralized and distributed. 
In contrast, when operating in multi-objective environments particu-
larly where targets are aligned in co-linear areas and require similar 
capabilities—swarm networks tend to perform better when adopting a 
more centralized structure during the middle phase of operation.

Vasquez and Barca [41] conducted research aimed at determining 
Command and Control (C2) structures at higher resolutions to sup-
port targeted elimination strategies in swarm networks. Their work 
demonstrated that analyzing edge orientations in topological graphs 
can be used to identify leaders in drone swarms governed by flocking 
behavior, physics-inspired models, morphogenesis and particle swarm 
optimization (PSO)-based controllers. The study also acknowledged 
that additional research is needed to develop high-resolution, general-
purpose network inference techniques that are applicable across diverse 
swarm types and control paradigms.

In a related investigation, [41] also introduced a topographical 
framework that captures both the frequency and alignment of drone 
swarm associations. This framework supports the identification of 
global characteristics such as leadership roles and provides a way 
to relate swarm dispersion metrics to communication intensities. The 
experiments revealed that leadership behaviors could be inferred from 
edge preferences within the topographical graph. Interaction measures 
evaluated through velocity distribution offered visual insights into the 
swarm’s contact dynamics. While other parameters, such as swarm size 
and control paradigm, influenced system behavior, they had minimal 
effect on the overall density distribution across all agents.

While numerous studies have explored drone detection and swarm 
coordination, fewer have addressed the passive inference of commu-
nication structures from external observations. Traditional network 
inference techniques in wireless and cyber–physical systems often rely 
on signal-level data, such as Received Signal Strength (RSS), packet 
delays or direct access to message logs [23,38]. These methods, though 
effective in well-instrumented environments, are intrusive by nature 
and unsuitable for adversarial scenarios where internal communication 
data is inaccessible.

In contrast, behavioral and vision-based approaches offer a non-
intrusive alternative by using observable movement patterns. Yanmaz 
et al. [42] examined how local interactions can shape global swarm 
topology, though their focus remained on communication performance 
rather than topology inference.

Most of these approaches assume either access to explicit communi-
cation logs or use abstract modeling rather than real-time data extrac-
tion. This work diverges by using stereo vision and object detection to 
passively extract the 3D trajectories of drones, then infer network topol-
ogy based on their coordinated motion. This allows for the detection 
of structural relationships (e.g., ring, mesh and star) without requiring 
direct access to communication hardware or protocols.
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Existing visual methods typically address drone localization or ob-
ject tracking but do not extend toward network topology analysis. By 
bridging this gap, the proposed framework contributes a novel perspec-
tive to the field situated at the intersection of computer vision, swarm 
behavior analysis and adversarial network inference. This positioning 
highlights the originality of this work and its relevance for passive 
swarm surveillance and security applications.

3. Drone swarm pattern extraction challenges and techniques

The network topology of a drone swarm provides a graphical 
representation of its communication patterns, interactions and influ-
ences [41]. Inferring this topology is useful for understanding swarm 
behavior, supporting predictive analysis and ensuring effective coor-
dination. Extracting a drone swarm network topology from empirical 
observations alone is highly challenging, particularly when no prior 
knowledge of the network is available. This challenge is compounded 
by the dynamic, high-mobility nature of drones, which leads to frequent 
changes in the network structure [43].

The high mobility of drones causes rapid changes in network topol-
ogy, making it difficult to predict and track communication links [44]. 
Nodes may frequently lose connectivity, disrupting information ex-
change and reducing routing efficiency. High-density formations lead 
to overlapping drones, obscuring visibility and making it difficult to dis-
tinguish individual drones and their interactions [5]. Sparse networks 
and frequent link failures destabilize communication and limit the net-
work’s lifetime, further complicating the extraction of communication 
patterns [45]. The limited communication range of drones restricts 
connectivity, especially in larger swarms, posing challenges for cap-
turing comprehensive topology data [45]. These challenges highlight 
the importance of dynamic topology inference to track and adapt to 
changes in the swarm’s network structure, particularly in high-density 
and high-mobility scenarios.

A range of techniques have been developed to analyze and deter-
mine drone swarm communication structures, with a growing emphasis 
on visual extraction using computer vision. High-resolution cameras 
and advanced computer vision algorithms, such as object detection and 
optical flow, enable the visual tracking of drones. These methods allow 
for the continuous monitoring of drone positions and interactions, 
providing real-time data for topology mapping [46]. RF signal detection 
and analysis, using ground-based sensors and directional antennas, can 
infer communication links, although this method may face limitations 
in high-density swarms [47]. Acoustic tracking, utilizing arrays of 
microphones to detect and localize drones based on sound patterns, 
provides an alternative for environments where visual methods are less 
effective [48]. Radar systems, such as Doppler and phased-array radar, 
provide precise tracking and mapping of drone movements, enabling 
the inference of communication structures [49].

Telemetry and sensor fusion approaches combine data from on-
board sensors, such as GPS, accelerometers and gyroscopes, to provide 
a holistic understanding of swarm dynamics [50]. Machine learning 
algorithms trained on drone movement patterns and communication 
data can predict and classify communication links, offering scalable 
solutions for large swarms [51]. Among these techniques, computer 
vision stands out due to its ability to provide real-time analysis, scala-
bility, accuracy and comprehensive insights into drone swarm behav-
ior [52]. Cameras and vision-based algorithms enable dynamic tracking 
of swarm connectivity, supporting predictive modeling and operational 
planning.

Extracting and analyzing the network topology of drone swarms is 
essential for understanding their behavior and optimizing their opera-
tions. While numerous challenges arise from the dynamic and complex 
nature of these networks, computer vision techniques offer a promising 
solutions [53]. Through real-time visualization and accurate mapping, 
these methods enable researchers to overcome density, mobility and 
connectivity issues, providing useful insights into swarm coordination 
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and communication. This research underscores the potential of visual 
extraction as a base for future advancements in drone swarm analysis 
and applications.

The research in this paper aims to passively extract the commu-
nication structure of a drone swarm by analyzing its movement and 
interactions. By uncovering the swarm’s network topology, it becomes 
possible to identify the key nodes that facilitate coordination. For 
instance, in scenarios where an unauthorized drone swarm is operating 
near a restricted area, identifying its communication structure could 
provide insights into its command hierarchy and vulnerabilities. Secu-
rity forces could then use this intelligence to predict swarm behavior, 
disrupt key communication links and mitigate potential threats without 
direct engagement. The ability to extract and analyze these patterns 
passively enhances situational awareness and informs counter-swarm 
strategies.

4. A proposal for visually determining a drone swarms communi-
cations pattern

This study presents a visual framework for passively inferring the 
communication topology of drone swarms using stereo vision, deep 
learning-based detection and spatiotemporal tracking. The proposed 
method operates in three key stages: drone detection using a deep 
learning model, trajectory tracking via stereo vision and Kalman fil-
tering and communication graph inference based on motion analysis. 
All components are implemented in a ROS-Gazebo simulation environ-
ment and programmed in Python, with OpenCV and PyTorch libraries 
supporting visual processing and deep learning, respectively.

The proposed approach uses a deep learning-based detection algo-
rithm in conjunction with a Kalman filter to track individual drones 
in various drone network topologies over time. The primary objective 
is to extract communication links passively based on observed swarm 
behavior.

Extraction of 3D coordinates

To detect drones in real-time, this study uses the YOLOv6s ob-
ject detection model, which offers enhanced accuracy and speed over 
its predecessors by incorporating an anchor-free detection head and 
improved backbone efficiency. YOLOv6s is well-suited for applica-
tions requiring fast inference and high detection precision, making 
it ideal for swarm scenarios where multiple drones must be tracked 
simultaneously.

A custom drone image dataset was generated in the Gazebo simula-
tor across multiple scenes, lighting conditions, altitudes and formations. 
The dataset comprises 4200 annotated images with bounding boxes, 
split into training (70%), validation (20%) and test (10%) subsets.

The YOLOv6 model was trained using the YOLOv6s (anchor-free) 
architecture with an input resolution of 640 × 640 pixels. The training 
process used the AdamW optimizer with a learning rate of 0.001, over 
120 epochs and a batch size of 16. The model achieved a mean Average 
Precision (mAP@0.5) of 93.1% on the test set, indicating robust object 
detection performance in varied simulated environments. To refine 
detections, Non-Maximum Suppression (NMS) was applied to filter out 
overlapping bounding boxes, ensuring each drone is counted only once 
per frame.

Following detection, the 2D positions of drones are mapped into 
3D space using a stereo vision system. Two virtual cameras placed 
3 m apart capture synchronized image streams, allowing for depth 
estimation through stereo disparity calculation. Triangulation tech-
niques are used to compute the depth of each detected drone, enabling 
reconstruction of their 3D positions.

To track drones over time, a Kalman Filter is used for each de-
tected object. The filter predicts future positions and updates state 
estimates based on new observations, smoothing trajectories and han-
dling temporary detection loss. This tracking ensures that each drone 
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Fig. 1. An approach to extract the communication graph of drone swarm.
is continuously localized in 3D across successive frames, forming the 
basis for motion and interaction analysis.

Curvature Corrected Moving Average: CCMA (Curvature
Corrected Moving Average) algorithm [54] is applied to the trajectory 
data. This step is necessary for reducing noise and smoothing the paths 
thus refining the data for a more accurate analysis of drone behavior.

The CCMA represents an advanced path smoothing algorithm de-
signed to enhance the movement and coordination of drone swarm
[55]. Traditional path smoothing techniques often rely on predefined 
models that may not adequately adapt to the dynamic and unpre-
dictable environments in which drone swarm operate. In contrast, the 
CCMA algorithm is model-free, using the principles of the moving 
average to effectively smooth paths in both 2D and 3D spaces.

The core principle of CCMA is to adjust the trajectory of a moving 
object such as a drone by averaging the positions over a defined 
window while incorporating curvature correction [56]. This ensures 
that the resulting path is smoother and also maintains a natural flow, 
avoiding abrupt changes in direction that could destabilize the drone 
or cause inefficient movements.

Inference of network topology

Building upon the extracted 3D trajectories, the next stage involves 
extracting the network topology of the drone swarm. The movement 
patterns and spatial relationships among drones are analyzed to infer 
potential communication links. A communication graph is constructed 
by assessing the positional dependencies between drones, allowing 
for the identification of connectivity patterns within the swarm. This 
approach enables the extraction of communication structures passively, 
without direct access to the swarm’s structure. By analyzing these in-
ferred connections, the study provides insights into swarm coordination 
dynamics, contributing to a deeper understanding of autonomous drone 
swarm networks (See Fig.  1).

The evaluation of the proposed approach involves detecting and 
tracking drones in three different formation types i.e. star, ring and 
mesh. The effectiveness of the approach is investigated by measuring 
detection accuracy using the deep learning based object detection 
system and tracking performance with a Kalman filter. These metrics 
help assess the robustness of the communication links inferred from the 
trajectory data. The drone swarm communication extraction pipeline 
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algorithm 1 is designed to analyze the trajectories of drones within 
a drone swarm to identify the potential communication patterns. The 
algorithm begins by taking the 3D coordinates of each drone as input. 
For each drone trajectory 𝑇𝑖, the algorithm first applies a filtering 
process to smooth the trajectory data, resulting in a refined trajectory 
𝑇 ′
𝑖 . Next, for each point 𝑃𝑗 in the smoothed trajectory, the algorithm 
calculates the angle 𝜃𝑝𝑗 ,𝑝𝑗+1  between consecutive points using the cosine 
inverse function:

𝜃𝑝𝑗 ,𝑝𝑗+1 = cos−1
( 𝑃𝑗 ⋅ 𝑃𝑗+1

|𝑃𝑗 ||𝑃𝑗+1|

)

This angle is used for detecting changes in the drone’s direction. If the 
angle 𝜃𝑝𝑗 ,𝑝𝑗+1  falls within the specified range of 60◦ to 130◦, the point 
is marked as a ‘‘turn’’ and relevant details, including the position 𝑃𝑗 , 
time, 𝑡𝑗 and drone ID 𝑖 are recorded in the set 𝑆𝑖.

Once all trajectories have been processed, the algorithm sorts the 
recorded turns 𝑆𝑖 based on their timestamps 𝑡𝑗 to maintain a chrono-
logical order. This sorted sequence is then used to extract a sequence of 
drone IDs {𝑖} along with their corresponding timestamps {𝑡𝑗}. The final 
step involves analyzing this sequence to identify the communication 
patterns within the drone swarm. By understanding how and when 
these drones change direction in relation to one another the algo-
rithm can infer possible communication interactions, thereby providing 
valuable insights into the swarm’s coordination and behavior.

After extracting the sequence of directional changes for each drone, 
the algorithm proceeds with a structured analysis to infer the under-
lying communication topology within the swarm. The first key step 
involves constructing a communication graph 𝐺 = (𝑉 ,𝐸), where each 
node 𝑣 ∈ 𝑉  represents a drone, and edges (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 are added 
between drones that exhibit both spatial proximity and temporally 
correlated behavior, such as coordinated turns. This reflects the op-
erational assumption that synchronized directional changes between 
drones are indicative of either direct communication or shared access 
to local swarm dynamics.

Once the graph 𝐺 is constructed, the algorithm computes several 
graph theoretic metrics that serve as structural fingerprints of the 
swarm’s coordination pattern. These include the node:

• degree distribution 𝑑𝑣, which captures the number of immediate 
neighbors or potential communication links per drone;
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Algorithm 1 Drone Swarm Communication Extraction Pipeline
1: Input: Drone swarm 3D Coordinates 𝑃
2: Output: Communication Pattern (e.g., Star, Mesh, Ring)
3: for each drone trajectory 𝑇𝑖 do
4:  𝑇 ′

𝑖 ← CCMA(𝑇𝑖) ⊳ Apply curvature-corrected smoothing
5:  for each point 𝑃𝑗 in 𝑇 ′

𝑖  do
6:  𝜃𝑝𝑗 ,𝑝𝑗+1 = cos−1

(

𝑃𝑗 ⋅𝑃𝑗+1
|𝑃𝑗 ||𝑃𝑗+1|

)

7:  if 60◦ < 𝜃𝑝𝑗 ,𝑝𝑗+1 < 130◦ then
8:  𝑆𝑖 ← {𝑃𝑗 , 𝑡𝑗 , 𝐼𝐷(𝑖)}
9:  end if
10:  end for
11: end for
12: 𝑆 ←

⋃

𝑆𝑖
13: 𝑆𝑂𝑅𝑇 (𝑆) by 𝑡𝑗
14: Extract ordered sequence {𝑖, 𝑡𝑗} from 𝑆
15: Construct communication graph 𝐺 = (𝑉 ,𝐸) based on spatial and 

temporal proximity
16: Compute structural features: degree distribution 𝑑𝑣, edge density 𝜌, 

clustering coefficient 𝐶
17: Initialize 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ ← None, 𝑚𝑎𝑥_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ← 0
18: for each pattern 𝑝 ∈ {Star, Mesh, Ring} do
19:  𝑐𝑜𝑛𝑓 ← Match(𝐺, 𝑝) ⊳ Compute pattern confidence score
20:  if 𝑐𝑜𝑛𝑓 > 𝑚𝑎𝑥_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 and 𝑐𝑜𝑛𝑓 ≥ 𝜏 then
21:  𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ ← 𝑝, 𝑚𝑎𝑥_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ← 𝑐𝑜𝑛𝑓
22:  end if
23: end for
24: if 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ ≠ None then
25:  return 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ
26: else
27:  return No known pattern found
28: end if

• the edge density 𝜌 = 2|𝐸|

|𝑉 |(|𝑉 |−1) , which quantifies how densely 
connected the swarm is;

• and the clustering coefficient 𝐶,which indicates how tightly
grouped the neighborhoods of individual drones are, and whether 
they form localized clusters.

These metrics provide a quantitative profile of the swarm’s interac-
tion structure, providing insight into how information may propagate 
through the network and how centralized or distributed the swarm’s 
control dynamics might be. To classify the swarm’s structure, the al-
gorithm compares the computed values against predefined topological 
templates of known swarm formations: Star, Mesh, and Ring.

Each of these formations exhibits a distinct structural signature:

• A Star formation is characterized by one central node with a high 
degree (close to 𝑛 − 1) connected to peripheral nodes of degree 
one, with a clustering coefficient near zero.

• A Mesh formation exhibits high edge density and clustering co-
efficient, with most nodes having moderate to high degrees and 
forming redundant communication links.

• A Ring formation is defined by uniform node degrees of two and 
a cyclic, low-density structure.

The algorithm iteratively evaluates each of these formation types 
by computing a confidence score that reflects how closely the observed 
graph metrics match those of the respective formation template. This is 
implemented using a pattern-matching loop that compares the graph 𝐺
to each structure. If the highest confidence score exceeds a user-defined 
threshold 𝜏, the corresponding pattern is reported as the final output. 
Otherwise, the system returns ‘‘No known pattern found’’, ensuring that 
classification is only performed when supported by strong structural 
evidence.
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The proposed framework builds on the assumption that drones 
engaged in communication or coordination exhibit synchronous move-
ment patterns, particularly during formation shifts or turning events. 
The system tracks 3D trajectories of individual drones and identifies 
major angular deviations, which are then analyzed for temporal align-
ment across agents. If multiple drones perform sharp turns within a de-
fined temporal window, they are assumed to be engaged in coordinated 
behavior, suggesting a functional topological link.

These synchronized turning events are aggregated across the swarm 
to construct a frequency-based interaction map. Topological patterns 
such as (1, 4, 4) or (1, 3, 4, 1) are derived by counting the number 
of drones involved in each role (central, support, or frontline) during 
these coordination episodes. This method enables the extraction of 
dynamic and evolving swarm topology purely from motion cues, of-
fering a robust proxy in environments where communication metadata 
is inaccessible or unreliable.

5. Experimental evaluation

The experiment setup involves creating a simulation environment, 
conducting experiments and collecting data for analysis. This section 
presents an evaluation of the proposed approach to detect drones in 
different formation types. The aim is to investigate the effectiveness of 
the approach in detecting and tracking different drone formations and 
extract the communication graph to understand behavior of swarm.

This study uses a drone swarm executing movements in diamond, 
ring and mesh formations. A key component of the simulation is the 
deployment of a stereo camera, positioned 3 m above the drone swarm 
which captures the movement of the drones. This setup allows for 
observation of the drone swarm dynamics and facilitates the subsequent 
image processing and drone tracking phases.

To understand the communication dynamics and spatial relation-
ships among the drone swarm entities, the drones are initialized in 
a range of predefined formations, including ring, star, mesh and ran-
dom dispersal. These initial configurations are selected to simulate 
common swarm coordination patterns and to enable controlled anal-
ysis of formation-dependent communication behavior. Each drone is 
equipped with a simulated communication module, which allows it 
to exchange positional and state information with neighboring drones 
based on predefined communication ranges. This simulates realistic 
inter-drone communication constraints that occur in physical deploy-
ments. The drones are programmed with a set of coordinated movement 
behaviors that include maintaining formation, reacting to neighbor 
position changes and adapting to simulated external stimuli such as 
obstacle avoidance or trajectory shifts. This initial configuration is used 
for the controlled exploration of how drones interact and commu-
nicate within the swarm. The parameters are adjusted to refine the 
experimental setup. For example, the smoothing algorithm parameters
CCMA(w_ma=30, w_cc=30) are tuned to achieve smoother paths. 
The turn detection threshold is modified 60◦ but less than 130◦ to iden-
tify directional changes. The drone swarm consists of nine drones each 
initialized with a specific 3D position. The initial positions, represented 
as drone_cords_offset, are defined as follows:

drone_cords_offset = [
    (0, 0, 0.5),
    (0.5, 0.5, 0.5),
    (0.5, -0.5, 0.5),
    (-0.5, 0.5, 0.5),
    (-0.5, -0.5, 0.5),
    (0.95, 0.95, 0.5),
    (0.95, -0.95, 0.5),
    (-0.95, 0.95, 0.5),
    (-0.95, -0.95, 0.5)]
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Each row in the matrix represents the 3D coordinates of a drone. 
The specific pattern of these coordinates forms a grid-like or circular 
arrangement of drones around the origin, ensuring that they are evenly 
distributed and ready for the drone swarm operations. The chosen 
offsets (e.g., [0.5, 0.5, 0.5]) ensure that the drones are placed at a 
sufficient distance from each other to avoid collisions at the start of 
the simulation.

This initial positioning is important for the subsequent behavior 
of the drone swarm as it impacts the communication, coordination 
and movement patterns of the drones. By carefully selecting these 
initial positions the simulation can more accurately reflect realistic 
scenarios where drones are deployed in a pre-arranged formation. 
A deliberate delay is introduced between the movements of individ-
ual drones. This intentional lag serves as a key variable, allowing 
for a precise examination of the drones interactions and how the 
drone swarm adapts to temporal constraints, reorganizing spatially 
in response. This experiment setup provides a robust framework for 
analyzing and understanding the complex interactions within drone 
swarm.

5.1. Pattern extraction in drone swarm formations

This section evaluates the capability of a vision-based approach to 
track and analyze the underlying communication network structures, 
specifically star, ring and mesh topologies within a drone swarm. 
Unlike physical formations, which describe spatial arrangements of 
drones, these topologies refer to the logical structure of communication 
links that govern coordination and data exchange among swarm mem-
bers. The objective is to demonstrate how a stereo-vision-based tracking 
approach can accurately infer these network patterns by observing the 
spatial trajectories and relative interactions of the drones over time. 
The extracted 3D coordinates serve as the foundation for identifying 
the temporal evolution of connectivity patterns within the swarm.

In this paper, the ‘‘percentage of pattern’’ refers to the proportion 
of correctly inferred communication links that match the ground-truth 
swarm topology at each evaluation stage. This metric measures how 
accurately the visual framework reconstructs the underlying formation 
structure (e.g., star, mesh, ring) based solely on observed motion cues. 
For example, a reported value of 70% indicates that 70% of the 
extracted inter-drone connections correspond to the true topological 
configuration. These percentages therefore function as a structural 
accuracy measure, analogous to accuracy in classification problems. 
Given the passive, vision-only nature of the inference process, values in 
the 70%–80% range are considered strong indicators of performance, 
especially under dynamic movement, occlusion, communication delay, 
and formation transition conditions.

5.1.1. Star topology drone swarm pattern extraction
In this experiment a stereo-vision camera system was configured to 

observe the star formation topology of the drone swarm at 90◦ angles. 
The initial detection of drones within the formation was conducted 
using a deep learning framework. Following detection a Kalman filter 
is applied to track each drone movement over time and to extract their 
3D coordinates as illustrated in Fig.  2(a). Once tracking is completed 
the CCMA algorithm is utilized to refine the trajectories by reducing 
noise and smoothing the paths of the drones as shown in Fig.  2(b). This 
processing stage is a key for accurate analysis.

The experiment focused on major turns of the drone swarm, specif-
ically monitoring the angles between consecutive trajectory points. 
A major turn was noted when the angle fell within a predefined 
threshold >60◦ degrees but <130◦ degrees indicative of a change in 
the communication or formation pattern in Fig.  2(c). This method 
effectively demonstrated the capability to monitor and analyze complex 
turning actions and interactions within a drone swarm, highlighting its 
potential for advanced studies in autonomous drone behaviors.
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The presented scattered graph Fig.  3 provides a detailed visual 
representation of the time-based activity patterns of drone swarm each 
identified by a unique identifier. This graph is particularly useful for 
understanding the sequence and timing of drone movements especially 
during major turns. The 𝑥-axis of the graph represents time ranging 
from 0 to 400 s, capturing the entire duration of the observed drone 
activities. The 𝑦-axis corresponds to different drones, each assigned a 
unique numeric identifier ranging from 1 to 9 representing individual 
drones. This scattered graph reveals the pattern of drone movements 
as shown in graph the very first movement is observed from drone 6 
(Colored in blue) at the earliest time, indicating it was the first drone 
to initiate activity. This suggests that Drone 6 is the first to engage 
in a operation. Following drone 6, other drones in the orange group 
namely Drone (1,2,3 and 7) begin their movements shortly after. This 
indicates a coordinated pattern within the orange group, where these 
drones communicating to each other and responding to lead of drone 
6. After the orange group, drones (4,5,8 and 9) both colored in green 
become active. This shift suggests that the green group is waiting for 
the orange group to finish their job and is programmed to move after 
them.

This graph illustrates the sequence and timing of drone movements 
highlighting how different groups of drones coordinate their activities. 
By analyzing the distribution and timing of scatter points, one can 
deduce which drones lead the movement, how they are grouped and 
how they follow each other in a coordinated manner. The visualization 
is particularly valuable in understanding the behavior of the drone 
swarm, especially in identifying patterns like which drone moved first, 
how the other drones responded, and the sequence in which different 
groups initiated their movements.

In analyzing the sequence of drone movements a particular pattern 
of interest was observed. When the extracted sequence follows the 
pattern (1, 4, 4) this is identified as a star pattern. The star pattern 
signifies a coordinated movement where an initial drone leads followed 
by a synchronized response from a group of drones. This pattern was 
notably observed in this graph indicating a structured and repeatable 
behavior within the swarm.

To quantify the confidence in detecting star pattern a percentage 
calculation is used to measure how often a specific pattern appears 
relative to all patterns detected. The formula used for this calculation 
is:

Percentage of Pattern =
(

count of specific pattern
total count of all patterns

)

× 100

In the experiment, this formula is applied to determine the preva-
lence of the star pattern (1, 4, 4) among the detected sequences. The 
analysis revealed that 70% of the detected major changes led to 
the identification of this star pattern. This high percentage provides 
strong evidence of the star pattern’s significance in the drone swarm’s 
behavior, supporting the conclusion that there is a high degree of struc-
tured and repeatable coordination within the swarm. This measure of 
confidence validates the observed patterns and enhances the credibility 
of the method used for pattern extraction.

In the star formation experiment, the identified pattern (1, 4, 4) 
corresponds to the detected communication structure, where:

• 1 drone is acting as a central hub, coordinating the formation.
• 4 drones are positioned at the outer points, actively maintaining 
edge communication (frontline drones).

• 4 drones are functioning in supportive alignment roles, ensuring 
positional stability across radial connections.

This classification is derived from trajectory-based behavior such 
as synchronized angular turns, consistent distance maintenance, and 
proximity to the inferred centroid. The numerical pattern reflects the 
structural inference of roles during flight, highlighting the symmetry 
and centralized coordination typical of star formations. This inter-
pretation validates the framework’s capacity to distinguish internal 
hierarchy in visually tracked swarm formations.



N. Kumari et al.

(a) Observing star formation.

(b) Smooth trajectory.

(c) Major turns in star drone swarm formation.

Fig. 2. Star formation pattern extraction.
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Fig. 3. Drone swarm pattern extraction in star formation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
5.1.2. Ring topology drone swarm pattern extraction
In this experiment, the same approach is used to detect, track 

and extract the communication patterns but with the drone swarm 
organized in a ring formation as illustrated in Fig.  4(a). The major 
turns recorded during the experiment are depicted in Fig.  4(b). The 
primary focus of the experiment is to observe the behavior of the drone 
swarm in this ring formation with an emphasis on understanding their 
movement patterns and extracting the sequence of their coordinated 
actions. Through this analysis the experiment aims to uncover the 
underlying dynamics of the swarm’s behavior and how they operate 
collectively in a ring configuration.

In the scatter graph shown in Fig.  5 a distinct ring pattern is 
observed, reflecting the coordinated movement of the drone swarm in 
a circular order. This pattern is identified by the sequence (1, 2, 2, 2, 
2) which indicates a methodical and synchronized behavior within the 
swarm, where drones move in a structured sequence to maintain the 
integrity of the ring formation.

The sequence begins with drone 4, which is the first to move, 
initiating the overall ring pattern. After drone 4 initial move, drones 
1 and 7 are the next to become active. These drones move almost 
simultaneously, indicating a coordinated response to drone 4’s lead. 
This step in the sequence showcases how the ring pattern begins 
to form with multiple drones responding in unison to the preceding 
drone’s action. Following the actions drones 2 and 6 initiate their 
movements. These drones further propagate the ring pattern, moving 
in a coordinated manner that maintains the circular formation. The 
timing of their movement reflects the ongoing synchronization within 
the swarm, ensuring that the ring formation remains intact. Next in the 
sequence are drones 3 and 9, which move together as the ring formation 
continues to unfold. Their synchronized action continues the cyclical 
pattern, contributing to the overall cohesion of the swarm’s movement. 
The sequence concludes with drones 5 and 8 making their moves. As 
the last drones to act in this pattern their movement completes the ring 
pattern.

This detailed sequence of movements highlights the ring pattern as 
a distinctive form of coordination within the drone swarm. The pattern 
is characterized by a lead drone initiating movement, followed by pairs 
of drones moving in a structured sequence

In this experiment, the occurrence of a specific ring pattern (1, 
2, 2, 2, 2) is analyzed 68.75% in relation to all detected behavior 
sequences. The calculation measures the frequency of this pattern as 
a percentage of the total observed patterns which provides a quanti-
tative assessment of its prevalence within the drone swarm’s actions. 
The resulting percentage serves as a confidence metric, highlighting 
the importance of this pattern in the swarm’s behavior. The analysis 
revealed that the ring pattern is present in a most portion of the 
sequences, reinforcing the notion that the drones exhibit consistent 
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and recurring behavior. This strengthens the validity of the methods 
used for identifying these patterns and offers further insight into the 
structured coordination within the swarm.

In this experiment, the pattern representation (1, 2, 2, 2, 2) cor-
responds to a role-based abstraction of the ring topology extracted 
through trajectory and angular behavior analysis rather than a literal 
geometric or communication-based configuration. This notation is used 
to quantitatively encode the behavioral roles observed during the drone 
swarm’s ring formation. Each digit represents a category of movement 
coordination or influence within the swarm, derived empirically from 
motion characteristics such as angular velocity, curvature consistency, 
and temporal synchronization of turns.

The initial value 1 identifies a reference drone the one that exhibits 
minimal directional fluctuation and acts as a spatial stabilizer during 
the formation. The subsequent values 2, 2, 2, 2 indicate sub-clusters 
of drones exhibiting strongly coupled trajectories and synchronized 
angular responses.

Thus, the pattern (1, 2, 2, 2, 2) is not a traditional topological 
label but a semantic trajectory signature that reveals how drones orga-
nize functionally within a formation. This numeric abstraction allows 
the framework to generalize swarm dynamics across topologies and 
recognize recurring coordination structures. The reported pattern is 
therefore not an accuracy metric, but a detected coordination schema 
that complements the extracted topology and supports comparative 
analysis across swarm behaviors.

5.1.3. Mesh topology drone swarm pattern extraction
In this experiment, the drone swarm is organized in a mesh for-

mation as presented in Fig.  6(a) and the same approach is used to 
detect, track and extract the communication patterns as in previous 
formations. The major turns in mesh formation recorded can be seen 
in Fig.  6(b). The scatter graph illustrated in Fig.  7 reveals a distinctive 
mesh pattern, characterized by the sequence (1, 3, 4, 1). This pattern 
indicates a complex, interwoven movement within the swarm, where 
drones move in a more distributed and interconnected manner, typical 
of a mesh structure.

The sequence begins with drone 9, which is the first to move. 
This initial movement sets off the mesh pattern, indicating drone 9 
role as a potential leader or trigger within the swarm. Following this, 
drones 5, 7 and 8 move almost simultaneously. These drones form the 
first interconnected layer of the mesh pattern, responding to drone 9 
initial movement. The simultaneous action of these drones reflects the 
mesh formation characteristic of having multiple drones interacting at 
once, creating a web-like structure. The next stage in the sequence 
involves drones (1, 2, 6 and 4). These drones move together, further 
expanding the mesh and reinforcing its interconnected nature. This 
synchronized movement adds another layer to the mesh, with multiple 
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(a) Observing ring formation.

(b) Major turns in ring drone swarm formation.

Fig. 4. Ring formation pattern extraction.
drones interacting across different parts of the formation, ensuring that 
the drone swarm operates as a cohesive unit. The sequence concludes 
with drone 3 making its move as the last drone in this pattern. Its 
movement completes the mesh formation, tying together the various 
connections formed by the preceding drones.

The mesh pattern provides information for understanding how 
drones in a drone swarm can operate in a highly distributed manner, 
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ensuring that the entire drone swarm remains connected even as 
individual drones move independently. By analyzing this pattern the 
experiment provides valuable insights into the operational dynamics of 
drone swarm in a mesh formation.

For the analysis of the mesh pattern (1, 3, 4, 1) a similar approach 
is taken to determine its significance among all detected patterns. 
The frequency of the mesh pattern is calculated as a percentage of 
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Fig. 5. Drone swarm pattern extraction in ring formation.
the total detected sequences, providing a quantitative measure of how 
often this pattern appears relative to others. This percentage acts as 
a confidence indicator, reflecting the importance of the mesh pattern 
in the behavior of the drone swarm. The 75% of the detected major 
changes led to the identification of this mesh pattern, further 
emphasizing the structured, repeatable coordination within the swarm. 
The high prevalence of this pattern in the results supports the idea that 
the drone swarm demonstrates a structured, repeatable coordination 
pattern, further validating the detection methods used and enhancing 
understanding of the swarm’s operational dynamics.

In the case of the mesh formation, the extracted pattern (1, 3, 4, 1) 
reflects a structured interpretation of role-based drone behavior within 
a distributed coordination framework. This representation encodes how 
different subsets of drones engage in maneuvering and trajectory ad-
justment, based on angular deviations and turn synchrony observed 
during the experiment. The segmentation is not a spatial node labeling 
but a functional behavior profile that captures relative influence and 
reaction timing across drone groups.

Here, the first and last 1s denote anchor drones that displayed min-
imal deviation from their expected trajectory, maintaining positional 
stability throughout the transition. These drones serve as structural 
ends or boundaries in the otherwise flexible mesh configuration, acting 
as implicit references during internal realignments.

The 3 indicates a subgroup of drones exhibiting semi-coordinated 
behavior, where their turns and angular adjustments are moderately 
synchronized but exhibit more localized clustering than global co-
ordination. These drones are often responsible for adapting to local 
disturbances or fine-tuning spacing within mesh cells.

The 4 denotes the largest cluster of drones executing strongly in-
terlinked adjustments, forming the core of the mesh structure. This 
subgroup is typically involved in maintaining overall formation in-
tegrity through reactive and anticipatory maneuvers, compensating for 
both anchor and peripheral drone activity.

Thus, the pattern (1, 3, 4, 1) emerges as a semantic marker of 
distributed coordination intensity and positional influence within the 
swarm, derived from trajectory data rather than explicit communica-
tion. It allows classification and comparison of swarm dynamics beyond 
visual observation, supporting both topology detection and behavior 
inference.

5.1.4. Resilience of communication topology extraction under visual occlu-
sion

This experiment evaluates the resilience of the proposed visual 
communication topology extraction framework when faced with partial 
occlusion an unavoidable condition in real-world drone operations due 
to obstacles, terrain elevation or temporary loss of line-of-sight. The 
objective is to test whether the topology inference method, can still 
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reliably function when some drones are intermittently hidden from the 
camera view. To simulate this, a star formation was used with nine 
drones arranged such that one central drone served as the hub. During 
the experiment, up to 30% of drones were randomly occluded at dif-
ferent time intervals throughout the flight path, mimicking real-world 
disturbances such as buildings, trees or environmental clutter.

Fig.  8 shows a simulated Gazebo-style visualization of a drone 
swarm in star formation with 30% occlusion. The green circles repre-
sent visible drones, while the faded red circles represent drones that are 
visually occluded due to obstacles or partial field-of-view, simulating 
real-world conditions.

Fig.  9 further illustrates the timing of major directional turns made 
by individual drones throughout the mission timeline. The 𝑥-axis rep-
resents time in seconds and the 𝑦-axis indicates the drone ID from 1 
to 9. Each horizontal marker represents a moment when a drone made 
a significant directional turn, which is a strong cue in our framework 
for inferring communication links or influence within the swarm. The 
color coding divides the swarm into three logical roles:

• Orange: Frontline Drones (Drones 1, 2, 3) These drones operate 
at the outer layer of the star formation and frequently change 
direction as they adapt to movement and maintain formation 
integrity.

• Green: Support Drones (Drones 4, 5, 7, 8, 9) Positioned between 
the center and the outer edge, these drones show moderately 
frequent turns and help stabilize local sub-formations.

• Blue: Central Drone (Drone 6) This drone acts as the communica-
tion anchor in the star topology. It turns less frequently but plays 
a pivotal role in initiating coordinated behavior across the swarm.

Despite the partial occlusion applied during the experiment, the di-
agram shows a consistent and periodic pattern of turns across all roles, 
especially the support and central drones. This consistency demon-
strates that even when some drones are momentarily invisible, the turn 
timing from the visible drones can still reveal overall swarm coordi-
nation. The system can reconstruct logical links based on temporal 
alignment of movement changes, even with missing data. These results 
affirm the applicability of the approach in dynamic, partially obstructed 
environments, reinforcing its practical potential for real-world swarm 
deployment and communication inference.

5.1.5. Extracting topology through multi-formation transitions
This experiment evaluates the proposed framework’s effectiveness 

in dynamically evolving swarm scenarios where drones change forma-
tions mid-flight. Specifically, the swarm was programmed to transition 
from a ring formation to a mesh formation during the mission, mimick-
ing real-world situations such as obstacle avoidance, terrain adaptation, 
or tactical regrouping during operations.



N. Kumari et al. Robotics and Autonomous Systems 198 (2026) 105313 
(a) Observing mesh formation.

(b) Major turns in mesh drone swarm formation.

Fig. 6. Mesh formation pattern extraction.
The purpose of this setup is to test whether the system can adap-
tively extract the network topology even as the spatial arrangement and 
inter-drone connectivity evolve. The framework begins by identifying 
the initial ring structure and continues monitoring as drones gradually 
reconfigure into a mesh topology. The visual tracking module, detection 
system, and topology extraction logic work together to handle this 
complex dynamic transition.
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The simulation was configured with nine drones, initially arranged 
in a ring formation before transitioning mid-flight into a mesh for-
mation, replicating realistic scenarios where swarms adapt to chang-
ing mission objectives or environmental constraints. The drones were 
assigned specific roles:

• Frontline drones (Drone 1, 2, 3, 7) responsible for outer formation 
shifts,
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Fig. 7. Drone swarm pattern extraction in mesh formation.
Fig. 8. Simulated drone swarm in star formation with 30% occlusion. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

• Support drones (Drone 4, 5, 8, 9) maintaining internal alignment 
and

• A central drone (Drone 6)
providing coordination stability. The system was tasked with iden-

tifying major turns sharp trajectory deviations indicative of coordina-
tion or reconfiguration activity across all drones during the formation 
change.

To quantify the effectiveness of the detection method, three perfor-
mance metrics were computed: accuracy, precision, and recall. These 
were derived by comparing detected turn events against ground-truth 
annotations extracted from the known programmed behaviors in the 
simulation. A detected turn was considered a true positive (TP) if it 
occurred within ±2 s of a ground-truth turn timestamp. False positives 
(FP) were turn detections outside this window or where no true turn 
occurred, while false negatives (FN) represented missed turn detec-
tions. True negatives (TN) captured periods with no detected or actual 
turns. Metrics were then computed as: precision = TP/(TP + FP), 
recall = TP/(TP + FN), and accuracy = (TP + TN)/(TP + TN + FP + 
FN). This evaluation approach provides clarity on how well the system 
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captures behaviorally significant events without overfitting to noise or 
incidental trajectory deviations.

The results, visualized in Fig.  10, reveal that the majority of major 
turns occurred around the transition window (150–250 s), particularly 
among support drones, suggesting active internal rearrangement to 
accommodate the new formation. The detection method achieved an 
accuracy of 76%, a precision of 73% and a recall of 74%, confirming its 
effectiveness in tracking swarm dynamics during structural transitions 
as shown in Fig.  11. While the simulation demonstrates promising 
performance, it operates under idealized visual conditions without 
occlusion or sensor noise. In real-world deployments, external factors 
such as latency, occlusion or communication disruptions could slightly 
degrade detection performance. Nonetheless, the system’s ability to de-
tect coordinated behavior under dynamic topology changes validates its 
applicability to realistic mission environments requiring autonomous 
swarm adaptability.

5.1.6. Impact of camera distance on detection and pattern inference
The aim of this experiment is to evaluate the performance of the 

proposed drone detection and tracking framework by varying the dis-
tance between the stereo camera and the drone swarm, simulating 
real-world visual constraints. The experiment assesses how depth per-
ception, image clarity, and visibility at different distances affect the 
accuracy of swarm behavior inference, especially in identifying and 
tracking individual drones.

Fig.  12 illustrates the experimental setup. A stereo camera is placed 
at distances ranging from 2 m to 6 m from the swarm. The drone swarm 
forms a star-shaped configuration, and the input image resolution is set 
to 800 × 800 pixels. As shown in the diagram, the swarm is centralized 
in a 3D bounding volume, and dotted lines indicate camera positions at 
different distances. The camera is mounted at an elevated perspective 
looking downward, replicating a top-view surveillance configuration. 
This view captures both spatial coordination and flight dynamics, and 
is especially useful for understanding inter-drone relationships.

The simulation replicates how camera distance influences detection 
quality closer viewpoints provides high spatial resolution but limited 
field of view, while greater distances capture the swarm’s collective 
behavior but risk losing individual object clarity. At 2 m, the camera 
was too close to the swarm, resulting in poor visibility of several 
drones due to limited field coverage and overlapping motion blur, 
particularly during lateral or rotational movement. This was reflected 
in increased detection failure and higher tracking errors. Conversely, 
the optimal visibility was achieved at 3 m to 4.5 m, where most drones 
were visible, and the spatial coverage was sufficient to capture inter-
drone relationships and emerging patterns. At distances beyond 6 m, 
the camera could observe the swarm as a whole, but the resolution 
degraded, making it harder to distinguish and individually track drones 
with sufficient precision.
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Fig. 9. Drone swarm pattern extraction under occlusion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 10. Drone transition ring to mesh.

Fig. 11. Transition metrics.
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Fig. 12. Varying camera distance.
Fig. 13. Tracking error for camera distance.
The tracking pipeline involved calculating the Euclidean distance 
between the actual and predicted locations of each drone using a 
Kalman filter for temporal smoothing. The results are illustrated in Fig. 
13, where it is evident that tracking accuracy peaks at 3 m. At 2 m, 
several drones go undetected in multiple frames, leading to pattern 
inference failures.
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A critical dependency of this experimental approach is the accuracy 
of the detection and tracking stages. Since the inference of drone 
swarm patterns such as turn sequences, spatial reconfigurations, and 
communication topology relies entirely on the fidelity of the recorded 
trajectory data, any failure in detection or drift in tracking directly 
compromises the downstream analysis. This work builds on our prior 
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simulation study [9] where similar detection and tracking pipelines 
were developed under realistic scenarios, including variable drone 
speeds, overlapping flight paths, and partial occlusions. In that paper, 
we demonstrated several cases where detection failed due to viewing 
angle, low resolution at long range, or rapid movement-induced blur, 
reinforcing the observations presented in the current distance based 
experiment.

6. Discussion

This study proposes and validates a passive framework for visually 
extracting the network topology of drone swarms through stereo vision, 
object detection, and trajectory-based turn detection. The approach 
assumes no access to internal communication metadata, making it suit-
able for black-box scenarios or adversarial observation. By analyzing 
trajectory shifts and angular behaviors across various formations (star, 
ring, and mering, the framework successfully identifies communication 
links that infer the underlying swarm topology.

Experimental results confirm the method’s effectiveness in both 
static and dynamic swarm configurations. For instance, under baseline 
conditions with ideal visibility, the system achieved high accuracy in 
extracting key patterns and communication sequences. The framework 
was stress-tested under various resilience conditions. When communi-
cation was delayed and randomized to simulate asynchronous behavior, 
shorter delays (e.g., 0.02 s) were more successful in preventing pattern 
extraction by adversaries. In contrast, longer delays inadvertently of-
fered more opportunities for attackers to extract structured sequences. 
Similarly, experiments under partial visual occlusion (30%) revealed 
that the system could still infer meaningful topologies, maintaining an 
accuracy of 78%, demonstrating resilience to missing data. Lastly, the 
multi-formation transition experiment where the swarm evolved from 
a ring to mesh formation further highlighted the system’s robustness in 
dynamically evolving environments, yielding accuracy, precision and 
recall all above 74%.

Together, these findings support the feasibility of using passive 
visual cues for real-time swarm analysis. However, the method’s relia-
bility still hinges on ideal simulation parameters and its performance 
under real-world uncertainties remains to be comprehensively assessed.

While the proposed framework yields promising results across mul-
tiple formations and experimental conditions, several limitations are 
acknowledged:

Simulation Dependency: All evaluations were conducted in con-
trolled environments using Gazebo and ROS. Factors such as lighting 
variability, sensor noise and drone occlusion were either idealized or 
minimally simulated.

Fixed Parameters: The use of empirically chosen thresholds such as 
those for detecting angular turns or extracting sequence patterns limits 
adaptability. These values may not generalize well across different 
drone types, speeds or environmental contexts.

Formation Scope: The study primarily explores structured topolo-
gies like star, ring and mesh. Other realistic or emergent formations 
(e.g., flocks, clusters or adaptive transitions) were not included.

Partial Robustness Evaluation: While occlusion and communi-
cation delay experiments were introduced, broader robustness assess-
ments under compounded uncertainties (e.g., noisy detections, multiple 
occlusions, GPS drift) are yet to be performed.

Passive-Only Constraint: Although intentional, the lack of inte-
gration with even minimal communication metadata constrains the 
accuracy ceiling of the system in ambiguous cases.

These limitations define the boundary of the current contribution 
and highlight critical areas for practical adaptation.
16 
7. Conclusion

This research proposed and evaluated a vision-based approach for 
extracting the network topology of a drone swarm using 3D positional 
data obtained through stereo vision. The primary aim was to investigate 
whether inter-drone communication patterns represented as logical net-
work structures such as star, ring and mesh topologies can be inferred 
from trajectory data alone.

Through simulated experiments, the approach was tested on differ-
ent swarm formations and the resulting communication graphs were 
analyzed to determine how well the visual method could capture the 
underlying network structure. The findings confirm that it is feasible to 
distinguish between common communication patterns based solely on 
drone movement data.

By focusing on visual inference of network topology, this work 
contributes a practical technique for studying swarm behavior without 
relying on internal communication logs. This provides a foundation for 
future research in drone swarm coordination and control, particularly 
in scenarios where direct communication data is inaccessible.

8. Future work

To enhance the scalability and real-world applicability of the frame-
work, the following directions are proposed:

Noise-Tolerant Inference: Future studies will incorporate synthetic 
and real-world noise models, such as camera jitter, intermittent occlu-
sion and partial visibility, to better assess the framework’s resilience in 
unstructured settings.

Hybrid and Adaptive Formations: Investigating transitionary be-
haviors across multiple complex formations (e.g., V-formations, lattice 
patterns, hybrid flocks) will enable better generalization and formation-
aware analysis.

Physical Deployment: Real-world trials with physical drone plat-
forms using stereo or monocular ground-based vision systems will be 
pursued. These will assess performance under uncontrolled conditions 
such as lighting changes, occlusion and perspective distortions.

Learning-Based Enhancements: To replace static angle thresholds, 
adaptive learning models (e.g., reinforcement learning or graph neu-
ral networks) will be integrated to segment trajectories and extract 
topologies dynamically.

Multi-Modal Fusion: While the current approach remains fully 
passive, future work may explore minimal communication metadata 
fusion to validate visually inferred links and strengthen edge inference 
reliability.

These directions aim to transform the current framework into a gen-
eralized, noise-resilient and deployable tool for real-time drone swarm 
topology extraction in both cooperative and adversarial scenarios.
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