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Abstract: Edge, fog, and cloud computing provide complementary capabilities to enable
distributed processing of IoT data. This requires offloading mechanisms, decision-making
mechanisms, support for the dynamic availability of resources, and the cooperation of
available nodes. This paper proposes a novel 3-tier architecture that integrates edge,
fog, and cloud computing to harness their collective strengths, facilitating optimised
data processing across these tiers. Our approach optimises performance, reducing en-
ergy consumption, and lowers costs. We evaluate our architecture through a series of
experiments conducted on a purpose-built testbed. The results demonstrate significant
improvements, with speedups of up to 7.5 times and energy savings reaching 80%, under-
lining the effectiveness and practical benefits of our cooperative edge-fog-cloud model in
supporting the dynamic computational needs of IoT ecosystems. We argue that a multi-tier
(e.g., edge-fog-cloud) dynamic task offloading and management of heterogeneous devices
will be key to flexible edge computing, and that the advantage of task relocation and
offloading is not straightforward but depends on the configuration of devices and relative
device capabilities.

Keywords: edge computing; fog computing; cloud computing; device-enhanced edge

1. Introduction
Cloud computing, despite its widespread adoption, struggles to satisfy the latency

and bandwidth demands of IoT applications, necessitating the integration of edge and
fog computing to complement cloud capabilities [1,2]. These paradigms, by situating
computation closer to data at the network’s edge, address latency and bandwidth issues
and foster a cooperative dynamic among edge, fog, and cloud layers [3,4]. In this synergy,
the device-enhanced edge model enables utilising idle computational resources of IoT
devices themselves [5]. This approach not only alleviates the pressure on traditional edge
servers but also promotes flexibility and resource efficiency. But the deployment of a
cooperative device-enhanced edge-fog-cloud architecture presents significant challenges,
including task allocation across heterogeneous resources, dynamic node availability, and
maintaining Quality of Service (QoS).

Building upon the Honeybee model [6], we propose an integrated architecture
for coordinating resources across edge, fog, and cloud tiers, and empirically evalu-
ate its efficacy. This paper aims to investigate the following research questions within
this architecture:

• RQ1: How does node collaboration across edge, fog, and cloud layers impact overall
task performance?
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• RQ2: How does adjusting task-sharing parameters affect the system’s behaviour?
• RQ3: How can dynamic node availability, where heterogeneous nodes may leave or

join without prior warning, be handled in a cooperative edge, fog, cloud setting?

Our contributions include a conceptual architecture for dynamic edge-fog-cloud col-
laboration, the development of a real-world prototype, and an empirical evaluation demon-
strating the approach’s effectiveness in a physical testbed.

The paper is organised as follows: Section 2 outlines the background and motivation
for our architectural approach. Section 3 reviews related work in computation offloading.
Section 4 details the Honeybee architecture and its enhancements. Section 5 presents
our experimental evaluation, followed by conclusions and future work directions in
Section 7.

2. Background and Motivation
The edge-fog-cloud architecture is commonly envisioned as a 3-layered model [7–9].

In this model the edge layer is at the bottom and directly connected to end-user IoT devices,
the middle tier is composed of fog nodes, and the cloud layer is at the top, as shown
in Figure 1. There are other interpretations of how the interactions between edge, fog,
and cloud may occur [10], and this paper follows the model in Figure 1. In this paper,
we envision a computing architecture where the IoT devices themselves are utilised as
edge resource providers. The idea of a collection of end-user IoT devices collaboratively
working as a collective computing resource has been explored in the literature under
various terms, such as ‘mobile device clouds’ [11], ‘mobile edge-clouds’ [12], ‘human-
driven edge computing [13], ‘collaborative multi-device computing’ [14], ‘mobile crowd
computing’ [6] and ‘device-enhanced multi-access edge computing’ [5] (device-enhanced
MEC). In this paper, we use the term ‘device-enhanced MEC’ to refer to the bottom tier of
Figure 1, which provides edge computing services to end-user IoT devices.

Figure 1. A 3-tier architecture for device-enhanced edge, fog, and cloud computing. End-user IoT
devices such as smartphones, drones, and robots are integrated as edge resources, forming a local
collective resource, and work collaboratively with conventional edge, fog, and cloud servers.

As shown in the aforementioned research, integrating end-user IoT devices to the edge
tier as resource providers can provide performance gain, energy savings, and increased
resource utilisation and availability. However, when considering real-life constraints, the
co-cooperation amongst device-enhanced edge, fog, and cloud layers becomes essential.
We illustrate this in the motivating scenario illustrated in Figure 2.
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Figure 2. Scenario showing how different contexts require collaboration amongst resource nodes at
edge, fog, and cloud tiers.

Here, Jane, has a medical condition which requires her to use a wearable device for
constant monitoring of health data. The application QoS requirements in this case include
near-real-time response time, a particular level of accuracy, high availability, and secure
handling of Jane’s sensitive medical data. She is also concerned about the battery drain of
her mobile device and data access fees.

The wearable device sends the sensor data to her smartphone for analysis which
is not powerful enough to run the AI algorithms required to process this high-velocity
stream of data continuously. Hence, this application requires the support of external
resources to provide accurate and timely results. Jane’s smartphone has a collaborative
resource-sharing middleware installed, which runs in the background of the smartphone
and the resource nodes, and acts as an intermediary between applications and external
resources. Applications that need external resources connect to available resources through
the middleware.

In Figure 2, when Jane is at home, Jane’s smartphone connects her to a local collective
resource, made up of the collective resources of her family members’ smartphones and her
home edge server to carry out the sensor data processing tasks. In this situation, all of the
participating resource nodes can be considered to be at the edge. Since all of the nodes are
trusted, and connectivity is robust, Jane does not have the need to request the support of
remote servers.

When Jane is traveling in the car with another family member, the local collective
resource is made of just two smartphones-Jane’s and her family member. Since this particu-
lar resource collection does not provide sufficient computing resources to satisfy the QoS
requirements of Jane’s app, she further shares the app workload with a conventional edge
server located at a base station, as well as with fog and cloud servers. In this situation, the
entire workload is not offloaded to the servers, but shared amongst the two smartphones
(which form the local collective resource in this case) as well.

The app workload involves a large amount of data; hence, reducing data transfers
via cellular links is beneficial, due to latency, data access fees, and energy usage. During
the drive, Jane’s smartphone suffers intermittent data connectivity, and so a considerable
amount of work is being supported by the local collective resource, instead of the other
servers. How much work is performed by the two smartphones (the local collective
resource) and the conventional edge, fog, and cloud servers can depend on their availability
and latency, as well as the task scheduling algorithm in Jane’s collaborative resource sharing
middleware. When the cellular data connectivity drops, this can increase the latency of
conventional edge, fog, and cloud servers, impacting their performance. In this case, the
two smartphones should be able to pick up most of the workload.

When Jane is at the medical clinic (rightmost situation in Figure 2), her smartphone
forms a local collective resource with her doctors tablet via D2D and with the clinic edge
server via WiFi. She further shares her work with fog and cloud servers because the doctor’s
diagnostic process requires the app to provide faster performance. As Jane uses the clinic’s
high-speed WiFi to connect to the remote servers, there is no concern of intermittent data
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connectivity or data access fees. In this situation, the fog and cloud servers should be able
to pick up most of the workload due to the availability of high-speed connectivity.

In the three aforementioned contexts described in the scenarios in Figure 2, Jane shared
her work with resource nodes at the device level, edge, fog, and cloud levels in various
degrees. The three situations had different constraints in terms of connectivity, trust and
security, and amount of available resources, yet the application QoS requirements remained
the same. Hence, to continue to meet the QoS requirements, the collaboration across edge,
fog, and cloud needs to adapt dynamically depending on the context.

3. Related Work
Existing surveys on edge, fog, and cloud computing have comprehensively discussed

the synergy between IoT and edge, fog, and cloud computing paradigms, explaining how
edge and fog computing can bridge the gap between IoT and cloud computing by moving
the computation closer to the end-user IoT devices, thereby addressing issues with energy,
latency, and context awareness [4,5,15–18]. Numerous scholarly papers have extensively
addressed diverse facets of edge, fog, and cloud tiers, taken as separate tiers. Specifically,
for device-enhanced MEC, additional complexities need to be considered due to the dy-
namic nature of device-based resource providers and their intrinsic characteristics, such as
distributed ownership, mobility, finite energy, resource constraints, increased proximity
to other device-based resource providers, and Device-to-Device (D2D) communication
capacity [5,15,19–22]. Various aspects of the technical feasibility of the lowest tier of device-
enhanced MEC, where devices such as smartphones function as edge resource providers,
have been demonstrated in frameworks such as MMPI [23], Hyrax [24], MClouds [25],
Aura [26], and Honeybee [6]. However, these existing works have not investigated how
the device-based resource providers can collaborate and share work with nodes at fog and
cloud layers, considering various overheads, impacts on performance, and battery and
various offloading parameters.

As highlighted in a recent work on the convergence of edge, fog, and cloud, only a
few papers have yet investigated the interactions between these three paradigms in a 3-tier
edge-fog-cloud architecture [27]. Below, we discuss related work that has explored this
under-researched area. Here, we only focus on work that has investigated the interactions
and collaborations between at least two of the edge, fog, and cloud tiers, and do not
consider work that only focuses on one tier.

One of the first papers to explore edge-fog-cloud collaboration is Flores et al. [20],
who proposed the HyMobi framework, which allows a mobile application to interoperate
between device-enhanced MEC, fog, and cloud tiers. HyMobi has an incentive mech-
anism based on credit and reputation, and allows users to lease the resources of their
devices as an open commodity in the edge tier, exploiting the social characteristics of the
devices to form offloading communities. The effectiveness of HyMobi is demonstrated
via a proof-of-concept implementation and a testbed, evaluating the performance and
energy consumption of mobile applications and infrastructure awareness in a social-aware
environment. However, the performance results are not explored thoroughly with different
edge-fog-cloud combinations. Other papers that discuss all three tiers of edge-fog-cloud
include [21,28,29]. In [21], a task can be offloaded to either edge, fog or cloud, or executed
on the device itself; however, no collaboration amongst the tiers is mentioned. Although the
algorithm in [28] can be applied to all three layers of edge-fog-cloud to reduce latency and
power consumption, the paper only considers the fog layer. In [29], a Min-Min algorithm,
considering cost, makespan, energy, and load balancing, is used to schedule tasks amongst
the edge-fog-cloud tiers.
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The coordination of work offloading amongst the edge and cloud tiers is discussed
in [22,30,31]. In [22], the authors propose the HyFog framework, which considers interac-
tions between device-enhanced MEC and cloud, and allows devices to choose the execution
mode among local mode, D2D mode, and cloud mode. Simulations show that HyFog’s
three-layer graph-matching algorithm-based solution is able to minimise the power con-
sumption while ensuring latency requirements. However, there is no discussion about
adapting to dynamic conditions, such as device mobility. In comparison, refs. [19,32]
only consider collaborated work offloading inside the device-enhanced MEC layer itself,
between the devices as resource providers and the conventional edge server/s.

Offloading in hybrid fog/cloud systems is discussed in [33–35]. In [33], the authors
present a scheme for the joint optimisation of transmit power control, computation and ra-
dio bandwidth allocation when offloading in hybrid fog/cloud systems, while guaranteeing
user fairness and maximum tolerable delay. In [34], Zahoor et al. present a cloud-fog-based
architecture in the context of a smart grid. The authors discuss simulation results of using
round robin, throttled, and particle swarm optimisation algorithms to schedule requests
from devices such as smart meters on the VMs of a fog-cloud architecture. However, it
is unclear if there is any collaboration amongst the fog-cloud tiers. Kumar and Karri [35]
present the EEOA (electric earthworm optimisation algorithm) for efficient resource assign-
ment and work scheduling amongst fog-cloud tiers, considering the makespan, cost, and
energy usage. Simulation results show that in many cases, the proposed EEOA performs
better than alternative methods.

Overall, few papers have considered collaboration amongst all three tiers of edge-fog-
cloud [20,21,28,29]. However, amongst all the papers considered in this section, only [20]
has used an actual test bed without solely depending on simulations. Although important,
simulations lack real-world variability, and do not always capture emergent behaviours
arising from the interactions of various components in the edge, fog, and cloud tiers.
Only work reported in [19,20,22,29–32] has provided clear evidence of supporting inter-
tier interactions and collaborations, and a majority do not discuss support for dynamic
conditions. In this paper, we address the gaps highlighted above.

4. An Architecture for Edge-Fog-Cloud Offloading
This section introduces our architecture for supporting inter-tier collaboration amongst

edge, fog, and cloud tiers in a device-enhanced MEC context. We have chosen to extend and
build on the Honeybee framework since it is open-source, supports proactive worker-centric
offloading, and has automatic load-balancing and fault-tolerant mechanisms. Honeybee
has also been extended in other work to work with drones [36], robots [37] and dependency-
based task scheduling [38], showing its extensibility.

The Honeybee framework (https://github.com/niroshini/honeybee, accessed on 18
December 2023) is an Android implementation of the Honeybee mode [6,39], and enables
the formation of mobile edge clouds, via peer-to-peer (P2P) connections using Wi-Fi Direct.
In the Honeybee model, the device with the task to be completed is called the ‘delegator’.
The original task is first decomposed to a pool of jobs, and then is offloaded to ‘worker’
devices in the vicinity, while also carrying out a portion of the jobs by itself. Honeybee’s
task-scheduling algorithm is based on work stealing [40] to automatically load-balance
the jobs amongst the delegator and the workers. The workers must proactively request
to ‘steal’ jobs, and each time the delegator receives a steal request, it will respond to the
requesting worker with a chunk of jobs. In this way, faster workers are able to steal more
and more jobs, thus avoiding performance bottlenecks with faster nodes having to wait
for slower nodes. The Honeybee model is also able to handle random disconnections
as well as exploit random resource node encounters. To address the critical aspect of

https://github.com/niroshini/honeybee
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incentivising participation of workers, we have previously explored the socio-technical
requirements and engineering challenges of this paradigm, identifying effective incentive
mechanisms [41]. Our findings provided insights into aligning user motivations with
application goals through both intrinsic-social and extrinsic-personal incentives, ensuring
sustained engagement while mitigating resource depletion concerns. However, in this work,
we do not focus on the design of incentive structures, instead assuming that appropriate
mechanisms are already in place across the edge, fog, and cloud layers to support inter-tier
collaboration. In this paper, we build on the Honeybee model to extend the cooperative
work-stealing mechanism beyond the original Honeybee’s local device cloud. We have
extended the Honeybee delegator to be able to simultaneously maintain connections with
multiple P2P edge servers via Wi-Fi Direct, as well as fog and cloud servers via the LAN
and the internet, respectively. The Honeybee worker component has been extended to
include support for Java implementations on fog and cloud servers. While our previous
work [38] extended the Honeybee framework to support sequential dependency tasks, this
study does not utilise the dependency-enabled extension, as it lies beyond the scope of the
present investigation. Figure 3 shows a high-level view of the architecture of the extended
framework for Edge-Fog-Cloud collaboration.

Figure 3. The edge-fog-cloud collaborative architecture.

Algorithms 1–4 provide an overview on how resource nodes at the edge, fog, and
cloud collaboratively work on a distributed set of jobs. As shown in Algorithm 1, the
delegator first initialises the job pool and starts consuming the jobs (for processing), while
concurrently, it also starts the resource discovery threads for edge, fog, and cloud workers.
Algorithm 3 describes the generalised periodic resource discovery thread. The delegator
spawns three instances of this thread for workers at the three tiers of edge (We), fog
(W f ), and cloud (Wc). Each tier uses communication protocols applicable for that tier.
Each instance of the three resource discovery threads operates independently, discovering
resources specific to the worker type. Whenever a worker node is discovered, the system
attempts to establish connections with them, via WiFi-Direct (for P2P edge), LAN (for
fog), and internet (for cloud). Upon connecting, each worker will attempt to ‘steal’ from
the delegator’s job pool (see Algorithms 4 and 5). Whenever a worker’s share of jobs is
completed, it will send the results to the delegator, and without waiting to be assigned jobs,
will proactively attempt to ‘steal’ jobs from the delegator.
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Algorithm 1 Delegator’s main thread

1: Input: Job pool J = {j1, j2, . . . , jn} where n > 0, delegator d, edge workersWe, fog
workersW f , cloud workersWc

2: Output: Completed jobs J c, initially J c = ∅
3: Initialise J to ensure J ̸= ∅
4: Start delegator’s job consumer thread Td_con
5: Start Td_comEdge for edge workers
6: Start Td_comFog for fog workers
7: Start Td_comCloud for cloud workers
8: while J \ J c ̸= ∅ do
9: Td_con consume J

10: Update J c with results from Td_con
11: end while

Algorithm 2 Delegator’s job consumer thread

1: Input: J = {j1, j2, . . . , jn}, n > 0, d,We,W f ,Wc
2: Output: J c
3: LetW =We ∪W f ∪Wc
4: while J \ J c ̸= ∅ do
5: if J ̸= ∅ then
6: Consume J
7: Update J c
8: else Steal from a worker inW ▷ Traverse workers in connection order
9: end if

10: end while

Algorithm 3 Delegator’s periodic resource discovery thread for worker type W

1: Input: Worker type W ∈ {We,W f ,Wc}; Communication protocol Comm
2: Output: Established connections stored in a ConcurrentHashMapM
3: InitialiseM as an empty ConcurrentHashMap
4: while resources are periodically discovered for W do
5: for each worker w ∈W do
6: Open socket connection using protocol Comm
7: Create a ClientSocketThread instance for w
8: M[w]← ClientSocketThread instance
9: Start a communication thread for w ▷ Algorithm 5

10: end for
11: end while

Algorithm 4 Worker’s main thread

1: Input: Worker job pool Jw, initially Jw = ∅, Stolen jobs J s, d
2: Output: Worker’s completed jobs J cw, initially J cw = ∅
3: Initialise: work_ongoing← true
4: while work_ongoing do
5: if J s ̸= ∅ then
6: Jw ← Jw ∪ J s
7: while Jw ̸= ∅ do
8: Consume Jw
9: Update J cw and send to d

10: end while
11: else Steal from d
12: end if
13: end while
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Algorithm 5 Delegator’s communication thread for each worker

1: Input: Worker w, job pool J , connection mapM
2: Output: Updated J , completed results J c
3: Retrieve w’s connection details fromM
4: Send init_signal to w
5: while read ̸= ∅ do
6: m← read ▷ m: received message
7: if m = steal_request then
8: Send no_jobs_left if J = ∅, else start victim thread Td_vic
9: else if m = results then

10: J c← J c ∪ new results ▷ Store results
11: if J ⊆ J c then
12: Execute on_task_completed
13: end if
14: else if m = stolen_jobs then
15: J ← J ∪ stolen jobs; start job consumer thread Td_con
16: else if m = no_jobs then
17: Mark w as idle
18: if expired jobs ̸= ∅ then
19: J ← J ∪ expired jobs
20: end if
21: else if m = worker_heartbeat then
22: Update w’s status inM
23: end if
24: end while

Algorithm 5 manages all communication between the worker node and the delegator
node. This includes handling job-stealing requests, processing completed results, dele-
gator functioning as a victim when a worker steals jobs from the delegator (described in
Algorithm 6), expiring the oldest jobs (detailed in Algorithm 7), and sending termination
signals upon task completion (detailed in Algorithm 8).

Algorithm 6 Delegator’s victim thread

1: Input: Job pool J , steal limit Ls, chunk size Cs
2: Output: Stolen job list J s
3: Initialise J s← ∅
4: if J ̸= ∅ then
5: if |J | > Ls then
6: job← get first job in J
7: end if
8: while job ̸= null do
9: J s← J s ∪ {job} ▷ Add job to stolen list

10: if |J | ≤ Ls then
11: break
12: end if
13: if |J s| ≥ Cs then
14: break ▷ Steal chunk size is constant across all workers
15: end if
16: job← get next job in J
17: end while
18: end if
19: Transmit J s to worker
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Algorithm 7 Delegator’s job expiration method

1: Input: Pending results listR
2: Output: Expired jobs Jexpired
3: Initialise Jexpired ← ∅
4: ifR ̸= ∅ then
5: Select worker wex with the oldest pending jobs fromR
6: Jexpired ← pending jobs of wex
7: end if
8: return Jexpired

Algorithm 8 Delegator’s on_task_completed method

1: Input: Connection map of all connected workersM
2: Output: Task completion signal sent, all connections closed
3: for all connected workers w ∈ M do
4: Send termination_signal to w
5: Close connection with w
6: end for

Over the course of program execution, any participating device can assume both roles
of thief and victim. Hence, the worker can ‘steal’ from the delegator and the delegator can
also ‘steal’ from workers if its own job pool is empty, but the task is not yet completed (see
Algorithm 2). When a device receives a steal request, depending on its available job queue,
it can decide to become a victim (see Algorithm 6). The victim then removes a Cs number
of jobs (i.e., a chunk) from its own job list, and transmits them to the thief. The chunk size,
Cs, defines the number of jobs a node can steal at a time. It is set as a small percentage of
the total job count to minimise loss and enable easy reassignment if the worker disconnects.

• Stealing decisions: When the delegator steals from workers, workers are traversed
sequentially in the order they connected to the delegator. The delegator attempts
to steal jobs from each worker until successful or until all workers have been tried.
Workers can only steal from the delegator due to an implementation constraint in
peer-to-peer (P2P) connection protocols. In technologies such as Bluetooth and Wi-Fi
Direct, only a star topology is supported, not a mesh. As a result, P2P connections
between workers are not feasible.

• Conflict avoidance: The delegator maintains a synchronised lock on the job pool
J during job allocation to prevent race conditions. This ensures that jobs are not
simultaneously assigned to multiple workers.

• Complexity and overhead: The sequential worker selection ensures that worker
traversals are O(n), where n is the number of connected workers. Locking and job
allocation operations remain O(1), ensuring low overhead for each steal request.

• Fault tolerance: Worker heartbeats and job expiry are two main fault tolerance mecha-
nisms in the framework. Each worker periodically sends a ‘heartbeat’ signal to the
delegator to indicate its availability (see Algorithm 5). Other communications, such
as job results, are also considered as heartbeats. If no heartbeat is received from a
worker for a pre-determined consecutive interval, the delegator deems the worker as
disconnected, and their assigned jobs are returned to the job pool for reassignment. If
a job remains uncompleted beyond a predefined expiry time, it is marked as ‘expired’
and returned to the job pool, allowing other nodes, including the delegator, to process
it (see Algorithms 5 and 7). The delegator invokes the job expiry mechanism only after
its own job queue is exhausted and a steal attempt fails, ensuring efficient resource
utilisation while preventing indefinite delays.



Future Internet 2025, 17, 22 10 of 23

This proactive design lends itself for more opportunism as the availability and re-
sourcefulness of each worker is unknown a priori, and subject to change any time [6]. For
example, a worker’s availability can be impacted if/when a worker node receives a call
while it is participating in task execution, or if its location changes due to the owner moving
away. This process continues until the pool is exhausted, or until a worker disconnects.
The resource discovery threads are periodic; hence, potential workers can join at any point
in time.

4.1. Upper and Lower Bounds for Speedup

In this section, extending previous work in Honeybee [6], we formulate theoretical
upper and lower bounds to analyze the best- and worst-case speedup scenarios within a
device-enhanced edge-fog-cloud computing architecture.

We assume that a given edge-fog-cloud computing environment consists of x P2P
edge nodes, including the delegator, y fog workers, and z cloud workers, where x, y, z are
non-negative integers.

Let us denote each node in the device-enhanced edge layer as nei , where 1 ≤ i ≤ x.
The delegator is denoted as ne1 . Each fog worker is denoted as n f j

, where 1 ≤ j ≤ y, and
each cloud worker is denoted as ncl , where 1 ≤ l ≤ z.

The time taken to complete m jobs on the delegator ne1 is denoted as te1 . The time
taken for an edge worker nei to receive, complete, and return results for m jobs is denoted as
tei , where i > 1. Hence, the relative computational power of an edge worker nei compared
to the delegator ne1 can be given as:

tei

te1

= kei (1)

Similarly, the time taken for a fog server n f j
to complete and return results for m jobs

is denoted as t f j
, and for a cloud server ncl as tcl . The relative computational powers of fog

and cloud workers compared to the delegator ne1 can be represented by constants k f j
and

kcl , respectively:

t f j

te1

= k f j
(2)

tcl

te1

= kcl (3)

The parameters kei , k f j
, and kcl , introduced in Equations (1), (2), and (3), respectively,

serve as indicators of the relative efficiency of task execution by worker nodes in comparison
to the delegator. Specifically, a value of k < 1 signifies that the worker node, be it within
the edge, fog, or cloud tier, can process and return the results of the assigned tasks more
expediently than the delegator performing the same tasks in a monolithic manner. This
computational advantage highlights the potential benefit of offloading tasks to worker
nodes with k < 1. Conversely, a value of k ≥ 1 suggests that task offloading may not yield
substantial speedups, as the worker node does not demonstrate a computational speed
advantage over the delegator.

Even when k > 1, indicating a worker’s lower computational power compared to
the delegator, offloading can still enhance overall performance. This improvement arises
because the delegator and workers operate concurrently, increasing total system throughput.
Essentially, the collective output of all computing nodes, despite individual limitations, can
contribute to achieving speedup. Thus, the decision to offload tasks should consider the
system-wide contribution, highlighting the importance of a holistic approach in optimising
the edge-fog-cloud architecture’s efficiency.
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It is important to note that the relative computational power indicators kei , k f j
, and kcl

are assumed to be constant for the purposes of this theoretical analysis. This simplification
is intended to provide a tractable baseline for deriving upper and lower bounds on speedup.
In practice, these indicators may vary dynamically due to fluctuations in network traffic
(e.g., WLAN, LAN, and internet) and the computational load on worker devices, especially
edge devices with constrained resources. These variations can influence task completion
times and, consequently, the speedup achieved in real-world scenarios.

4.1.1. Best-Case Scenario

Deriving from [6], only considering the P2P edge workers, assuming jobs of equal
computational complexity and ignoring overheads, the upper bound for speedup can be
given as:

Supper = 1 +
x

∑
i=2

(
1

kei

)
(4)

This formula illustrates the ideal scenario where the combined effort of all devices
maximises the task processing speed. Realistically, it should be noted that given the
presence of overheads and the variability in job sizes, the realised speedups are likely to
fall below this theoretical maximum.

Incorporating the fog and cloud workers, the updated formula for the upper bound
for speedup becomes:

Supper = 1 +
x

∑
i=2

(
1

kei

)
+

y

∑
j=1

(
1

k f j

)
+

z

∑
l=1

(
1

kcl

)
(5)

4.1.2. Worst-Case Scenario

The lower bound for speedup is formulated, extending from [6], for edge, fog, and
cloud workers as follows.

We consider the worst-case scenario where the collective capability of the worker
devices across the edge, fog, and cloud tiers is significantly less than that of the delegator.
This scenario might occur due to high network latency, worker unavailability, or extremely
weak workers.

In such situations, the delegator undertakes the parallelised task execution without
the assistance of any worker nodes, incurring overheads, including costs related to task
parallelisation and ongoing worker search efforts, as well as communication costs across
the edge, fog, and cloud layers.

The utmost job completion time, tworst, is represented as:

tworst = tM + cedge + cfog + ccloud + eedge + efog + ecloud

Under these assumptions, the lower bound for speedup can be given as:

Slower >
tM

tM + cedge + cfog + ccloud + eedge + efog + ecloud
(6)

This formulation reflects the minimal speedup achievable under adverse conditions.

5. Experimental Evaluation
An image processing task (face detection) was chosen as the computational task to

be shared amongst the nodes. The job pool on the delegator consists of 1000 unique
PNG images at 1024 × 1024 resolution, obtained from the FFHQ dataset (https://github.
com/NVlabs/ffhq-dataset, accessed on 4 March 2024). We selected images starting from

https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/ffhq-dataset
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filenames 66000.png to 66999.png. The mean image size was 1.3 MB, with a median of
1.31 MB and a standard deviation of 0.161. The images were stored in the delegator device
at the start of each experiment. The nodes used for the experiment are given in Table 1.
These devices represent a range of computational capacities across the edge, fog, and cloud
layers. The Moto G5S Plus (D1) represents a constrained edge device typical in IoT setups,
while the OnePlus 6 (D2) demonstrates a more powerful edge environment. The Dell
Inspiron 5502 (F1) serves as a fog server, representing resource-rich devices for intermediate
computation and the AWS EC2 t3.xlarge instance (C1) exemplifies a high-performance
cloud resource for centralised processing. These choices demonstrate the applicability
of our approach to devices across a wide spectrum of computational capacities, from
constrained edge devices to powerful cloud resources.

All results were obtained from experiments conducted on the specified physical
devices, ensuring a realistic evaluation of the system’s performance. No simulations were
used. The aims of each experiment and related RQs are given in Table 2. Each experiment
was conducted five times, and the results were averaged to ensure statistical reliability. The
network capacity and latency details for the three different edge-fog-cloud tier networks in
the experiments are given in Table 3.

Table 1. Specifications of the delegator and worker nodes.

Node CPU RAM OS

Moto G5S Plus (D1) Qualcomm MSM 8953 Snapdragon 625 4 GB Android 8.1
Oneplus6 (D2) Qualcomm SDM845 Snapdragon 845 8 GB Android 11
Dell Inspiron 5502 (F1) 11th Gen Intel(R) Core(TM) i7-1165G7 @2.80GHz 1.69GHz 16 GB Microsoft Windows 10

Pro (x64)
AWS EC2 instance t3.xlarge
(Cx where x ∈ [1..12])

4vCPU upto 3.1 GHz Intel Xeon Platinum Processor 16 GB Ubuntu Server 20.04 LTS

Table 2. Experiment overview.

Experiment Aim RQ

1,2,3,4,5,6,9 Compare the performance of the system when there are multiple con-
figurations of edge, fog, cloud nodes, with heterogeneous platforms,
capacities, connection protocols, working together

RQ1

7 Investigate the impact of task sharing configuration parameters in an
edge, fog, cloud collaboration setup

RQ2

8, 10 Investigate the impact of dynamically adding/removing or slowing
down worker nodes

RQ3

Table 3. Network capacity and latency details for different network types.

Network Type Latency Range (ms) Bandwidth (Mbps)

P2P Edge (Wi-Fi Direct-based) 5–10 50–100
Fog Server (LAN-based) 5–30 100–150
Cloud Server (Internet-based) 200–400 30–50

5.1. Experiment 1: Baselines

This experiment examines the computational capacities of each worker node in com-
parison to the delegator. This sets the baseline values to understand the performance gains
and battery usage for the later experiments. The delegator first executes the entire task
monolithically (the ‘monolithic version’ refers to the task without any of the parallelising
components). Next, the delegator offloads the entire task to each worker, and each node
processes the entire task sequentially. Two sets of baseline experiments are carried out:
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(1) D1 as delegator, with D2, F1, and C1 as workers, and (2) D2 as delegator, with D1, F1,
and C1 as workers. The speedup metric, denoted as S, provides the relative performance
gain achieved through offloading compared to monolithic execution. Table 4 shows the
results of this study. Note that Avg. Tr. time denotes the average transmission time per job
in the table. This includes all associated communication delays, such as the propagation
time, any network routing or switching delays, and job preparation and acknowledgment
processing at both ends. Battery % indicates the battery usage of the delegator during the
execution of the experiment. This was measured by recording the battery percentage of
each device just before the experiment started and immediately after it ended.

Table 4. Experiment 1: Baseline experimental results for each worker with D1 and D2 as delegator.

Node

D1 as Delegator D2 as Delegator

S Battery (%) Avg Tr. Avg Total S Battery (%) Avg Tr. Avg Total
Time (ms) Time (ms) Time (ms) Time (ms)

Delegator N/A 17.60 N/A 3,900,012 N/A 8.99 N/A 1,042,548
Fog 2.70 4.00 797 1,446,771 0.85 5.60 627 1,043,236
Cloud 1.43 8.39 1948 2,725,512 0.56 7.39 1286 1,674,836
Edge 2.57 5.20 184 1,515,956 0.17 23.60 2002 6,089,051

With D1 as delegator, the results indicate that D2, F1, and C1 exhibit speedup factors
of approximately 2.57, 2.70, and 1.43 over D1, respectively, Note that this comparative
performance takes transmission delays into account. This is why even though the fog (F1)
and cloud (C1) nodes may be computationally more resource rich than the P2P edge node
(D2), the overall performance in D1’s perspective is less than D2. As can be seen from the
battery usage on D1, offloading significantly reduces D1’s battery consumption, even with
the additional communication costs.

With D2 as delegator, F1’s speedup (0.85) is only slightly lower than D2’s monolithic
execution, but C1 demonstrates a marked decrease in speedup with S = 0.56. Despite C1
having significant computational power, due to latency issues that are well known with
cloud computing, jobs offloaded to C1 take more time to return results. Finally, the P2P
edge node (D1) is the slowest, with S = 0.17. This is due to D1 being significantly less
powerful than D2 (see Table 1).

5.2. Experiment 2: Delegator and P2P (Edge)

In this experiment, the delegator D1 collaborates with a peer-to-peer edge device
D2. Comparative analysis indicates that D2 operates at a rate 2.57 times faster than
D1, as detailed in Section 5.1. D2’s superior computational capacity compared to D1 is
further demonstrated by D2 executing approximately 2.6 times as many jobs as D1. This
performance discrepancy is clearly depicted in Figure 4a. Hence, this configuration achieves
a speedup of 3.59, as documented in Figure 4b. The average task completion time for this
experiment was 1,084,998 ms.

5.3. Experiment 3: Delegator and Fog

In this experiment, D1 cooperates with F1 to complete the jobs together. This results
in a speedup of 3.76, as seen in the Figure 4b. This is also due to the fact that F1 is more
powerful than D1, as evidenced by the number of jobs completed by each node, as seen in
Figure 4a. The average task completion time for this experiment was 1,038,146 ms.
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(a) (b)

Figure 4. Results for Experiments 2–6 and 9. (a) Jobs completed by each node for Experiments 2–6,9.
(b) Speedup gains and battery usage for varying node configurations.

5.4. Experiment 4: Delegator and Cloud

Here, D1 shares the workload with C1, resulting in a speedup of 2.48, as seen in
Figure 4b. Node C1 is more powerful than the delegator D1, as evidenced by the number
of jobs completed by each node in Figure 4a. The average task completion time for this
experiment was 1,571,844 ms.

5.5. Experiment 5: Delegator, Fog, and Cloud

In this experiment, the delegator (D1) is collaborating with both F1 and C1. As can be
seen from from Figure 4b, this results in a speedup of 4.85. The average task completion
time for this experiment was 803,566 ms.

5.6. Experiment 6: Delegator, P2P, Fog, and Cloud

In this experiment, a comprehensive 3-tier configuration, comprising a P2P edge device
(D2), a fog server (F1), a cloud server (C1), and the delegator (D1), collaboratively processes
the tasks. This integrated architecture achieves a significant speedup of approximately 7.5,
as documented in Figure 4b. The average task completion time for this experiment was
514,485 ms. D2 and F1, being the fastest workers, are able to complete almost two-thirds
of the total jobs (Figure 4a). Figure 5 illustrates the cumulative number of jobs completed
(y-axis) over time in milliseconds (x-axis) for each node (D1, D2, F1, C1). The lines represent
the total number of jobs completed by each node at any given point in time. The gap
between the lines provides an indication of how many jobs each device has completed
relative to the others, with a larger gap signifying a higher contribution.

Figure 5. Time series of number of jobs completed by each node. Experiment 6: Results for D1
working with D2, F1, and C1: Time series of number of jobs completed by each node.
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5.7. Experiment 7: Varying the Chunk Size

Chunk size, defined as the number of jobs dispatched per steal request to a worker,
is a critical parameter within the Honeybee framework for optimising performance. An
excessively large chunk size results in workers incurring substantial wait times for job
reception rather than execution, while an overly small chunk size leads to too many steal
requests, thereby increasing overheads.

The effect of chunk size is notably pronounced when job data are sizeable. In this
paper, the job data are images, with an average size of 1.3 MB. The aim of this experiment is
to calibrate chunk size to enhance performance. Initially, the experiment maintains a fixed
chunk size for D2 and C1 at 5, iterating over various chunk sizes for F1 (see Figure 6b),
which was identified as the most efficient worker in preceding experiments. Subsequently,
the experiment is replicated with D2 (see Figure 6a) given its comparable efficacy to F1 in
job completion.

(a) (b)

Figure 6. Experiment 7: Varying the chunk size. (a) Speedup gains for the D1 with varying chunk
size for F1 and constant chunk size for nodes D2 and C1. (b) Speedup gain for the D1 with varying
chunk size for D2 and constant chunk size for nodes F1 and C1.

Increasing the chunk size beyond Honeybee’s default of 5 yields performance gains for
F1, with chunk sizes of 15 and 20 emerging as optimal for maximising speedups (Figure 6a).
Nonetheless, augmenting the chunk size beyond these values appears to diminish returns.
Conversely, for worker D2, the default chunk size gives the best speedup (Figure 6b).
This phenomenon can be explained by examining the trade-off between communication
time and job processing. An increase in chunk size results in proportionately longer
job transmission times. Thus, an equilibrium must be struck between the latency of job
arrival—a function of both the data volume per job and the chunk size—and the frequency
of steal requests initiated by the worker. A diminutive chunk size prompts a higher rate of
steal requests, while an excessive chunk size can lead to disproportionate waiting periods
for job arrival relative to the job execution time.

This experiment highlights the need to configure chunk sizes for the different require-
ments for different tiers, as in this case, for fog and P2P edge. Fog servers, with greater
processing power and bandwidth, can handle larger chunks effectively, while edge devices
perform better with smaller chunks, compensating for their limited speed and capacity.

5.8. Experiment 8: Scalability

The results from previous experiments in this section show that adding more workers
leads to increased speedups. However, it can be expected that speedups may eventually
stabilise even if more and more nodes are added, due to the overheads of parallelisa-
tion and transmission costs. In this experiment, we investigate the scalability of adding
more and more workers using instances of similar cloud workers. Starting with one
cloud worker, the number of cloud workers is gradually increased till 12 to test the op-
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timal number of workers for the highest speedups. Figure 7 illustrates the results of
this experiment.

(a) (b)

Figure 7. Experiment 8: Results of scaling up cloud workers. (a) Speedups for delegator D1 with
varying number of cloud workers (1 to 12). (b) Avg. job transmission time (ms) from delegator D1 to
different setups of varying number of cloud workers.

From Figure 7a, it can be seen that the system performance increases with the addition
of cloud workers. However, the returns plateau after five cloud servers. From that point
onwards, the speedups remain stable even though more cloud workers are added. This
can be explained in that having more workers increases the job distribution/transmission
overheads, as illustrated in Figure 7b. With an increasing number of cloud workers, the
average transmission time for a job increases. As long as this transmission overhead is
offset by the benefit of increased computing resources, the system could continue to have
increasing speedups. However, it is evident from Figure 7a that the point of diminishing
returns for this particular setup occurs at five cloud servers. This result with cloud workers
is also consistent with the experimental results for P2P mobile workers investigated in [6],
which highlights that regardless of the type of worker (whether P2P edge/fog/cloud),
there will be an optimal number of workers for a given job setup.

5.9. Experiment 9: Relative Node Capability

In this experiment, the role of the devices D1 and D2 have been switched, so that D2
is the delegator and D1 is a P2P edge worker. When D2 acts as the delegator, and works
with other workers F1, C1, and D1, the jobs can be completed with an average speedup of
2.72, as shown in the node configuration D2*+F1+C1+D1 in Figure 4b. The average task
completion time for this experiment was 382,891 ms. On average, out of 1000 jobs, D2
completed around 400 jobs and is the dominant node, as shown in Figure 4a. It is followed
by F1, which completed around 349 jobs. C1 completed 203 jobs and D1 is the weakest of
all, completing only 48 jobs.

5.10. Experiment 10: Dynamic Changing of the Node Availability

In real-world scenarios, it can be expected that the node availability would change
dynamically. In this set of experiments, the node availability was manually changed to
investigate how well this would be handled by the system by examining the rate of job
completion (how many jobs were completed by each node at a given time). Figure 8
shows the results of this set of experiments. Note that the jobs are not completely identical
(although generally similar), and therefore, the rate of job completion is not a 100% indicator
of how much ‘work’ a node would have done, as the processing of some jobs may be more
or less complex than others.
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(a) (b)

(c)

Figure 8. Experiment 10: Results for D1 working with D2, F1, and C1 under dynamic conditions.
(a) Time series of cumulative jobs completed by the nodes: Slowing down F1. (b) Time series of
cumulative jobs completed by the nodes: Disconnect F1. (c) Time series of cumulative jobs completed
by the nodes: Add new cloud worker.

5.10.1. Degradation of Network (Pausing Node to Emulate Reduced Availability)

We first investigated the impact of a node’s availability being decreased with no prior
warning, by programmatically slowing down F1. This was achieved by pausing F1 for
20 s before working on the stolen jobs once it has completed 150 jobs. As can be seen from
Figure 8a, the rate of job completion of F1 starts to decrease around 220,000 ms. This is
evident in the change of the slope of F1 in Figure 8a. The other nodes’ (D1, D2, C1) rate of
job completion does not appear to have been significantly increased to compensate for F1’s
slow down in this instance, although closer inspection reveals a slight uptick of C1’s rate of
job completion. This may have been because although F1 was slowed down, it was still
stealing jobs from the pool. Hence, it may not have given sufficient opportunity for the other
nodes to steal more jobs at a higher rate. This experiment was performed five times, and
the average speedup obtained was 5.873. This can be compared with the average speedup
gained when all the nodes D1, D2, F2, C1 were working with no degradation in Experiment
6, as given in Section 5.6, where the average speedup was 7.582. Although the impact
of the F1’s decreased performance is evident from the reduced speedup, Honeybee’s job
scheduling and load balancing methods were still able to handle the unexpected reduction
in F1’s availability without needing to reconfigure the system parameters.

5.10.2. Degradation of Network (Random Loss of Node)

As the second experiment in this set, we tested Honeybee’s fault tolerance mechanisms
by programmatically disconnecting F1 halfway through the task. As can be seen from
Figure 8b, F1’s slope is flat from 250,000 ms onwards. The slopes of D1, D2, F1, and C1’s
curves at the point of disconnection (at t1 in Figure 8b) are 2.498, 6.142, 7.03, and 5.195,
respectively. After another 250,000 ms has elapsed, at 510,000 ms (at t2 in Figure 8b), their
slopes are 2.496, 6.333, 0, and 5.795, where both D2 and C1 have noticeable upticks in their
rates of job completion. This can be explained by D2 and C1 stepping up to steal more jobs
in the absence of F1. Unlike in the previous experiment shown in Figure 8a, here, the total
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absence of F1 provided an opportunity for the other nodes to engage in increased stealing.
Although the disconnection here was random, Honeybee’s load-balancing mechanisms
were still able to (1) ensure any jobs assigned to F1 were added back to the pool so that job
execution can complete, and (2) seamlessly load-balance the jobs amongst the remaining
nodes automatically without any interventions. This experiment was performed five
times, and the average speedup obtained was 6.421, compared to the average speedup of
7.582, when all nodes were performing without any disconnections, as given in Section 5.6.
Interestingly, the average speedup that was obtained here is actually higher than that of
the 5.873 recorded in the previous experiment in Figure 8a. This suggests that it is more
optimal to have a lower number of nodes with high availability than to have more nodes
with decreased availability.

5.10.3. Adding a New Node Opportunistically

In the third and last experiment in this set, we investigated Honeybee’s ability to
incorporate more resource nodes opportunistically halfway through task execution, and
whether this can provide benefits to overall performance. As can be seen in Figure 8c, the
new cloud worker C2 was added at 260,000 ms. This experiment was performed five times,
and the average speedup obtained was 8.32, compared to the average speedup of 7.582,
when nodes D1, D2, F1, and C1 were performing without any disconnections, as given
in Section 5.6. As can be seen from the job completion curves in Figure 8c, the addition
of the new node C2 has not caused any disruption to the performance of the other nodes.
From the increased speedup obtained here, it is evident that Honeybee can handle the ad
hoc addition of new nodes, and thereby exploit opportunistic node encounters without
requiring any reconfiguration or interventions.

6. Summary and Discussion
The speedups and battery savings (for delegator) are summarised in Table 5. As shown

in Table 5, the proposed collaborative and proactive method achieves the highest speedups
and battery savings when the nodes across edge, fog, and cloud are all working together.

RQ1: The impact of node collaboration across edge, fog, and cloud layers on overall task
performance

Experiments 1 to 6, and 9 investigated the impact on performance and battery life
of delegating computations to different combinations of P2P edge, fog, and cloud nodes.
Experiment 1 demonstrates that transmission (and latency) times must be considered when
offloading computations to other hosts. We also noted that with today’s mobile devices,
fog nodes or edge nodes can sometimes perform better even than cloud nodes (of course,
depending on the configuration of the cloud nodes). Experiment 2 showed that two peer
devices (D1 and D2) can complete jobs as much as 3.6 times faster, in particular, when
a device offloads some computations to a more powerful device. Experiment 3 showed
that a device (i.e., D1) offloading to a powerful fog node (F1) can complete jobs as much
as 3.76 times faster, in particular, when a device offloads some computations to a more
powerful device. Also, though D1 using F1 is faster than D1 using D2, it is noted that a
higher battery usage is required when D1 uses F1 than if it uses F1 (due to the transmission
power required to a fog node as opposed to a peer node). Experiment 4 showed that a
device (i.e., D1) offloading to a cloud node (C1) can complete jobs as much as 2.48 times
faster, in particular, when a device offloads some computations to a more powerful device.
It is noted that a higher battery usage is required when D1 uses C1 than if it uses F1, as
we would expect. Experiment 5 showed that a device (i.e., D1) offloading to a fog node
(F1) and cloud node (C1) can achieve a speed up of 4.85. However, because less work is
performed by D1, even though it is transmitting jobs to the other devices, its battery usage
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decreased. Experiment 6 showed that a device (i.e., D1) offloading to a a peer node (D2), a
fog node (F1), and a cloud node (C1) can achieve a speed up of 7.5. However, because even
less work is performed by D1, even though it is transmitting jobs to the other devices, its
battery usage decreased. Experiment 9 shows that the more powerful (relative to workers)
a device is, the less advantage there is in delegating, e.g., it shows that since D2 is more
powerful, the speedup from delegation is less than would be gained if D1 was the delegator.

Table 5. Experiment summary.

Exp. Configuration: D1 as Delegator Avg Battery Saving % Avg Speedup

1 D1 monolithic - 1.00
1 offload to D2 77.27 2.57
1 offload to F1 52.33 2.70
1 offload to C1 70.45 1.43
2 D1 + D2 71.59 3.59
3 D1 + F1 65.91 3.76
4 D1 + C1 50.00 2.48
5 D1 + F1 + C1 72.78 4.85
6 D1 + D2 + F1 + C1 80.68 7.58
7 Varying chunks for D2
7 Chunk size = (D2 = 5, F1 = 5, C1 = 5) 80.68 7.58
7 Chunk size = (D2 = 20, F1 = 5, C1 = 5) 80.68 7.57
7 Chunk size = (D2 = 30, F1 = 5, C1 = 5) 79.55 7.57
7 Chunk size = (D2 = 40, F1 = 5, C1 = 5) 79.55 7.10
7 Varying chunks for F1
7 Chunk size = (D2 = 5, F1 = 10, C1 = 5) 77.27 7.62
7 Chunk size = (D2 = 5, F1 = 15, C1 = 5) 75.06 7.81
7 Chunk size = (D2 = 5, F1 = 20, C1 = 5) 75.00 7.74
7 Chunk size = (D2 = 5, F1 = 25, C1 = 5) 79.55 7.50
7 Chunk size = (D2 = 5, F1 = 30, C1 = 5) 76.19 7.46
7 Chunk size = (D2 = 5, F1 = 35, C1 = 5) 77.27 7.51
7 Chunk size = (D2 = 5, F1 = 40, C1 = 5) 80.68 7.64
7 Chunk size = (D2 = 5, F1 = 45, C1 = 5) 79.55 7.59
7 Chunk size = (D2 = 5, F1 = 50, C1 = 5) 78.47 7.51
8 Adding Cloud Workers
8 D1 + 2 Clouds 58.01 3.33
8 D1 + 3 Clouds 57.44 3.69
8 D1 + 4 Clouds 59.15 3.87
8 D1 + 5 Clouds 67.05 3.93
8 D1 + 8 Clouds 60.23 4.01
8 D1 + 12 Clouds 60.23 4.06

Exp. Configuration: D2 as delegator Avg. Battery Saving% Avg Speedup

9 D2 monolithic - 1.00
9 offload to D1 −162.51 0.17
9 offload to F1 37.71 0.85
9 offload to C1 17.80 0.56
9 D2 + D1 + F1 + C1 44.38 2.72

RQ2: Impact of task sharing configuration parameters in an edge, fog, cloud collabora-
tion setup

Experiment 7 shows that delegation parameters such as chunk size have a significant
impact on performance, increasing speedup by as much as 3–5% (e.g., in a 10 h job, that
would be 30 min of savings), and that parameter optimisation should be tailored to the
specific requirements of each tier.

RQ3: Dynamically adding/removing or slowing down worker nodes

Experiment 8 shows that there are limits to delegation—employing more cloud work-
ers does not always mean improvements to speedup due to increasing transmission times
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and the delegator’s limitations in managing multiple workers. The speedup saturates at
around 4.1 even with eight cloud nodes or more. There are also diminishing returns so that
the gain in speedup with each additional node is less. Experiment 10 demonstrates the
ability of the Honeybee framework to compensate and adapt to nodes disconnecting or
slowing down across diverse tiers of edge, fog, and cloud—other nodes automatically do
more jobs and do so in a way where the additional jobs are distributed fairly uniformly
among the remaining nodes so that no particular node suddenly increases in job uptake
(the increases in cumulative jobs across different devices over time remain fairly linear).
Conversely, the addition of a new worker reduces load or completed jobs on all nodes
fairly uniformly.

Overall, for Honeybee-based work stealing style offloading computations, we note
that, with the current networking technology, offloading (especially to nearby nodes,
i.e., fog or peer nodes) becomes a way to reduce battery consumption on the dele-
gator, i.e., with D1 as delegator, we have: batt(D1, D2, F1, C1) < batt(D1, F1, C1) <

batt(D1, D2) < batt(D1, F1) < batt(D1, C1), where batt is the battery usage on the
delegator. Also, speedups are to be gained with offloading, despite additional trans-
missions required, and in particular, offloading to more devices helps more, unless the
delegator device is relatively much more powerful than the device(s) being offloaded
to, and despite transmissions to fog or cloud nodes, the more powerful the device be-
ing offloaded to, the greater the speedups attainable: with D1 as delegator, we have:
su(D1)[1] < su(F1)[2.37] < su(D1, C1)[2.48] < su(D2)[2.53] < su(D1, D2)[3.6] <

su(D1, F1)[3.76] < su(D1, F1, C1)[4.85] < su(D1, D2, F1, C1)[7.5], where su denotes the
speed up with the given configuration (also given in square brackets), and with the more
powerful D2 as delegator, the speedup attained is no more than 2.8. While speedups are
to be gained via offloading, there are limits to how much gain can be achieved and the
advantage of using more workers, and there are diminishing returns with more nodes being
used, with clear implications. For estimations of costs (with paying for more cloud nodes)
versus benefits (from improved speedups), a mechanism to determine the optimal number
of nodes (minimising the cost/benefit ratio) is required. It might not be necessary to scale
a system beyond some threshold number of devices (in our experiments, less than half a
dozen other worker nodes are adequate). Since delegation or offloading requires resources
of the delegator, a multilevel delegation/offloading architecture might be required, e.g.,
a hierarchical or graph-based delegation where workers themselves delegate to others,
recursively, would be needed to obtain further speedups when a large number of devices
are actually available.

There is a need to tune parameters to obtain good performance relative to the re-
sources/costs employed, e.g., chunk size, number of workers, and there is a need to
compensate for disconnections, slow downs or node failures, as well as addition of new
nodes, which our Honeybee algorithm does successfully.

7. Conclusions and Future Work
In this work, we evaluated the proposed system of collaborative edge-fog-cloud

architecture exclusively on a real testbed with actual devices, ensuring practical applicability
and eliminating reliance on simulations. Our experiments suggest that dynamic cooperative
computations involving edge, fog, and cloud nodes are advantageous and should be
facilitated as a “normal” device function. Honeybee has provided a means to enable
such cooperative computations in a seamless way that is dynamically responsive to the
availability and changing capacities of devices at run-time. As computers in our pockets
and surroundings become more powerful and increase in number, the problem is, and
increasingly so, not the lack of computational capabilities, but an increase in untapped
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idle resources (e.g., the case of idle resources on desktops [42] and cloud nodes [43] easily
extends to smartphones and other devices).

This paper has experimented with a range of configurations involving edge, fog, and
cloud nodes, but there are many more to explore. The optimal configurations for com-
putations are not easily arrived at analytically, but best effort, heuristic-based, functional
validation approaches are probably more practical, e.g., a rule of thumb might be “offload
only when surrounded by more capable devices which are not too far away”, where the
capabilities of devices can only be detected by performing some jobs for a short monitored
period of time (as opposed to requiring explicit sharing of device information due to pri-
vacy reasons). Moreover, our theoretical analysis of speedup bounds currently assumes
constant relative computational power indicators kei , k f j

, and kcl . However, in real-world
scenarios, these values vary due to fluctuating network conditions and computational loads.
Extending our model with probabilistic or time series-based approaches could capture
these dynamics, enabling adaptive task offloading and configuration optimisation, and
enhancing the framework’s robustness in variable environments. While our experiments
used D1 as a representative of modestly resourced edge devices, future work will involve
testing the system on smaller and more constrained IoT platforms. This will further validate
the scalability and adaptability of our approach across diverse edge environments. Hence,
much further work remains.
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